
Vol. 30 ISMB 2014, pages i255–i263
BIOINFORMATICS doi:10.1093/bioinformatics/btu264

An efficient parallel algorithm for accelerating computational

protein design
Yichao Zhou1, Wei Xu1, Bruce R. Donald2,3 and Jianyang Zeng1,*
1Institute for Theoretical Computer Science (ITCS), Institute for Interdisciplinary Information Sciences, Tsinghua
University, Beijing 100084, P. R. China, 2Department of Computer Science, Duke University, Durham, NC 27708, USA
and 3Department of Biochemistry, Duke University Medical Center, Durham, NC 27708, USA

ABSTRACT

Motivation: Structure-based computational protein design (SCPR) is

an important topic in protein engineering. Under the assumption of a

rigid backbone and a finite set of discrete conformations of side-

chains, various methods have been proposed to address this problem.

A popular method is to combine the dead-end elimination (DEE) and

A* tree search algorithms, which provably finds the global minimum

energy conformation (GMEC) solution.

Results: In this article, we improve the efficiency of computing A*

heuristic functions for protein design and propose a variant of A* al-

gorithm in which the search process can be performed on a single

GPU in a massively parallel fashion. In addition, we make some efforts

to address the memory exceeding problem in A* search. As a result,

our enhancements can achieve a significant speedup of the A*-based

protein design algorithm by four orders of magnitude on large-scale

test data through pre-computation and parallelization, while still main-

taining an acceptable memory overhead. We also show that our par-

allel A* search algorithm could be successfully combined with

iMinDEE, a state-of-the-art DEE criterion, for rotamer pruning to further

improve SCPR with the consideration of continuous side-chain

flexibility.

Availability: Our software is available and distributed open-source

under the GNU Lesser General License Version 2.1 (GNU, February

1999). The source code can be downloaded from http://www.cs.duke.

edu/donaldlab/osprey.php or http://iiis.tsinghua.edu.cn/�compbio/

software.html.

Contact: zengjy321@tsinghua.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Structure-based computational protein design (SCPR) provides a

promising tool in a wide range of protein engineering applica-

tions, such as drug design (Gorczynski et al., 2007), enzyme syn-

thesis (Chen et al., 2009), drug resistance prediction (Frey et al.,

2010) and design of protein–protein interactions (Roberts et al.,

2012). The basic idea of SCPR is to find a new amino acid

sequence based on a known structure, such that the total

energy of the resulting molecular complex is minimized. In gen-

eral, it is difficult to model an ideal protein design framework

with the consideration of full backbone and side-chain flexibility,

since there are usually a huge number of conformations that need

to be sampled even for a small protein. Therefore, in practice

assumptions are often made to reduce the complexity of the

protein design problem. In most of protein design models

(Roberts et al., 2012), the backbone structure is assumed as a

rigid body, and only side-chains are allowed to rotate among a

finite set of discrete conformations, called the rotamer library.
Under the rigid backbone assumption, the goal of SCPR is to

search over all possible combinations of side-chain rotamer con-

formations of different allowed amino acids, trying to find

the global minimum energy conformation (aka GMEC).

Unfortunately, this problem has been proven NP-hard

(Chazelle et al., 2004; Pierce and Winfree, 2002). Thus, a

number of heuristic methods, such as Monte Carlo and genetic

algorithms, have been proposed to find the approximate solu-

tions to this problem (Kuhlman and Baker, 2000; Marvin and

Hellinga, 2001; Shah et al., 2004; Street and Mayo, 1999). A

recent study also suggests that we can split the entire task into

small pieces so that a large-scale protein design problem can be

solved in parallel (Pitman et al., 2014). However, these

approaches cannot provide any provable guarantee of finding

the global optimal solution (i.e., GMEC) as they may get trapped

in a local optimum. In contrast, provable algorithms, such as tree

decomposition (Xu and Berger, 2006), integer linear program-

ming with a branch-and-bound technique (Althaus et al., 2002;

Kingsford et al., 2005), dead-end elimination (DEE; Desmet

et al., 1992) and A* search (Donald, 2011; Leach et al., 1998;

Lippow and Tidor, 2007) assure that GMEC will be outputted as

a final solution. In particular, the combination of DEE and A*

search is popular in computational protein design (Donald, 2011;

Lippow and Tidor, 2007). In this design strategy, DEE is first

applied to prune a large number of unfavorable rotamers that

are provably not part of the optimal solution. Next, the A* al-

gorithm is used to search over all possible combinations of the

remaining rotamers and compute the GMEC solution.

A number of DEE criteria have been proposed to improve the

rotamer pruning and reduce the complexity of the rotamer con-

formation search space (Gainza et al., 2012; Georgiev et al.,

2008, 2006). Although DEE can prune most rotamer conform-

ations in the problem space, the A* algorithm still runs in expo-

nential time in the worst case. In the DEE and A*-based

framework, A* is generally one of the most time-consuming

parts, especially for large-scale protein design problems. Thus

it is vital to propose a faster algorithm to alleviate this bottleneck

and therefore accelerate the protein design process.
In this article, we develop an efficient parallel A* tree search

algorithm to accelerate computational protein design. By opti-

mizing and parallelizing the computation of heuristic functions

and the underlying data structure (i.e., the priority queue) for A*

search, our algorithm significantly speeds up the A* search*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which

permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

http://www.cs.duke.edu/donaldlab/osprey.php
http://www.cs.duke.edu/donaldlab/osprey.php
http://iiis.tsinghua.edu.cn/~compbio/software.html
http://iiis.tsinghua.edu.cn/~compbio/software.html
http://iiis.tsinghua.edu.cn/~compbio/software.html
mailto:zengjy321@tsinghua.edu.cn
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu264/-/DC1
-
;Chazelle etal.,2004
,
;Donald,2011
;Donald,2011
paper
XPath error Undefined namespace prefix

process. Our approach fully exploits the capacity of parallelism
on a Graphics Processing Unit (GPU) to support the A* search
for protein design. Tests on a benchmark dataset of 74 proteins

show that our new algorithm runs up to 20000 times faster than
the original A*-based protein design algorithm, while still main-

taining an acceptable amount of memory overhead. Thus, our
parallel A* search algorithm can provide a practically useful tool

for computational protein design.

