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Abstract

Depression and anxiety disrupt daily function and their effects can be long-lasting and devastating, yet there are no

established physiological indicators that can be used to predict onset, diagnose, or target treatments. In this review, we

conceptualize depression and anxiety as maladaptive responses to repetitive stress. We provide an overview of the role of

chronic stress in depression and anxiety and a review of current knowledge on objective stress indicators of depression and

anxiety. We focused on cortisol, heart rate variability and skin conductance that have been well studied in depression and

anxiety and implicated in clinical emotional states. A targeted PubMed search was undertaken prioritizing meta-analyses that

have linked depression and anxiety to cortisol, heart rate variability and skin conductance. Consistent findings include

reduced heart rate variability across depression and anxiety, reduced tonic and phasic skin conductance in depression,

and elevated cortisol at different times of day and across the day in depression. We then provide a brief overview of neural

circuit disruptions that characterize particular types of depression and anxiety. We also include an illustrative analysis using

predictive models to determine how stress markers contribute to specific subgroups of symptoms and how neural circuits

add meaningfully to this prediction. For this, we implemented a tree-based multi-class classification model with physiological

markers of heart rate variability as predictors and four symptom subtypes, including normative mood, as target variables. We

achieved 40% accuracy on the validation set. We then added the neural circuit measures into our predictor set to identify

the combination of neural circuit dysfunctions and physiological markers that accurately predict each symptom subtype.

Achieving 54% accuracy suggested a strong relationship between those neural-physiological predictors and the mental states

that characterize each subtype. Further work to elucidate the complex relationships between physiological markers, neural

circuit dysfunction and resulting symptoms would advance our understanding of the pathophysiological pathways underlying

depression and anxiety.
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Background

Worldwide, 615 million people suffer from the common

mental disorders of depression and/or anxiety. Close to

10% of the world’s population is affected.1 The effects

can be devastating. Depression is now the leading cause

of disability around the world contributing greatly to the

global burden of disease.2,3 Depression is characterized
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by a constellation of disturbances in mood, thought and
function, commonly including persistent sadness, a lack
of interest or pleasure in previously rewarding or enjoy-
able activities, sleep and appetite disruptions, tiredness
and poor concentration.4 Anxiety is characterized by
overlapping symptoms of cognitive and sleep disturban-
ces, as well as hypervigilance.4 These disorders disrupt
daily function and their effects can be long-lasting,
recurrent and even fatal. After unintentional injuries,
suicide caused by mental disorders such as depression
is the leading cause of death in young people aged 10
through 34 years, accounting for more than other dis-
eases combined.5

Depression and anxiety are complex disorders and
their causes are not fully understood. Genetic, neurolog-
ical, hormonal, immunological, and neuroendocrinolog-
ical mechanisms as well as stress can play a role in the
onset and course of depression and anxiety.6,7 In this
review, we consider the relationship between chronic
stress and depression and anxiety. One conceptualiza-
tion of depression and anxiety is that they arise from
maladaptive responses to chronic stress and that a dis-
ruption in neural circuit function is involved.8,9

Depression and anxiety can also exhibit biological char-
acteristics of chronic stress in the absence of a history of
chronic life stressors. Regardless of etiology, depression
and anxiety have been associated with many physiolog-
ical markers of chronic stress, and the full relationship
between symptom profiles, neural circuit dysfunctions,
and physiological markers of stress in depression and
anxiety has not yet been ascertained.

We define chronic stress as the emotional and physi-
ological impacts experienced over a prolonged period of
time during which the individual feels they have little or
no control, which encompasses chronic stress experi-
enced in adulthood as well as early life stress. These
long-term effects are typically accompanied by endo-
crine system responses that can be beneficial in acute
situations but are thought to become detrimental to
mental health when prolonged. Without amelioration
of the source of impact of chronic stress, depression
can all too often become chronic, starting in adoles-
cence, continuing through early adulthood and go on
to affect personal, social and professional functioning
for the rest of life.8,9 The consequences of an inability
to adapt to prolonged and uncontrollable stress
over time are apparent in a disruption of human brain
circuits that regulate emotional and cognitive functions
(for review8).

These views of depression and anxiety are compatible
with the increasing understanding of depression and
anxiety as disorders that arise from multiple possible
types of disruption in brain circuits that regulate emo-
tional and cognitive functions at the core of human
experience (for review10,11) and are subject to the

impact of chronic stress. This understanding has been
made possible by rapid advances in human neuroimag-
ing that allow us to measure large-scale circuits formed
by the correlated activity between brain regions during
both task-free and task-specific conditions. This knowl-
edge forms the foundation for the development of pre-
cision medicine for psychiatry informed by neuroscience,
or ‘precision psychiatry’.12

Given that the chronic effect of stress plays a central
role in disrupting circuit function, it will ultimately be
important to have the means to quantify indicators of
stress and use them as surrogate indicators of both
symptoms and of circuit disruption. In doing so, we
might also use indicators of stress in early detection of
the emergence of symptoms and circuit disruptions,
although a complete discussion of this speculation is
beyond the scope of the current review. This integration
is further advanced in other areas of precision medicine
and precision health. For example, in cardiovascular
medicine, readings of blood pressure may indicate
when there is a need to obtain a more proximal and
detailed scan of the heart using cardiac imaging.

In outlining this future vision, we recognize that we
currently lack an integrated body of knowledge about
symptoms, stress indicators and neural circuits in
depression and anxiety, primarily because research into
the role of stress in neural circuits has been pursued
separately from research into indicators of stress in
depression and anxiety. Thus, we first provide an over-
view of the importance of repetitive stress, and its puta-
tive role in the development of depression and anxiety.
This overview serves as the basis for then providing a
scoping review of the current knowledge regarding
objective physiological indicators (or markers) of stress
and how they do or do not correlate with depression and
anxiety defined by symptoms. For this, we focus on
markers of cortisol, heart rate variability and skin con-
ductance that reflect states of tonic and phasic changes
in arousal, which we conceptualize as accessible physio-
logical indicators of stress and its impact. Lastly, we
provide a brief overview of neural circuit disruptions
that characterize particular types of depression and anx-
iety and a preliminary illustration of how physiological
markers may act as surrogate correlates of these
disruptions.

Stress, Depression, and Anxiety

Most available research investigating the role of stress in
depression has focused on acute (or episodic) life events,
rather than on the co-occurring effects of chronic, ongo-
ing, often uncontrollable stressful situations (for
review13). By definition, acute (episodic) stressors have
relatively discreet beginnings and endings and likely
only explain part of the maladaptive response to stress
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in the development of depression and how it can become

a chronic disorder. Some of the most consistent findings

regarding acute stress have been in regard to the role of

stressful life events in compounding the severity of depres-

sion and related anxiety symptoms (for review13,14).
Although stress is a normal and healthy response to

many situations, prolonged and uncontrollable (i.e.,

chronic) stress could lead to dysfunction of the stress

response, resulting in increased reactivity to subsequent

stressors.15 Chronic stress is associated with higher risk of

cardiovascular and metabolic diseases16–18 and is known

to increase the risk of developing depression and anxiety

and/or exacerbate current symptoms, with effects on

sleep, appetite, energy, mood, emotion regulation.19

This has been demonstrated extensively with the mouse

model of chronic stress used to study the neurobiological

basis depression and antidepressant response.20 In addi-

tion, this concept is supported by literature documenting

a strong link between depression and HPA axis dysfunc-

tion,21–23 and evidence that physiological indicators of

sustained, severe stress, such as elevated stress hormone

levels24 and low heart rate variability,25 are also often

found in depression21,26–29 and anxiety.30,31

Due to the complex relationship between chronic

stress, depression, and anxiety, indicators of chronic

stress offer a means to measure physiological markers

of maladaptive stress in anxiety and depression. As we

currently lack objective biomarkers for depression and

anxiety,32 we propose a foundation for objective ways in

which the physiological signs of chronic stress may be

operationalized and measured in depression and anxiety.

Such markers could ultimately be used to predict onset,

diagnose, or target treatments in these disorders.

Physiological Markers of Stress in

Depression and Anxiety

As highlighted in the original work of Hans Selye, stress

functions as both the source of a stressor and as the

result in the form of stress responses. This point is rele-

vant to the goal of developing quantifiable stress

markers to better understand and detect depression.

Basic neuroscience studies suggest that the neural mech-

anisms underlying the development of depressive symp-

toms in response to stress may at least in part be distinct
from those that underlie endogenous depression that

resembles the impact of repeated stress but can occur

in the absence of such stress. Thus, it is necessary that

quantified markers of stress are ultimately available to

human subjects researchers and clinicians alike to detect

and monitor depression in a manner that allows for

parsing of underlying mechanistic causes and interven-

ing accordingly. Even more fundamentally, the develop-

ment of objective measures that allow us to directly ‘read

out’ the behavioral and biological underpinnings of
depression will advance the precision of mental health
disciplines, in regard to measurement itself and in regard
to obtaining insights into the causes of disorder relevant
to each individual. Currently, the clinical diagnosis of
depression (and of anxiety) rests on the documentation
of a certain number of symptoms that are observed to
significantly impair functioning for a certain duration of
time. There is substantial overlap in these diagnostic cri-
teria as they apply to depression and anxiety.33 It is pos-
sible for two people diagnosed with depression to share
only one symptom in common. This symptom-based
diagnostic approach allows for communication across
clinicians but does not provide a quantifiable standard
from which to interpret underlying causes, and how
these causes may form particular subtypes relevant to
individual experiences (including experiences of the
impact of exposure to stresses). Within the basic neuro-
science domain, investigators have highlighted the
importance of focusing on specific dimensions of depres-
sion for developing quantified markers, related to under-
lying mechanisms, rather than to try and recreate the
entire syndrome of symptoms.34 In the clinical domain,
we recognize that there remain many gaps to be filled in
order to achieve precise and objective measurement of
dimensions and subtypes of depression. To take a step
toward addressing these gaps, we first focus first on a
scoping review of objective markers of stress implicated
in the broad diagnostic syndromes of depression and
anxiety. We suggest that through synthesizing this infor-
mation we may be in a position to identify candidate
markers worthy of more detailed investigation in rela-
tion to underlying subtypes and dimensions that are rel-
evant to the mechanism of depression developing
through the impact of repeated stress. Following this,
we present an illustration of how a next step may be to
incorporate measurement of neural circuits relevant
to both depression and stress, in order to move closer
to objective quantification of cohesive dimensions that
cause particular forms of depression.

As a context for our scoping review, we specify that
our focus is on the measurement of the stress response
through commonly assessed psychophysiological metrics
derived from the cardiovascular (heart rate variability;
HRV), eccrine (skin conductance; SC), and endocrine
(cortisol) systems. A complete overview of the future
of this field would require consideration of indicators
of stress acquired through other measures and means,
including but not limited to temperature change,
muscle tension, voice, and behavioral indicators such
as keyboard and mouse use, as well as markers of
inflammation and genetics and epigenetics, but this is
out of the scope of this review. HRV, SC, and cortisol
are also well-studied physiological measures of stress
that have been implicated in clinical emotional states
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and can be measured non-invasively alongside fMRI.
They also reflect states of tonic and phasic changes in
arousal, which we conceptualize as accessible physiolog-
ical indicators of stress and its impact. For example, a
phasic response encompasses Walter Bradford Cannon’s
concept of ‘fight or flight’, referring to the reflexive phys-
iological stress response (for review35). These changes
involve both the autonomic nervous system and
hypothalamic-pituitary-adrenal (HPA) axis, two major
systems that respond to stress in an attempt to re-
establish physiological homeostasis and psychological
regulation (for review35).