2 METHODS

2.1 General-purpose computing on GPUs

General-purpose computing on graphics processing units (aka GPGPU),

is a method to use a GPU together with a CPU to accelerate traditional

computation. The main difference between CPU and GPU computational

frameworks lies in the mechanisms they use to process calculation tasks. A

CPUusually contains several highly optimized cores for sequential instruc-

tion execution, while a GPU typically contains thousands of simpler but

efficient cores which are able to process different tasks in parallel. As an

example, a high-end GPU, AMD Radeon 7970 Tahiti XT, has 2048 pro-

cessing elements, while a powerful CPU such as Intel Xeon E7-8870 only

contains 10 cores. Because of this characteristic, we must modify our al-

gorithms originally designed for a CPU to take advantage of a large

amount of parallelism to bring the full power of a GPU into play.

A GPU typically has a better performance in floating-point operation

than a same-price CPU. For example, an NVIDIA GeForce GTX 580M

has 952.3 theoreticalGFLOPS (giga floating-point operation per second),

while the theoreticalGFLOPS of Intel Core i7-3960 is only 158.4, accord-

ing to the specification released by Intel (Intel Corporation, 2011) and

NVIDIA (NVIDIA Corporation, 2013), respectively. In our protein

design problem, the main bottleneck is the floating-point operations for

the heuristic function evaluation. Therefore, GPU acceleration is an ap-

propriate tool to address such a problem.

A GPU has its own memory system. Thus it can provide a larger

memory bandwidth than that of a CPU, which means GPU cores can

retrieve and write data from/to the global memory faster than a CPU.

This is especially suitable for those algorithms that are limited by the

global memory bandwidth. However, before and after the computation,

data need to be transferred between the memory of CPU and GPU

through a relatively slow PCI-E bus. Thus, in general, we prefer a smaller

ratio between the amount of time used to transfer input/output and the

amount of time spent on computation. The A* search algorithm is suit-

able for such a computation framework, as the amount of floating-point

computation makes the data transfer overhead negligible.

2.2 An A* search algorithm for protein design

In this section, we will first give some background about using A* algo-

rithm to solve the protein design problem. In Section 2.2.1, we will provide

a new approach to improve the computation of heuristic function in A*

search. After that, Sections 2.3 and 2.4 will present a two-level parallelized

A* algorithm that is suitable for a modern GPU. Finally, Section 2.5 will

provide an extended A* algorithm that runs in bounded memory.

Under the assumption of a rigid backbone and discrete side-chain

rotamers, SCPR can be generally formulated as an optimization problem,

in which we aim to find an amino acid or rotamer sequence that minim-

izes the following objective function using 1- and 2-body energies:

ET=E0+
X

ir2A

E1ðirÞ+
X

ir2A

X

js2A;
i5j

E2ðir; jsÞ; ð1Þ

where A is the set of discrete side-chain rotamer conformations (typically

called the rotamer library), E0 is the backbone or template energy, E1(ir) is

the self energy of rotamer r for residue i (including intra-residue and

rotamer-to-backbone energies), and E2(ir,js) is the pairwise interaction

energy between rotamer ir and js. The global optimal solution, i.e.,

GMEC, minimizes the above energy function in Equation (1).

The combination of DEE and A* search algorithm has been popularly

used in computational protein design (Donald, 2011; Gainza et al., 2013;

Georgiev et al., 2008; Leach et al., 1998; Lilien et al., 2005; Lippow and

Tidor, 2007;). In this protein design strategy, the DEE algorithm is first

applied to prune a number of rotamers that are provably not part of the

optimal solution that minimizes the energy function in Equation (1).

Next, an A* tree search algorithm is used to search over all possible

combinations of the remaining rotamers and find the global optimal so-

lution (i.e., GMEC). Traditional implementations of the A* search algo-

rithm for protein design take a priority queue to decide the order of

visiting nodes in the tree search. In this priority queue, elements are

sorted by the following heuristic function as the evaluation measure for

each expanding rotamer:

fðxÞ=gðxÞ+hðxÞ; ð2Þ

where g(x) represents the actual cost from the starting node (i.e., the root

of the A* search tree) to the current node x, and h(x) represents the

estimated cost from the current node x to its destination (i.e., a leaf

node in the A* search tree).

Each time, we extract a node with the smallest heuristic function value

from the priority queue, expand it and then push the new expanded nodes

back into the priority queue. We repeat this process until a target node

(which is one of the leaf nodes with the minimum heuristic function value

in the search tree) is found. Algorithm 1 describes a single-thread version

of the traditional A* search procedure.

Algorithm 1 A single-thread version of the traditional A* search

1: procedure A-STAR(s, T) . s is the starting node and T is

2: Let Q be a priority queue . the set of target nodes

3: Q 1
4: PUSH(Q, s)

5: while Q is not empty do

6: q POP(Q)

7: if q 2 T then

8: return the path found

9: end if

10: Let R be the set of expanded nodes from q

11: Calculate f(x) for all nodes in R

12: Push all the elements from R into Q

13: end while

14: end procedure

2.2.1 Improved computation of heuristic functions In the A*

search algorithm for solving the protein design problem, the actual cost

from the starting node to current node x in the search tree is defined by

gðxÞ=E0+
X

ir2DðxÞ

E1ðirÞ+
X

ir2DðxÞ

X

js2DðxÞ;
i5j

E2ðir; jsÞ; ð3Þ

where D(x) is the set of residues in which rotamers have been already

determined so far, E0 is the backbone energy, E1(ir) is the self energy of

rotamer ir (including both intra-residue and rotamer-to-backbone ener-

gies), and E2(ir,js) is the pairwise interaction energy between rotamers ir
and js.