Cortisol is a steroid hormone produced in the adrenal
gland. Cortisol is controlled by the hypothalamus and
pituitary and adrenal glands, a combination of glands
often referred to as the HPA axis.36 Cortisol is classified
as glucocorticoid and its receptors are present in almost
all tissues in the body. Therefore, cortisol level in blood
may affect nearly every organ.37 The major functions of
cortisol in the body include: regulation of metabolism,
inflammatory response, and immune function and, most
importantly, stress response.38 Since cortisol plays a key
role in the body’s response to stress, it is referred to as a
“stress hormone”. Cortisol level follows a circadian
rhythm during the day with the highest level after
waking up and the lowest by the night.39

Heart rate variability (HRV) is the variance in time
between the beats of the heart.40 These periods of time
between successive heart beats are known as RR inter-
vals measured in milliseconds (ms). The autonomic ner-
vous system has two branches, parasympathetic that
handles inputs from internal organs, such as digestion
and salivation, and causes a decrease in heart rate, and
sympathetic that reflects responses to stress and exercise,
and increases the heart rate. This causes a fluctuation in
the heart rate and the balance is important for wellbeing.
HRV measures this balance in time domain and frequen-
cy domain.41–43 It has been shown that HRV is impacted
by stress and it can be used as an objective assessment of
stress.25 For example, Looser et al. has shown that low
HRV is associated with poor stress response.44,45

Skin Conductance (SC), also referred to as electroder-
mal activity (EDA), is the measurement of the electrical
conductivity of the skin.46,47 Measuring skin conduc-
tance is based on the following mechanism: special
types of sweat glands (the ‘eccrine sweat glands’ located
on the palms of the hands and soles of the feet) respond
primarily when the body is sympathetically activated.
The more the body is activated, the more sweat is secret-
ed by these glands. As sweat is comprised of salt water
which can conduct electrical signals, increased sweat
production results in a greater flow of electricity. Skin
conductance level (a measure of the tonic level of elec-
trical conductivity) is measured with two electrodes
placed in locations where there is a high density of

eccrine sweat glands, typically the fingers or hand.48

Conductance is measured by placing two electrodes

next to the skin and passing a small electric charge

between the two points. A sensor measures conductivity

of the current running through this circuit, from one
electrode to the other. The skin conductance response

(SCR) is a more phasic measure of change in SC that

is related to the number of sweat glands that are activat-

ed when in response to a particular stressor stimuli,

either external or internal and psychological.46 The

SCR amplitude is a suitable proxy of Autonomic

Nervous System (ANS) activation particularly the sym-

pathetic branch. It has been shown that affective disor-
ders such as depression and anxiety can be associated

with differences in Electrodermal Activity (EDA) pro-

file. For example, depressive disorders are shown to be

associated with decreased EDA49 and fear and anxiety

can be associated with increased EDA.46

Literature Search Procedure

The relationship between physiological markers of stress

and negative emotional states of depression and anxiety
has been the subject of many prior studies. We under-

took a literature search using the PubMed database to

provide a summary review of the peer-reviewed meta-

analytic studies reporting on these findings. The follow-

ing search was used to query PubMed for meta-analyses

published between 01/01/2000 and 10/31/2020 that have

linked depression and anxiety to HRV, SC, and cortisol:

(“skin conductance” OR “electrodermal activity” OR
“galvanic skin response” OR “electrodermal response”

OR “psychogalvanic reflex” OR “sympathetic skin

response” OR “heart rate variability” OR “RR varia-

bility” OR “heart period variability” OR “cortisol”)

AND (“depression” OR “depressed” OR “anxiety”

OR “anxious”) AND (english[lang]) AND (2000:2020/

10[dp]) AND (journal article[pt]) AND (“loattrfull text”

[sb]) NOT ((case reports[pt]) OR (Clinical Trial Protocol
[ptyp]) OR (pubmed books[filter]) OR (comment[pt])

OR (Published Erratum[sb]) OR (“animals”[MeSH

Terms:noexp])) AND (“meta-analysis”[tw] OR meta-

analysis[pt]), which yielded 85 results.

Study Selection

Initial screening was based on titles and abstracts, then

full text was reviewed (see Supplementary Material 1 for

complete list of articles retrieved and screened with
inclusion/exclusion criteria). Article screening and selec-

tion was completed by one individual. Articles were

included (n¼ 13) if a meta-analysis was conducted to

compare measurements of HRV, SC, or cortisol in

depressed or anxious individuals to that of non-

depressed or anxious (control) individuals (Figure 1).

4 Chronic Stress



Articles were excluded (n¼ 72) for the following
reasons: not a meta-analysis (n¼ 4), no cortisol, HRV,
or SC assessment (n¼ 4), study population that is not
currently depressed or anxious (n¼ 39), has a significant
comorbid condition (e.g., stroke, cancer, psychosis;
n¼ 7), or is only comprised of children or adolescents
(n¼ 2), study utilizes HRV, SC, and cortisol biofeedback
as an intervention only (n¼ 5) or only measures the phys-
iological parameter as a treatment outcome (n¼ 9; Figure
1). Included articles were then categorized by HRV, SC,
and cortisol and by whether the study population was
anxious or depressed (Figure 1). Five meta-analyses
were identified for HRV26,30,31,50,51 and eight were iden-
tified for cortisol,21,27–29,52–55 but no studies that met
inclusion criteria were identified for SC (Figure 1).

Because no meta-analyses that assess SC in depres-
sion or anxiety in comparison to controls were
identified (Figure 1), a second PubMed search was
conducted to identify systematic reviews on this subject.
The following search was used to query PubMed:
(“skin conductance” OR “electrodermal activity” OR
“galvanic skin response” OR “electrodermal response”
OR “psychogalvanic reflex” OR “sympathetic skin
response”) AND (“depression” OR “depressed” OR
“anxiety” OR “anxious”) AND (english[lang])
AND (2000:2020/10[dp]) AND (journal article[pt])
AND (“loattrfull text”[sb]) NOT ((case reports[pt])
OR (Clinical Trial Protocol[ptyp]) OR (pubmed
books[filter]) OR (comment[pt]) OR (Published
Erratum[sb]) OR (“animals”[MeSH Terms:noexp]))
NOT (“meta-analysis”[tw] OR meta-analysis[pt])
AND (”systematic review”[tw] OR systematic[sb]),
which yielded eight results.