The estimated cost from current node x to the destination node is

defined by

hðxÞ=
X

i2UðxÞ
r

minðE1ðirÞ+
X

js2DðxÞ

E2ðir; jsÞ+
X

k2UðxÞ
u
minE2ðir; kuÞÞ; ð4Þ

whereU(x) represents the set of residues, in which rotamers have not been

determined at current node x.

i256

Y.Zhou et al.

graphics processing unit
graphics processing unit (
)
Section
structure-based computational protein design (
)
i.e.
global minimum energy conformation (
)
dead-end elimination (
)
Georgiev etal.,2008;Donald,2011

A brute-force method of calculating heuristic function

f(x)= g(x)+ h(x) takes O(n2m2) floating-point operations, where n is

the length of protein sequence and m is the maximum possible number

of rotamers per residue. Thus, it takes O(n2m2t) floating-point operations

to compute heuristic functions for all nodes in the whole A* search tree

using this brute-force method, where t is the total number of expanded

nodes in the search tree. However, our analysis of Equation (4) reveals

that we do not need to spend O(nm) time in repeatedly calculatingX
k2UðxÞ

minu E2ðir; kuÞ each time when we evaluate the heuristic func-

tion. Since we search the conformation space residue by residue, there are

only n possibilities for U(x). Therefore, we can use a two-dimension table

T[U(x),ir] to pre-compute all these possible values. This pre-computation

process takesO(n2m) memory and O(n3m2) floating-point operations, but

reduces time complexity of calculating f(x) down toO(n2m) when expand-

ing a new node. Again suppose that the total number of expanded nodes

in the final A* search tree is t. Then we bring down the overall time

complexity from O(n2m2t) to O(n3m2+ n2mt), which greatly improves

the practical efficiency of the algorithm because in general t � n.

We have also applied some technique to improve the computation of

the g(x) function, which reduces its computational complexity from O(n2)

to O(n). More details of the improved computation of g(x) can be found

in Supplementary Material Section S1.

2.3 Parallelized computation of heuristic functions

The most time-consuming part of the A* tree search algorithm for pro-

tein design lies in the following two aspects: (i) Calculation of heuristic

functions; (ii) Priority queue operations for expanding new nodes. To

alleviate these two bottlenecks, we propose a new algorithm with two

levels of parallelism to accelerate protein design. In this section, we will

describe the first level of parallelism, that is, parallelized calculation of

heuristic functions in A* search.

Although time complexity of calculating a heuristic function has been

improved from O(n2m2t) to O(n3m2+ n2mt) in Section 2.2.1, the compu-

tation of heuristic functions for new expanded nodes in A* search can be

further sped up by exploiting the inherent parallelism capacity of a GPU.

This step is quite straightforward, based on the observation that calcula-

tion of heuristic function f(x) for each expanded node is simply a series of

independent arithmetic operations that can be directly parallelized. The

flow chart of the first level parallelism can be found in Figure S1 in

Supplementary Material Section S2.

2.4 Parallelized A* search for protein design

Although the method described in Section 2.3 can parallelize the A* search

algorithm, the scale of the parallelism is still limited. In our protein design

problem, the degree of parallelism in the computation of heuristic function

is equal to themaximumnumber of rotamers per residue, which is normally

in the order of 10 after pruning unfavorable rotamers using the combin-

ations of different DEE criteria. Although this may be good enough for a

single-machine CPU implementation, a GPU implementation definitely

needs a larger degree of parallelism as we mentioned in Section 2.1.

Another problem is that the priority queue operations, including PUSH-

BACK and POP, take Oðlog NÞ time, where N stands for the total number

of elements in the priority queue and usually is a large number. After

computing the heuristic functions of newly expanded nodes, we need to

push all of them back into a single priority queue. This part has not been

parallelized and thus only exploits a small proportion of the parallel

capacity of a GPU. Therefore, further improvement is needed.

A na€ıve idea is to pop a number of minimum elements from a single

priority queue and then compute their heuristic function values.

However, this method is still unable to parallelize the priority queue op-

erations. Existing parallel priority queues (R €onngren and Ayani, 1997),

such as pipelined binary heap (Moon et al., 2000), do not fit the GPU

model well, mainly due to the high overhead of synchronization and

branch divergence.

Toaddress the aforementioned problems,we propose a newandparallel

version of the A* search algorithm to fully exploit the power of parallelism

in a GPU for accelerating protein design. This algorithm is mainly based

on the observation that we do not need to extract the k lowest-energy

conformations with the smallest f(x) values in gap-free sorted order. In

fact, we only need to assure that the element with the smallest heuristic

function value is extracted, and do not have to restrict others.

In our algorithm, we allocate hundreds of priority queues, and then let

each thread operate on its own priority queue. Suppose we allocate k

priority queues in total. The basic idea of our algorithm includes the

following key steps:

(1) Launch k threads to pop k minimum elements from k priority

queues in parallel;

(2) For each thread, expand new nodes for the extracted element;

(3) Launch enough threads to perform parallelized computation of

heuristic functions, using the procedure described in Section 2.3; and

(4) Launch k threads to push all expanded nodes back into k priority

queues.

The pseudocode of our algorithm, GA*, can be found in Algorithm 2.

More details of this parallel algorithm are illustrated in Figure 1. The

Fig. 1. Flow chart of our GA* search algorithm for accelerating protein

design. Symbols ri represent all parallel expanded rotamers, and p is the

total number of expanded nodes. A shaded and rounded square repre-

sents a global state, which can be regarded as a global synchronization

point. The directional black edges mean that the procedure needs to be

done between two synchronization points. The dashed arrows and the

double bold arrows represent the data flow among different states and the

priority queues, respectively. A group of similar arrows means that the

operations are performed in parallel

i257

A parallel algorithm for accelerating computational protein design

Supporting Information
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu264/-/DC1
1
2
i.e.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu264/-/DC1
 Supporting Information
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu264/-/DC1
ten

parallelism employed in our algorithm can directly address all the previ-

ously mentioned computational bottlenecks in A* search and thus greatly

speed up the computational protein design process. In addition, our new

algorithm introduces small overhead. It only requires a constant number

of global synchronization points per round without much communication

overhead.