Initial screening of systematic reviews was based on
titles and abstracts, then full text was reviewed (see
Supplementary Material 1 for complete list of articles
retrieved and screened with inclusion/exclusion criteria).
Articles were excluded (n¼ 7) for the following reasons:
study population not currently depressed or anxious
(n¼ 1), study does not assess SC in depression or anxiety
(n¼ 3), study utilizes SC biofeedback as an intervention
only (n¼ 1), SC is only measured as a treatment out-
come (n¼ 2). One systematic review was included that
assessed SC in depression in comparison to non-
depressed (control) individuals.56

Data Extraction

Key findings on SC, HRV, and cortisol in
depression and anxiety disorders were extracted
from included meta-analyses and one systematic
review. A brief summary of the findings across all
reviewed articles is provided in Table 1. For data on
age, sex, number of cases and controls, medication
status, diagnostic method, cortisol collection method,
and effect size of findings, see Supplementary
Material 2.

Summary of Literature Review Findings

In the meta-analytic studies reviewed, there is a gen-
eral trend that heart rate variability is reduced in
depression, regardless of medication status, across
time domains,26,31,51 such as the root mean square
of the successive differences (RMSSD),26,50 and fre-
quency domains (high26,50,51 and low50). Depressed
individuals also have been found to have reduced

Figure 1. An overview of the published peer-reviewed meta-analyses reporting on a relationship between one or more physiological
markers of stress (HRV, SC, and cortisol) and anxiety and/or depression.
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inter-beat intervals.50 Time-domain and high frequen-
cy HRV were also found to be reduced across anxiety
disorders in both medicated and unmedicated
populations.30,31

In individuals with depression, cortisol is consistently
elevated when measured continuously over the course of
12–24 hours,28,29 at waking,54 and in the morning,27–29

afternoon,21,28,29 and evening or night.27–29 Depression

Table 1. Summary of findings from literature review on the relationship between physiological parameters of interest and anxiety and
depression.

Finding Study population

Anxiety Cortisol AUCg " Anxiety (males)49

Cortisol AUCw # PTSD51

Cortisol stress reactivity " Anxiety (males)49

Cortisol stress reactivity # Anxiety (females)49

HF-HRV # Anxiety (PD, GAD, SAD, PTSD, OCD, and SP);28 SAD;28 PTSD;28 PD;28 GAD28

HRV # SP;28 SAD;28 PTSD;28 PD;28 GAD;28 Any anxiety (PD, GAD, SAD, PTSD, OCD, and

SP)28,29 Unmedicated anxiety (PD, GAD, SAD, PTSD, OCD, and SP);29 Medicated

anxiety (PD, GAD, SAD, PTSD, OCD, and SP)29

Median hair cortisol # PTSD and GAD52

Depression Adjusted peak cortisol " Clinical depression50

Afternoon cortisol " MDD;19 Clinical depression;26 MDD or depression symptoms (older adults)27

Continuous (12-24h) cortisol " Clinical depression;26 MDD or depression symptoms (older adults)27

Cortisol (overall) " Clinical depression26

Cortisol at recovery " MDD19

Cortisol AUCg # MDD (males);49 MDD (females);49 Remitted MDD (females);49 MDD and remitted MDD

(females)49

Cortisol AUCi # MDD and remitted MDD;49 MDD (females);49 MDD and remitted MDD (females)49

Cortisol AUCw " Clinical depression51

Cortisol stress reactivity " MDD (males) 49

Cortisol stress reactivity # MDD (females)49

Evening cortisol " Acute depressive episode25

HF-HRV # Unmedicated MDD;24,47 Unmedicated depression symptoms (older adults)48

HRV # Unmedicated MDD;24 MDD and BP;29 Unmedicated MDD and BP;29 Medicated MDD and

BP;29 Depression symptoms (older adults);48 Clinical depression (older adults);48

Unmedicated clinical depression (older adults)48

IBI # Unmedicated MDD47

LF-HRV # Unmedicated adults with MDD;47 Depression symptoms (older adults; unmedicated);48

Clinical depression (older adults);48 Depression symptoms (older adults)48

LF/HF-HRV " Unmedicated MDD24,47

Long-Term HRV # Unmedicated MDD24

Morning cortisol " Clinical depression;26 Acute depressive episode;25 MDD or depression symptoms (older

adults)27

Morning cortisol stress

reactivity (unadjusted) #
MDD19

Night cortisol " Clinical depression;26 MDD or depression symptoms (older adults);27

RMSSD # Unmedicated MDD47

SCL (tonic) # Clinical depression53

SCR amplitude (phasic) # Clinical depression53

SCR latency (phasic) " Clinical depression53

SDNN # Unmedicated MDD47

Valsalva Ratio # Unmedicated MDD24

VLF-HRV # Unmedicated MDD47

If medication is not indicated, there was a mix of medicated and unmedicated individuals or medication status was unspecified. If age is unspecified, study

population was comprised of adults, individuals of all ages under 60, or age was not specified. Cortisol collection methods include saliva, urine, plasma,

blood, and CSF. In one study, cortisol was measured in hair only, which is indicated in the table. Abbreviations: Area under the curve with respect to ground

(AUCg); Area under the curve in the waking period (AUCw); Area under the curve with respect to baseline (AUCi); Heart rate variability (HRV); High

frequency (HF); Low frequency (LF); Very low frequency (VLF); Interbeat interval (IBI); Mean of standard deviations of NN intervals (SDNN); Root mean

square of the successive differences (RMSSD); Skin conductance level (SCL); Skin conductance response (SCR); Major depressive disorder (MDD); Specific

phobias (SP); Panic disorder (PD); Social anxiety disorder (SAD); Post-traumatic stress disorder (PTSD); Obsessive compulsive disorder (OCD); General

anxiety disorder (GAD); Bipolar disorder (BP).
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is also generally characterized by blunted cortisol stress

reactivity21 and impaired recovery.21 However, one

meta-analytic study found that cortisol stress reactivity

was increased in males with depression, but decreased in

females with depression,52 indicating there may be sex-

dependent factors in stress reactivity in depression.