Note that this pseudocode is just for computing the GMEC solution.

Our algorithm can be easily extended to output all solutions within a

specific energetic cutoff from the GMEC solution in gap-free sorted

order, using the same strategy as in OSPREY (Chen et al., 2009;

Gainza et al., 2013).

Algorithm 2 GA*: a GPU parallel A* algorithm for protein design

1: procedure GA*(k, s, T) . k is the number of allocated

2: for i 1 to k in parallel do . priority queues, s is the

3: Let Qi be a priority queue . starting node, and T is

4: Qi 1 . the set of all target nodes,

5: end for

6: PUSH(Q1, s)

7: t nil . t stores the best solution hitherto

8: while 9Qi that is not empty do

9: R 1
10: for i be the index where Qi is not empty in parallel do

11: qi POP(Qi)

12: if qi 2 T then

13: if t=nil or f(pi)5f(t) then

14: t pi
15: end if

16: continue

17: end if

18: Let R0 be the nodes expanded from qi.

19: R R [R0

20: end for

21: if t 6¼ nil and fðtÞ=minj fðpjÞ then

22: return t

23: end if

24: Reorder the nodes in R . See Section 2.6

25: Calculate f(x) for all nodes in R in maximum parallel

26: for i 1 to k in parallel do

27: Pick jRj/k nodes from R with different parents

28: Push them into Qi

29: end for

30: end while

31: end procedure

Note that the nodes to be expanded are not necessarily the most op-

timal nodes. For example, suppose we have two priority queues, and the

1st, 2nd, 3rd most optimal nodes are in the first priority queue while the

4th one is in the second queue. In this situation, our algorithm will pop

out the 1st and 4th most optimal nodes, which is not an ideal situation.

This is the price of the parallelism of the priority queue. We try to alle-

viate this problem by separating the nodes with the same parent nodes,

which may have similar heuristic function values, to different queues.

Because the parallelism of the priority queue changes the work flow of

the overall A* algorithm, it is necessary to provide a proof to show that

GA* is able to compute a global optimal solution. Here, our proof is

derived mainly for the protein design problem, in which the underlying

search graph is a tree.

LEMMA 2.1. Let hr(x) represent the real cost from x to an optimum target

node. If the defined heuristic function satisfies h(x)� hr(x) for each node x

and the search graph is a tree, for any optimal target t 2 T, there exists a

node t0 in the priority queues {Qi} such that f(t0)� f(t) in Algorithm 2

before each POP operation is executed.

PROOF. Let d(x,y)= g(y)– g(x) denote the real cost from node x to node

y, where xmust be on the path from the starting node s to y. For all node

t0 that is on the path from s to t, we have

fðt0Þ=gðt0Þ+hðt0Þ

� dðs; t0Þ+hrðt
0Þ

=dðs; t0Þ+dðt0; tÞ

=dðs; tÞ

=fðtÞ:

Thus, it is sufficient to prove that there exists a node t0 in the priority

queues along the path from s to t. At the beginning, the starting node s

satisfies such a condition. At any time, if line 11 in Algorithm 2 pops node

t0, line 18 will generate another node that is also on the path from s to t,

which is then pushed back into the queues. Thus, such a node always

exists. «

THEOREM 2.2. Let hr(x) represent the real cost from x to an optimum

target node. If the defined heuristic function satisfies h(x)� hr(x) for

every node x and the search graph is a tree, the first solution returned by

GA* must be the optimal solution.

PROOF. We prove this theorem by contradiction. There exists two pos-

sible situations that may violate our conclusion:

(1) The algorithm never terminates; and

(2) When the algorithm terminates, it returns a solution that is not

optimal.

For (1), it is impossible because the search space is a finite tree and our

algorithm will never visit any node twice.

For (2), assume that our algorithm returns a node t1, while the opti-

mal solution is node t2. Thus, we have f(t1)4f(t2). However, according

to Lemma 2.1, we have a node t0 in the queues {Qi} that

satisfies f(t0)� f(t2)5f(t1), which violates the condition in line 21 of

Algorithm 2. «

Theorem 2.2 states that GA* guarantees to find the global optimal

solution. However, GA* does not retain all the properties that the ori-

ginal version of A* search has. The optimality property (Dechter and

Pearl, 1985), which guarantees that A* will expand fewer nodes than any

other algorithm using the same heuristic function, is lost in GA*. The

reason is that in GA*, it is possible to expand a node whose f(x) value is

larger than the best solution due to the parallelism. However, as we will

see in the Results section, the fraction of extra expanded nodes compared

to the original A* algorithm is within an acceptable range.

2.5 Memory-bounded A* search for protein design

Although our parallel algorithm GA* can speed up the traditional A*

algorithm by several orders of magnitude, the scale of the protein design

problem that it can solve is still limited. For example, we may support at

most 20 mutable residues if all types of amino acids are allowed in each

residue. The bottleneck mainly lies in the limited memory available for

each machine. In the worst case, A* produces an exponential number of

expanded nodes in the search tree. Once the algorithm runs out of

memory to store new expanded nodes, it cannot continue. Several ef-

forts have been made to solve this problem. In particular, variants of

the A* algorithm such as iterative deepening depth-first search (IDA*)

(Korf, 1985) and simplified memory-bounded A* (SMA*) (Russell, 1992)

have been proposed to address such an issue. IDA* uses a depth-first-

search strategy to reduce the usage of memory, which is difficult to par-

allelize on a GPU. On the other hand, we found that SMA* could be well

implemented on a GPU. We call this new algorithm GSMA*.

i258

Y.Zhou et al.

SMA* is almost identical to a normal A* algorithm, with the only

exception that if a new expanded node does not fit in memory, we simply

throw away the least promising node in the queue, which has the worst

f(x) value. Using this method, SMA* can still assure to generate the

optimal solution when the memory is large enough for the original A*

algorithm, while it may miss the optimal solution if the size of the priority

queue exceeds the memory limit. In this case, although our algorithm

cannot guarantee to find the GMEC solution, we can still know whether

the solution returned by SMA* is a GMEC solution. This can be done by

tracking the lowest f(x) value among all nodes that we have thrown away.