Cortisol in anxiety is a slightly more complex picture,

with cortisol found to be elevated in males with anxiety

but not females, and stress reactivity increased in males

with anxiety but decreased in females with anxiety.52

Hair cortisol was also found to be lower in individuals

with anxiety.55

Individuals with depression were found to display

lower tonic skin conductance,56 and decreased phasic

SCR,56 and with increased phasic latency SCR.56 No

meta-analytic studies or systematic reviews were identi-

fied that measured skin conductance in anxiety in com-

parison to controls, thus, more research is needed to

elucidate this relationship.

Brain Circuits Impacted by Stress and

Implicated in Depression and Anxiety

Depression and anxiety have been associated with many

physiological markers of chronic stress, but the full rela-

tionship between symptom profiles, neural circuit dys-

functions, and physiological markers of stress in

depression and anxiety has not yet been ascertained.57

However, it is important to consider the contribution of

neural circuit dysfunction when elucidating the relation-

ship between stress and these disorders. Here, we pro-

vide an outline of six large scale neural circuits
implicated in negative emotional states that can occur

in depression and anxiety.11,58 These six circuits are

referred to as default mode, salience, negative affect,

positive affect, attention, and cognitive control.11,58

Drawing on this outline, in the subsequent section, we

provide an illustration of how quantified disruptions in

these circuits map on to physiological markers of stress

and symptoms of depression and anxiety.
The default mode circuit (also “default mode

network”) has core connections between the anterior

medial prefrontal cortex (amPFC), posterior cingulate

cortex (PCC), and angular gyrus (AG)59,60 and is typi-

cally probed in task-free conditions in relation to spon-
taneously generated thoughts. Disruptions in default

connectivity are considered to reflect maladaptive self-

reflective and auto-biographical processes expressed in

rumination and worry. Relative hyper-connectivity in

depression has been associated with higher levels of mal-

adaptive rumination about negative thoughts and great-

er overall severity (for review; 61 or meta-analysis62).

There is also evidence that relative hypo-connectivity of

the default mode circuit, particularly involving posterior

regions, distinguishes specific subgroups of depression
and anxiety 63,64; for meta analysis; 65.

The salience circuit is anchored in the anterior insula,
with connections to the dorsal anterior cingulate and
extended amygdala and is thought to detect salient inter-
nal sensations and external changes. Salience circuit dis-
ruptions have been associated with both depression and
anxiety (for review; 11,66,67). Under task-free conditions,
insula hypo-connectivity has been associated with great-
er symptom severity in depression and anxiety.66 Using a
standardized method for quantifying circuit dysfunction,
we have similarly observed that global salience circuit
hypo-connectivity is assocated with general symptom
severity in anxiety and depression, and that insula-
amygdala hypo-connectivity is specific to the severity
of anxious arousal symptoms.68

Affective circuits are robustly activated by stimuli
that signal potential threats, negative events, or rewards.
The negative affect circuit comprises the amygdala,
insula, and ventral and dorsal medial prefrontal and
inter-connected anterior cingulate regions. Amygdala
hyper-reactivity, elicited by threat-related stimuli, is
observed in both depressive and anxiety disorders.69–71

These alterations in activation may also reflect a reduc-
tion in connectivity between the amygdala and prefron-
tal regions (e.g., Refs.72,73).

The positive affect reward circuit is defined subcorti-
cally by the nucleus accumbens (a key region of the ven-
tral striatum) and ventral tegmental areas and cortically,
by their projections to the orbitofrontal cortex (OFC)
and medial prefrontal cortex (mPFC).74 Hypo-
activation of the ventral striatum has been found to
characterize at least a subgroup of depression, especially
those with anhedonia symptoms such as loss of pleasure
and motivation (e.g., Ref.75; for meta-analysis76; for
review; 77,78). In remitted depression, hyper-activation
of the frontal regions of this circuit have also been
observed in response to happy faces,79,80 reward out-
comes81 and reward anticipation (for meta-analysis, 82).

Two additional circuits are relevant to the cognitive
and concentration features of depression and anxiety
that commonly are given less emphasis than mood fea-
tures. The frontoparietal attention circuit is defined by
core regions in the superior frontal cortex and anterior
inferior parietal lobe and connecting with frontal eye
fields. Relative hypo-connectivity within this circuit is
thought to reflect the inattention common across
mood and anxiety disorders 11,83. The executive or cog-
nitive control circuit involves the dorsal components of
the lateral prefrontal (DLPFC), anterior cingulate
(dACC), and parietal cortices engaged by tasks that
require higher cognitive functions such as working
memory and selective control of cognition (for meta-
analysis84). DLPFC and dACC hypo-activation has
been observed in stress-induced situations as well as

Chesnut et al. 7



during cognitive tasks that may also induce stress due to

performing the tasks, in both depression and in social

anxiety (e.g., Ref. 85; for review11).

Preliminary Illustrative Analysis of How

We Might Examine the Relationship

Between Depression and Anxiety,

Physiological Stress Markers, and Circuit

Dysfunction

We propose an initial analysis through which we can

illustrate the relationship between mental states of

depression and anxiety, physiological responses to

stress, and neural circuit dysfunction. Our field currently

lacks detailed and systematic knowledge about how

neural circuit dysfunction and responses to stress are

expressed in physiological markers of stress, and how

these markers map on to symptoms. Although we lack

such knowledge, the purpose of this illustration is to

provide one example for how we might start to examine

such relationships, focusing on markers of heart rate

variability and without relying on pre-defined diagnostic

states. A theoretical basis for these relationships has

been established prior86 and in this illustration we

expand on the link between specific symptom subtypes,

neural circuit dysfunction assessed using functional neu-

roimaging and physiological markers of HRV recorded

concurrently with the functional neuroimaging of neural

circuits. HRV was selected as a starting point in this

illustrative analysis because it is a well-characterized
marker associated with stress, anxiety, and depression
and the only marker for which we had a sufficient phys-
iological marker and fMRI data to conduct a meaning-
ful analysis.