If the energy of the returned solution is below this value, we know that

SMA* finds the GMEC solution. Otherwise, we can report that the

energy of the GMEC solution must lie in the interval between this

value and energy of the solution found by SMA*.

For GSMA*, when we run out of the memory, we first do a global

scan operation (Sengupta et al., 2007) to pick those nodes which are the

leaves of the current searching tree, while freeing the memory occupied by

the internal nodes that have already been expanded. Then a global sorting

operation is performed over all the remaining nodes according to their

f(x) values. Finally, we keep a user-specified percentage of nodes with the

lowest f(x) values and then reconstruct the priority queues evenly, in

which nodes are stratified by their heuristic function values.

2.6 Implementation details

Our new parallel A* search algorithm is implemented based on the cur-

rent open-source protein design package OSPREY (Chen et al., 2009;

Gainza et al., 2013). The CPU code is written in C and the GPU code

is written in CUDA. As the OSPREY library is implemented in Java, we

use Java Native Interface (JNI) to communicate with the native C

program.

At the beginning, our program copies the configuration and necessary

information such as energy matrix and the original sequence from CPU

memory to the global memory of a GPU. Then it allocates memory space

for the nodes generated by GA* and a user-specified number of binary

heaps. Each element in a binary heap stores a floating-point value of f(x)

and a pointer to its corresponding node x.

After initializing the GPU data structure, the GPU circulates among

the four states as shown in Figure 2 until a valid solution is found.

Compared to Figure 1, we add a new RADIX-SORTING state.

In the EXTRACTION phase, GA* launches a user-specified number of

threads, each of which operates on its own priority queue and performs

the DELETE-MINIMUM operation to extract the node with the minimum

f(x) value. Each priority queue is a vanilla binary heap. In addition, GA*

checks whether the extracted node of the current thread is the optimal

target node. Also, the expanding operation is done in this phase, which

generates the children of the extracted nodes and then puts them into a

global buffer.

The second phase is RADIX-SORTING, which corresponds to line 24 in

Algorithm 2. In this phase, the expanded nodes are sorted by their current

depth, that is, the number of decided rotamers, before entering

the EVALUATION phase. The major motivation for this phase is that the

range of the loop during the calculation of f(x) heavily depends on the

depth of the corresponding node in the search tree. Thus, after sorting, all

the threads in a single SIMD unit of a GPU will tend to have the same

length of the loop during the evaluation phase, which thus can reduce the

branch divergence overhead and improve the efficiency of the parallelized

computation of heuristic functions. There are several efficient sorting

algorithms available for GPUs, such as (Satish et al., 2009; Sintorn and

Assarsson, 2008). As the number of elements to be sorted is not that

large, we choose a classical and simple method, the GPU radix-sorting

(Sengupta et al., 2007), to perform this task.

In the EVALUATION phase, GA* launches the same number of threads

as the number of expanded nodes to calculate the heuristic function of

each node in order to exploit the full floating-point operation capacity of

a GPU. Our tests show that a GPU would spend more than 80% time in

this phase. Thus parallelizing the calculation of heuristic functions in this

phase can significantly reduce the running time of A* search for protein

design. Section 2.3 explains more details about parallelizing computation

of heuristic functions in this phase.

In the final PUSHING-BACK phase, GA* pushes all the expanded nodes

with their heuristic function values back into the priority queues, using

the classical INSERT procedure of a binary heap. In addition, GA* pushes

the different expanded nodes into priority queues so that the sizes of these

queues are balanced and the new expanded nodes with the same parents,

which may have similar heuristic function values, are stored in different

queues.

3 RESULTS

3.1 Parallel protein design

In order to evaluate the performance of our new parallel A*

algorithm, we performed several protein design experiments.

The Results section is divided into two parts. In the first subsec-
tion, we will compare the running time and memory usage of our

new algorithm GA* against the original A* algorithm for protein
design. In the second subsection, we will evaluate the effective-

ness of the combination of our parallel design algorithm GA*

and the memory-bounded strategy (i.e., SMA*), by testing
whether our algorithm is able to get a GMEC solution and

calculating the proportion of recovered residues in native se-
quences recovery.

In addition to the original A* search algorithm in OSPREY
(Gainza et al., 2013) and our parallel design algorithm GA*, we

also implemented a single-thread version of the A* search algo-
rithm on a CPU in C programming language using the new

strategy of computing heuristic functions, as we have described

in Section 2.2.1. There are two reasons for us to include this
program in this benchmark. First, it measures improvement by

using this new strategy to compute heuristic functions. Second, it
is unfair to perform a direct comparison between algorithms

implemented in Java and native machine code on a GPU, be-
cause the Java Virtual Machine and the garbage collection

system may introduce a considerable amount of overhead.
We used 74 protein core redesigns provided by (Gainza et al.,

2012) as the test data. We used the same parameters as those in

(Gainza et al., 2012), including the set of allowed amino acids
and the number of mutable residues. We used iMinDEE (Gainza

et al., 2012) as the DEE strategy to prune those rotamers that areFig. 2. Diagram of the GPU states

i259

A parallel algorithm for accelerating computational protein design

i.e.
dead-end elimination

provably not in the part of the global optimal solution. The
iMinDEE algorithm can give a more accurate result on rotamer
pruning, but results in a much larger conformation space for the

downstream A* algorithm to search over to find the GMEC
solution. Strictly speaking, we are not trying to find the
GMEC solution in A* when using iMinDEE. We are trying to

find the lowest-energy bound conformation for iMinDEE. But
from the point view of an A* algorithm, it treats that job as same
as finding the GMEC solution. So we will not distinguish these

terminologies in the Results section. In this part of the experi-
ment, memory-bounded operations were not performed. Because
GA* is a provable algorithm (see Theorem 2.2 in Section 2.4), it

can still guarantee to find the optimal solution. For correctness,
we also verified that our results are completely identical to those
of original OSPREY.