This preliminary illustration is guided by conceptual
working hypotheses. For example, overactivation of the
negative affect circuit is implicated in symptoms of anx-

ious arousal. Under conditions of chronic stress, if the
negative affect circuit cannot adapt to stress it may stay
‘switched on’ in a form of alarm mode and produce the
symptoms characteristic of anxious arousal symptoms,
including a feeling of fear, a racing heart, palpitations
and sweaty palms.

For purposes of clarity, we structure the prototype
illustration around sub-sections that outline the partic-
ipants, approach and illustrative findings.

Participants

The illustrative analysis was undertaken with 43 partic-
ipants with clinically significant symptoms of depression
and anxiety and 23 age-matched healthy participants
(Table 2), who were also taking part in an ongoing com-
plementary study.87

Forming Symptom Subgroups

Symptom severity was assessed using prior-determined
factors from the Depression, Anxiety and Stress scale,88

which provide a standardized means of quantifying

Table 2. Characteristics for participants in the illustrative analysis, spanning demographics and symptom severity assessed by prior
established features of anxiety and depression expressed in standardized units quantifying standard deviations from the healthy reference
mean of zero.

Clinical (n¼ 43) Healthy (n¼ 23)

Demographics Age (years) 25.88� 5.08 26.64� 4.16

Female/male 36/7 15/8

Race Asian 44.19% 39.13%

Black or African American 4.65% 0.00%

Native Hawaiian or other Pacific Islander 2.33% 0.00%

White 51.16% 65.22%

Other race 6.98% 4.35%

Ethnicity Hispanic or Latino 9.30% 8.70%

DSM diagnosis General anxiety disorder 48.84% –

Social anxiety disorder 41.86% –

Panic disorder 11.63% –

Lifetime panic disorder 20.93% –

Major depressive disorder 34.88% –

Past major depressive disorder 69.77% –

Symptom severity G-anxiety 0.94 [�0.57,2.56] –

F-anxiety 0.28 [�1.12,1.80] –

Depression 0.77 [�0.88,3.10] –

DSM diagnosis was measured with the Mini-International Neuropsychiatric Interview (MINI; v.7). For symptom severity, we used a measure of symptoms

that distinguishes between generalized anxiety (tension and worry) and fear-related anxiety (social anxiety, phobia, panic) and we refer to these as G-Anxiety

and F-Anxiety, respectively.
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symptom dimensions relevant to depression and anxiety.
In prior work we have established the reproducibility of
these factors across independent samples.88 Generalized
anxiety (also called ‘tension’) is characterized by symp-
toms such as difficulty in relaxing, feeling wound up
and a sense of touchiness (Supplementary Table 1).
Fear-related anxiety (also called ‘anxious arousal’) is
characterized by feelings of fear and panic, and physical
sensations of a racing heart, nervous energy and trem-
bling hands (Supplementary Table 1). Depression
(encompassing ‘anhedonia’ is characterized by aspects
of depression that reflect hopelessness, a loss of pleasure
and ability to experience positive feelings and a loss of
motivation and energy (Supplementary Table 1).

Using cluster analysis we have shown that these fac-
tors form distinct symptom subtypes, also reproducible
across samples.88 When these factor loadings and cluster
centroids were applied to the present sample, we identi-
fied three distinct symptom subtypes and a normative
subtype (Figure 2). Subtype 1 is characterized by prom-
inent symptoms of Generalized Anxiety combined with
moderate Fear-related Anxiety. Subtype 2 is character-
ized primarily by Depression. Subtype 3 is characterized
by a prominent Depression combined with Generalized
Anxiety and a comparative lack of Fear-related Anxiety.
The Normative mood subtype is characterized by a rel-
ative absence of each of symptoms that define each of
the three factors.

Physiological markers of heart rate variability: Data
for markers of heart rate variability were acquired con-
currently with functional neuroimaging using pulse
oximetry integrated with a GE Discovery MR750 scan-
ner (details of functional neuroimaging are provided in
the following section). Recordings were taken for 20
minutes during the scanning session. The participant’s

pulse was monitored by a photopulse sensor that detects
blood flow in the vascular bed of the participant’s finger/
thumb or toe. The sampling frequency was 100 Hz. We

used Python Heart Rate Analysis Toolkit, HeartPy89 to
analyze the pulse signal. The toolkit is designed to
handle (noisy) PPG data collected with either PPG or
camera sensors. Both time domain and frequency
domain markers of heart rate variability were quantified,
In the time domain we quantified the standard deviation
of RR intervals (SDNN), root mean square of successive

differences (RMSSD) and the proportion of successive
differences above 50 ms (pNN50). In the frequency
domain we quantified measures of low-frequency (fre-
quency spectrum between 0.05 and 0.15Hz; LF), high-
frequency (frequency spectrum between 0.15 and 0.5Hz;
HF), and the ratio of high frequency to low frequency

(HF/LF).

Brain Circuit Measurements

Neural circuit function was assessed using functional
neuroimaging at the Center for Neurobiological

Imaging (CNI) at Stanford University using a GE
Discovery MR750 scanner. Neural circuits were defined
and quantified by a prior established procedure.68

Negative and positive affect circuits were engaged by
a task in which participants viewed facial expressions of
emotion task. A standardized set of 3D evoked facial
expression stimuli were presented in pseudorandom
order, with five repeated blocks of eight stimuli per
block for sad, threat evoked by fear, threat evoked by

anger, and happy, relative to neutral blocks with a dura-
tion of 500 ms and interstimulus interval of 750 ms.
Participants were instructed to actively attend in order
to answer post-scan questions about these faces, and we