The CPU and GPU we used in this benchmark test were an
Intel XeonTME5-1620 3.6GHz with 16 GB memory and an
NVIDIA Tesla K20c GPU with 4.8 GB global memory and

2496 CUDA cores, respectively. The main point of this test is
to measure the speed and the memory consumption of our algo-
rithm, the results of which can be found in Tables 1 and 2,

respectively. We ran the full experiment over all 74 protein struc-
tures, but we only show the list of the 10 slowest cases here as the
others were finished too quickly even for the original A* algo-

rithm implemented in OSPREY after rotamer pruning using
iMinDEE. The results of all tests can be found in Tables S1
and S2 in Supplementary Material Section S3.

In our GA* algorithm, the number of parallel priority queues,
as described in Section 2.4, is a parameter that we can tune for the
maximum performance. By increasing the number of priority

queues, we can increase the degree of parallelism and further ex-
ploit the capability of the GPU hardware. On the other hand,
when more parallel priority queues are used, the number of

extra expanded nodes in the tree search compared to the original
A* algorithm will also increase, which will cause both computa-
tion and memory overhead. In our computational experiments,

we tested two choices of this parameter. One is 768, designed for
the balance between time and space consumption. The other is
4992, targeting at maximizing the protein design speed.

From Table 1, we found that our parallel A* algorithm GA*
can speed up the original A*-based protein design algorithm by
several orders of magnitude. For the largest protein design prob-

lem related to 2QCP, the original A*-based protein design algo-
rithm took �6h, while GA*4992 (i.e., GA* algorithm that used
4992 parallel priority queues) was able to finish the search in

1.2 s. Such improvement is striking. In addition, as summarized
in Table 2, the larger the conformation search space is, the more
impact GA* will have. This is because for large problems, GA* is

able to better exploit its parallelism, amortizing the overhead to a
negligible level.
Furthermore, the test results on the memory consumption of

GA* (Table 2) were also promising. Although for small-scale
protein design problems, memory consumption of GA*4992
was several times higher than that of a single-thread version,

the discrepancy in memory consumption became more and
more negligible when the conformation space scaled up. For
the largest design problem related to 2QCP, GA*4992 only gen-

erated 1.12 times more nodes than the single-thread algorithm.
Therefore, such small growth of memory requirement was

acceptable compared to the large improvement on time efficiency

achieved by our algorithm.

3.2 Parallel protein design with bounded memory

Memory limitation is always a problem when we are conducting

large-scale protein design. Although GSMA* can solve this

problem, it does not guarantee to generate a GMEC solution

anymore. Therefore, it is necessary to evaluate the quality of its

solutions when the memory resource is not sufficient. Researches

have shown that the sequences of native proteins tend to opti-

mize their core structures for stability (Gainza et al., 2012;

Table 1. The comparison results about time efficiency of our parallel

against original versions of A* search for protein design

PDB Spacea OSPREYb A*1c GA*768d GA*4992d

2QCP 2�1017 21 551 916 51 091 3075 1146

1XMK 2�1014 247 585 2990 296 121

1X6I 7�1013 96 990 1406 138 73

1UCS 6�1012 88 135 1771 182 79

1CC8 3�1014 77 614 1078 99 53

2CS7 8�1012 64 187 1154 149 57

2BWF 9�1013 18 457 307 33 24

1I27 7�1011 8151 88 18 16

1T8K 2�1013 6806 89 18 15

1R6J 2�1014 6018 107 18 21

Notes: Time was measured in millisecond. The results were sorted by the running

time needed by OSPREY and only the 10 largest cases are listed here. aThe second

column, labeled with ‘Space’, reports the size of conformation search space after the

rotamer pruning using iMinDEE. bThe third column, labeled with ‘OSPREY’, re-

ports the running time of the original A* algorithm in OSPREY implemented in

Java. cThe fourth column, labeled with ‘A*1’, reports the running time of our new

implementation of a single-thread A* algorithm written in C programming language

running on a CPU, which adopted the improved computation of heuristic functions,

as described in Section 2.2.1. dThe fifth and sixth columns, labeled with ‘GA*768’

and ‘GA*4992’, respectively, report the running time of two fully parallelized A*

algorithms running on a GPU, whose numbers of parallel priority queues are 768

and 4992, respectively.

Table 2. The comparison results about memory consumption of our par-

allel against original versions of A* search for protein design

PDB Space A*1 GA*768 GA*4992

2QCP 2�1017 31 589690 32 825 074 35 517 854

1XMK 2�1014 2 910324 3 325 654 4 419 100

1X6I 7�1013 1 919055 2 282 986 3 486 684

1UCS 6�1012 1 713636 2 196 315 2 960 752

1CC8 3�1014 966196 1 255 899 1 893 701

2CS7 8�1012 1 378633 1 686 558 2 354 910

2BWF 9�1013 325634 529 810 981 302

1I27 7�1011 121920 260 825 737 328

1T8K 2�1013 129767 211 003 618 794

1R6J 2�1014 117053 244 399 837 359

Note: Each column has the same meaning as that in Table 1 except that the numbers

in last three columns represent the numbers of expanded nodes in different

programs.

i260

Y.Zhou et al.

1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu264/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu264/-/DC1
of
Supporting Information
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu264/-/DC1
about
ours
econds

Kuhlman and Baker, 2000). Therefore we included the native

sequence recovery experiments, in which we removed the types

of some amino acids from the core of the wild-type proteins and

recorded the percentage of correctly recovered residues by the

design algorithm as an indicator of its quality besides other direct

critera.

We randomly picked six PDBs from the protein sequence

recovery dataset provided in (Gainza et al., 2012) to evaluate

performance of our parallel GA* with limited memory (i.e.,

GSMA*). Unlike Section 3.1 in which we did not change any

parameters on the original test dataset, this time we increased the

number of mutable residues so that the total number of new

nodes expanded by GA* just fitted the physical memory limit

of the GPU without throwing any of them away, which had

�3� 107 nodes. We did this because we need to have a set of

optimal solutions as a reference for comparison, and we hoped

that all the test data had the similar memory consumption so

that their performance was comparable. The method for choos-

ing the set of allowed amino acids and the positions of extra

mutable residues was as same as that in (Gainza et al., 2012).
The number of parallel priority queues in this experiment was

fixed to 768. We ran our experiments four times per test data.

Each time we imposed a different restriction on the number of

nodes that GSMA* was allowed to expand, which was 3� 104,

3� 105, 3� 106 and 3� 107, respectively. These restrictions can

be approximately considered as using 1000th, 1%, 10% and

100% of memory needed by GA*. Each time the system ran

out of memory, 50% of the nodes with larger f(x) values were

thrown away.
We use four metrics to evaluate the quality of our algorithm.

The first one is the availability of the GMEC solution. The second

one is whether GSMA* is able to determine that the first solution

it found is the GMEC solution.We have described this method in

Section 2.5. The other two metrics are based on the first 50 solu-

tions returned by A* rather than the GMEC solution. The third

metric, correctness, measures the percentage of the top 50 solu-

tions calculated with memory restriction that were also presented

in the top 50 solutions calculated without such restriction. The

fourth metric, recovery rate, reports the average percentage of

amino acids in the top 50 solutions that are identical to those in

the wild-type protein. Table 3 shows the results.
The numbers reported in the row of GA*768 search space

indicate that the numbers of new nodes expanded by parallel

A* search did not exceed the memory limit of GPU so that the

results computed without memory restriction can be used as ref-

erences for evaluating their tests with memory restriction. We

found that the native sequence recovery ratios of last three struc-

tures were a little low, even when no node was thrown away.

Apart from that, the results look encouraging. The GMEC so-

lution can be guaranteed by GSMA*768 on all our test data even

if we only used�10% of memory required by GA*768. When we

restricted the memory to 1%, GSMA*768 can still keep all

GMEC solutions, though it cannot theoretically guarantee to

find the GMEC solution in some cases.

Table 3. Performance of GSMA* with 768 parallel priority queues on 6 test datasets

PDB 1OAI 1U2H 1ZZK 2CS7 2DSX 3D3B

No. of mutable residues 16 18 14 15 15 15

Conformation space 2�1022 2�1020 2�1015 2�1023 3�1020 6�1818

GA*768 search spacea 4�107 8�106 8�106 4�107 4�107 3�107

3� 104 nodes limit Scan countb 252 104 99 202 182 109

GMEC gotten NO YES YES NO YES NO

GMEC assured NO NO NO NO NO NO

Correctness 4% 100% 20% 12% 32% 6%

Recovery ratio 62% 75% 85% 48% 46% 48%

3� 105 nodes limit Scan countb 139 43 36 103 97 55

GMEC gotten YES YES YES YES YES YES

GMEC assured NO YES YES NO NO NO

Correctness 100% 100% 100% 100% 100% 44%

Recovery ratio 74% 75% 87% 46% 48% 54%

3� 106 nodes limit Scan countb 22 3 3 24 22 18

GMEC gotten YES YES YES YES YES YES

GMEC assured YES YES YES YES YES YES

Correctness 100% 100% 100% 100% 100% 100%

Recovery ratio 74% 75% 87% 46% 48% 53%

3� 107 nodes limit Scan countb 1 0 0 1 1 1

GMEC gotten YES YES YES YES YES YES

GMEC assured YES YES YES YES YES YES

Correctness 100% 100% 100% 100% 100% 100%

Recovery ratio 74% 75% 87% 46% 48% 53%

Note: The meaning of each row is explained either in the text or here. aThe row labeled with ‘GA*768 search space’ represents the number of nodes expanded by GA*768 for

calculating the best 50 solutions. bThe rows labeled with ‘Scan Count’ represent the number of times that the system ran out of memory, in which a series of operations

described in Section 2.5 were executed.

i261

A parallel algorithm for accelerating computational protein design

6
about
,
one-thousand
one percent
ten p
ercent
,
one hundred percent
approximately

In the test with the restriction of 0.1% memory, the algorithm
achieved relatively poor performance. In this case, the algorithm

was only allow to keep 30 000 nodes in memory, which is un-

friendly to parallel A*, as discussed in Section 3.1. When the

absolute size of allowed memory is too small, it is more probable

for GSMA* to throw away an important node at the beginning

of the tree expansion. In practice, we will always use all available
memory to perform the protein design task. So this setting was

only for the evaluation purpose.

4 CONCLUSION AND FUTURE WORK

Computational protein design is a challenging problem in the

computation biology field. In this article, we have developed
an innovative method to improve the A* algorithm for compu-

tational protein design, which significantly reduces running time

of the original protein design algorithm by up to four orders of

magnitude while maintaining low memory overhead. Another

advantage of our algorithm is that we do not change the interface

of the original protein design framework in OSPREY (Gainza
et al., 2013). We have shown that it could be successfully inte-

grated with iMinDEE (Gainza et al., 2012) to further improve

SCPR with the consideration of continuous side-chain flexibility.
Memory limitation becomes a more important problem in

protein design after A* is sped up. Thus, we introduce

memory-bounded parallel A*, a variant of A* algorithm that

only uses limited memory. In the Results section, we have

shown that in practice, the memory-bounded parallel A* algo-

rithm is able to guarantee the GMEC solution with only one-
tenth of memory consumption that the original algorithm

requires.

Currently GA* is only implemented on the Tesla GPU card.
It would be interesting to know whether it can achieve similar

performance on a more affordable GPU card such as NVIDIA

GeForce GTX series. In addition, although currently GA* is

only runnable on a single GPU platform, it should be easy to

port it to other parallel computational platforms due to the

parallel characteristic of our algorithm. If we can utilize the
existing large clusters of CPUs and GPUs to run GA*, in

which more memory and computation resource is available,

we will be able to solve a larger protein design problem than

ever before.