Figure 2. Symptom profiles of different subtypes. Subtype 1 is characterized by prominent Generalized Anxiety (G-Anxiety) combined
with moderate Fear-related Anxiety (F-Anxiety). Subtype 2 is characterized primarily by Depression. Subtype 3 is characterized by a
prominent Depression combined with Generalized Anxiety (G-Anxiety) and a comparative lack of Fear-related anxiety (F-anxiety).
Normative mood is characterized by a relative absence of each of these symptoms.
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controlled for active attention by monitoring alertness

with an eye tracking system. We also presented the

same stimuli nonconsciously in a backward-masking

design to prevent awareness; face stimuli were presented

for 10 ms followed immediately by a neutral face

mask stimulus for 150 ms, and with a stimulus onset

asynchrony of 1250 ms to match that of the conscious

condition.90

Cognitive control circuit was engaged by a Go-NoGo

task. ‘Go’ trials (the word “press” in GREEN), required

participants to respond as quickly as possible, while in

the ‘NoGo’ trials (“press” in RED) participants were to

withhold responses. 180 Go and 60 NoGo stimuli were

presented in pseudorandom order; 500 ms each with an

interstimulus interval of 750 ms.90

Pre-processing and data analysis were performed

using Statistical Parametric Mapping (SPM) software

implemented in MatLab (Wellcome Department of

Cognitive Neurology) and the FSL91 following previous-

ly established procedures. Briefly, pre-processing of

functional data included realignment and unwarping,

normalization to a standardized template, and smooth-

ing. Quality control diagnostics included removing scans

with incidental findings, scanner artefacts and signal

dropout. Participants’ data were included if no more

than 25% (38/154) of time points were censored for

frame-wise displacement or variance spikes.
Our regions of interest for each of the six circuits were

established in a prior synthesis of the literature86 and

quantified using prior established systematic proce-

dure.68 Masks to define these a priori regions are gener-

ated using the meta-analytic platform Neurosynth92 with

peaks identified using the Functional Neuroimaging

(AFNI) 3dExtrema function. We imposed a restriction

that each peak has a minimum z-score of 6 and each

region extends no farther than 10mm from the peak.

For subcortical regions, Neurosynth maps were inter-

sected with anatomically defined boundaries from the

Automated Anatomical Labelling (AAL) atlas.93

Activation values for each region were mean-centred

and scaled to be expressed as standard deviation units.

We expressed the extent of dysfunction in these values in

terms of standard deviation units referenced to the

mean of a healthy reference sample. Through this pro-

cedure, activation values were interpretable relative to a

healthy reference mean of zero. Region-to-region con-

nectivity was computed using a psychophysiological

interaction procedure. Quantification of activation con-

nectivity and activation followed the previously estab-

lished systematic procedure.68 To provide an overall

neural measure of function for each circuit we computed

a global circuit score that combined activation and

connectivity of constituent primary regions and their

connections.

Illustrative Approach

A tree-based prediction model was implemented first to ana-
lyze the relationship between physiological markers of heart
rate variability for the three symptom subtypes relative to
each other and to the normative mood subtype. The model
was trained on data from 44 participants and validated on
data from nonoverlapping 22 participants. We then ana-
lyzed the importance of each feature in predicting the symp-
tom group using SHAP (SHapley Additive exPlanations).94

SHAP values show the impact of having a certain value for
a given feature in comparison to the prediction we would
make if that feature took some baseline value.

Second, we analyzed the relationship between these
physiological markers and subtypes when neural circuit
measures were also included. This second tree-based pre-
diction model provided an evaluation of the effect and
importance of each of the six neural circuits (global cir-
cuit score and within circuit regional activation and con-
nectivity) and heart rate variability markers. The goal
was to identify the combination of neural circuit dys-
functions and physiological markers that accurately pre-
dict each symptom subtype, suggesting a strong
relationship between those neural-physiological predic-
tors and the mental states that characterize each subtype.

To implement these models a multi-class random
forest classification model was trained and validated
on the same participant groups. The importance of
each feature was again analyzed using SHAP values.
The goal of SHAP in the current illustration was first
to explain the prediction of an instance of a subtype by
computing the contribution of each physiological
marker feature to the prediction and, second to explain
the prediction of an instance of a subtype by computing
the contribution of these physiological markers to the
prediction when neural circuit features are included.

Results With HRV Markers

Using neural circuit scores and heart rate variability
markers to train the model we achieved 40% accuracy
which is an approximately 15% improvement over the
chance level of 25% on the validation set.

Results With Global Circuit Scores

We next report results for global circuit neural circuit
dysfunction. Using neural circuit scores and heart rate
variability markers to train the model we achieved 54%
accuracy which is an approximately 30% improvement
over the chance level of 25% on the validation set. Thus,
the inclusion of global neural circuit scores improved the
accuracy of the model, based on physiological markers
alone, by an additional 15%. Figure 4 shows the sorted
features by the sum of SHAP value magnitudes across
participants for prediction of three symptom subtypes
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and the normative mood subtype. In this figure, SHAP
values show the distribution of the impact each global
neural circuit and physiological marker feature has on
the model output, predicting subtype. The impact of
each feature on each subtype is proportional to the
extent (length) of the corresponding color in each row.
For example, global salience circuit dysfunction is much
more important for deciding whether a participant
belongs to subtype 1 than to other subtypes, as indicated

by the greater extent of mauve color (corresponding to
subtype 1 in the legend), relative to the other colors that
correspond to three symptoms subtypes and the norma-
tive mood subtype. Positive affect circuit dysfunction
followed by the LF/HF maker, on the other hand, are
more important for distinguishing subtype 2.

To provide a complementary informative visualiza-
tion, in addition to quantifying importance (Figures 3
and 4) we also quantified the effect of each global neural

Figure 3. The impact of physiological marker features across the three symptom subtypes and the normative mood subtype. The x-axis
represents the mean absolute value of the SHAP values for each feature. The overall length of the color bar in each row indicates the
relative importance of the contributions of these features to each subtype. Abbreviations: High frequency (HF); Low frequency (LF); Root
mean square of the successive differences (RMSSD); Mean of standard deviations of NN intervals (SDNN); Percentage of successive RR
intervals that differ by more than 50ms (PNN50).