ACKNOWLEDGEMENTS

We thank Mr Kyle Roberts and Mr Pablo Gainza for helping us

set up the iMinDEE code and providing us the benchmark data-

set and scripts for testing. We thank Mr Kyle Roberts and Mr

Mark Hallen for their helpful comments on the draft of this

article. We particularly thank Mr Kyle Roberts for his in-
depth comments on the property of memory-bounded A*. We

thank the anonymous reviewers for their helpful comments.

Funding: This work is supported in part by the National Basic
Research Program of China (grant 2011CBA00300,

2011CBA00301) and the National Natural Science Foundation

of China (grant 61033001, 61361136003). This work is supported

by a grant to B.R.D. from the National Institutes of Health (R01

GM-78031).

Conflict of Interest: none declared.

REFERENCES

Althaus,E. et al. (2002) A combinatorial approach to protein docking with flexible

side chains. J. Comput. Biol., 9, 597–612.

Chazelle,B. et al. (2004) A semidefinite programming approach to side

chain positioning with new rounding strategies. INFORMS J. Comput., 16,

380–392.

Chen,C.-Y. et al. (2009) Computational structure-based redesign of enzyme activity.

Proc. Natl Acad. Sci., 106, 3764–3769.

Dechter,R. and Pearl,J. (1985) Generalized best-first search strategies and the opti-

mality of A*. J. ACM (JACM), 32, 505–536.

Desmet,J. et al. (1992) The dead-end elimination theorem and its use in protein side-

chain positioning. Nature, 356, 539–542.

Donald,B.R. (2011) Algorithms in Structural Molecular Biology. The MIT Press,

Cambridge, MA, USA.

Frey,K.M. et al. (2010) Predicting resistance mutations using protein design algo-

rithms. Proc. Natl Acad. Sci., 107, 13707–13712.

Gainza,P. et al. (2012) Protein design using continuous rotamers. PLoS Comput.

Biol., 8, e1002335.

Gainza,P. et al. (2013) OSPREY: protein design with ensembles, flexibility, and

provable algorithms. Method. Enzymol., 523, 87.

Georgiev,I. et al. (2006) Improved pruning algorithms and divide-and-conquer stra-

tegies for dead-end elimination, with application to protein design.

Bioinformatics, 22, e174–e183.

Georgiev,I. et al. (2008) The minimized dead-end elimination criterion and its ap-

plication to protein redesign in a hybrid scoring and search algorithm for com-

puting partition functions over molecule ensembles. J. Comput. Chem., 29,

1527–1542.

Gorczynski,M.J. et al. (2007) Allosteric inhibition of the protein-protein interaction

between the leukemia-associated proteins Runx1 and CBF�. Chem. Biol., 14,

1186–1197.

Intel Corporation. (2011) Intel Microprocessor Export Compliance Metrics.

Kingsford,C.L. et al. (2005) Solving and analyzing side-chain positioning problems

using linear and integer programming. Bioinformatics, 21, 1028–1039.

Korf,R.E. (1985) Depth-first iterative-deepening: an optimal admissible tree search.

Artif. Int., 27, 97–109.

Kuhlman,B. and Baker,D. (2000) Native protein sequences are close to optimal for

their structures. Proc. Natl Acad. Sci., 97, 10383–10388.

Leach,A.R. et al. (1998) Exploring the conformational space of protein side chains

using dead-end elimination and the A* algorithm. Proteins Struct. Funct. Genet.,

33, 227–239.

Lilien,R.H. et al. (2005) A novel ensemble-based scoring and search algorithm for

protein redesign and its application to modify the substrate specificity of the

gramicidin synthetase a phenylalanine adenylation enzyme. J. Comput. Biol., 12,

740–761.

Lippow,S.M. and Tidor,B. (2007) Progress in computational protein design. Curr.

Opin. Biotechnol., 18, 305–311.

Marvin,J.S. and Hellinga,H.W. (2001) Conversion of a maltose receptor into a

zinc biosensor by computational design. Proc. Natl Acad. Sci., 98,

4955–4960.

Moon,S.-W. et al. (2000) Scalable hardware priority queue architectures for high-

speed packet switches. IEEE Trans. Comput., 49, 1215–1227.

NVIDIA Corporation. (2013) NVIDIA Tesla Technical Specifications.

Pierce,N.A. and Winfree,E. (2002) Protein design is NP-hard. Protein Eng., 15,

779–782.

Pitman,D.J. et al. (2014) Improving computational efficiency and tractability of

protein design using a piecemeal approach. A strategy for parallel and distrib-

uted protein design. Bioinformatics, 30, 1138–1145.

Roberts,K.E. et al. (2012) Computational design of a PDZ domain peptide inhibitor

that rescues CFTR activity. PLoS Comput. Biol., 8, e1002477.

R €onngren,R. and Ayani,R. (1997) A comparative study of parallel and sequen-

tial priority queue algorithms. ACM T. Model. Comput. S. (TOMACS), 7,

157–209.

Russell,S. (1992) Efficient memory-bounded search methods. Proceedings of the

10th European Conference on Artificial intelligence,

Satish,N. et al. (2009) Designing efficient sorting algorithms for manycore GPUs.

In: IEEE International Parallel & Distributed Processing Symposium, 2009.

IPDPS 2009. pp. 1–10.

i262

Y.Zhou et al.

paper
structure-based computational protein design

Sengupta,S. et al. (2007) Scan primitives for GPU computing. In: Fellner,D. and

Spencer,S. (eds) Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS

symposium on Graphics hardware. Eurographics Association, Aire-la-Ville,

Switzerland, Switzerland, pp. 97–106.

Shah,P.S. et al. (2004) Preprocessing of rotamers for protein design calculations. J.

Comput. Chem., 25, 1797–1800.

Sintorn,E. and Assarsson,U. (2008) Fast parallel GPU-sorting using a hybrid algo-

rithm. J. Parallel Distr. Com., 68, 1381–1388.

Street,A.G. and Mayo,S.L. (1999) Computational protein design. Structure, 7,

R105–R109.

Xu,J. and Berger,B. (2006) Fast and accurate algorithms for protein side-chain

packing. J. ACM (JACM), 53, 533–557.

i263

A parallel algorithm for accelerating computational protein design