Figure 4. The impact of neural circuit and physiological marker features across the three symptom subtypes and the normative mood
subtype. The x-axis represents the mean absolute value of the SHAP values for each feature. The extent (length) of color in each row
indicates the relative importance of the contributions of these features to each subtype. For example, global salience circuit dysfunction is
much more important for deciding whether a participant belongs to Subtype 1 than to other subtypes, as indicated by the greater extent of
mauve color (corresponding to Subtype 1 in the legend), relative to the other colors that correspond to three symptoms subtypes and the
normative mood subtype. By contrast, a combination of positive affect circuit dysfunction and the LF/HF stress marker is important for
characterizing Subtype 2 as indicated by the yellow. Features are sorted based on their importance with the most important one at the top.
Abbreviations: High frequency (HF); Low frequency (LF); Root mean square of the successive differences (RMSSD); Mean of standard
deviations of NN intervals (SDNN); Percentage of successive RR intervals that differ by more than 50ms (PNN50).
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circuit and physiological heart rate variability feature on

predicting subtype (Figure 5).
In Figure 5, each point on the plot represents a

Shapley value for a neural circuit or physiological

marker feature per participant. Given that these plots

present data for individual participants we stratify

them by each of the subtypes (Figure 5, panels (a)–(c)).

The position on the y-axis is determined by the feature

and on the x-axis by the Shapley value. The color rep-

resents the value of the feature from low to high.

Overlapping points are jittered in y-axis direction, so

we get a sense of the distribution of the Shapley values

per feature. The features are ordered according to their

importance for the model.

Discussion of Illustrative Results

Our illustrative results provide preliminary indications

that specific associations between negative mood states

and autonomic stress markers, in this case markers

derived from HRV recordings, may be revealed when

subtypes of depression and anxiety are considered. The

illustrative sample comprised three symptom subtypes

(Subtype 1 with prominent symptoms of Generalized

Anxiety combined with moderate Fear-related Anxiety,

Subtype 2 with Depression and Subtype 3 with promi-

nent Depression combined with Generalized Anxiety

and a comparative lack of Fear-related Anxiety) along

with a normative subtype is characterized by a relative

absence of these symptoms (Figure 2). Predictive models

indicated that the ratio of LF/HF is especially important

for determining subtype membership overall. In addi-

tion, lower frequency was relatively more important

for distinguishing depression comorbid with generalized

anxiety (Subtype 3) whereas higher frequency was rela-

tively more important for distinguishing fear-related

anxiety (Subtype 2). Although of lesser relative impor-

tance, PNN50 contributed to distinguishing the

Figure 5. The distribution of the impact of each neural circuit and physiological heart rate variability feature on the predictive model
output. The color represents the feature value (pink high, blue low). For example, for Subtype 1, the combination of global Salience,
Default Mode, Negative Affect (evoked by both threat and sad) and the LF/HF stress marker are the top 5 measures with the most impact
for predicting membership of this subtype. For Subtype 2, a different combination – positive affect, LF/HF along with cognitive control,
attention and the HF stress marker – have the most impact for prediction of membership. For Subtype 3 yet another combination –
negative affect (for threat), salience, cognitive control, the LF/HF stress marker and positive affect circuit dysfunction – have the most
impact for prediction of membership. These findings suggest that participants with the greatest dysfunction on these measures are most
likely to belong to Subtypes 1, 2 and 3, respectively. Abbreviations: High frequency (HF); Low frequency (LF); Root mean square of the
successive differences (RMSSD); Mean of standard deviations of NN intervals (SDNN); Percentage of successive RR intervals that differ by
more than 50ms (PNN50).
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combined presence of generalized and fear-related anxi-
ety (Subtype 1).

Notably, the addition of circuit score information
substantially boosted the accuracy of the predictive
model (Figure 4). Over and above the ratio of LF/HF,
dysfunction of both salience and positive affect reward
circuits made important contributions to subgroup dif-
ferentiation, with salience dysfunction most relevant to
generalized and fear anxiety (Subtype 1) and reward cir-
cuit dysfunction to Depression (Subtype 2). Since these
circuit dysfunctions have previously been implicated in
anxiety and blunted emotion forms of depression,11 our
illustrative findings raise the possibility that specific
stress markers may map on to specific markers of under-
lying neural dysfunctions to determine clinical symptom
phenotypes. Negative affect circuit dysfunction, involv-
ing the amygdala, contributed in particular to Subtype 3
in addition to the low frequency HRV marker. As a
further complement to these findings, when the predic-
tive models were run stratified by each subgroup, it was
apparent that, along with the HRV LF/HF and frequen-
cy markers, salience dysfunction was most important
for Subtype 1, positive affect reward dysfunction for
Subtype 2 and negative affect circuit dysfunction for
Subtype 3 (Figure 5).

Limitations

In this scoping review we faced the main limitation of
any review of multiple physiological measures of stress;
the difficulty in comparing results across the variety of
different methodologies and techniques. In addition, we
focused on meta-analyses in our literature search to syn-
thesize a broad picture of the field, and in doing so, we
may have missed important individual studies. There are
also gaps in the literature, such as the lack of meta-
analytic studies and systematic reviews investigating
skin conductance (or EDA) in relation to anxiety disor-
ders. In addition, not all meta-analyses investigated sex
differences, and further investigation would be necessary
to draw conclusions regarding sex differences based on
the findings from the scoping review. Lastly, none of the
meta-analyses reviewed reported on race or ethnicity,
which are important considerations that should be
included in future work on markers of depression and
anxiety, especially as accuracy of optical sensors, such as
those used to measure heart rate, can vary when tested
on diverse skin tones.95

A further limitation seeking to integrate findings
across studies is the variation in the characteristics of
each sample. The samples included in the meta-
analyses reviewed here also include participants who
are both medicated and unmedicated and who are at
different phases of illness, through to remitted. This sit-
uation is compounded by the inherent limitations of the

current diagnostic classifications for both anxiety and
major depressive disorders. The diagnostic criteria for
these disorders are broad and highly heterogenous
within categories, such that two participants may share
only a few symptoms, but both meet diagnostic criteria.
Our illustration offers one way forward to parse the het-
erogeneity of symptoms across anxiety and depression
and attempt to form coherent subgroups based on symp-
toms and then determine if these subgroups are pre-
dicted by coherent profiles of physiological stress
markers and whether neural circuit information adds
to the accuracy of prediction.

Conclusion

Across meta-analytic studies there is general consensus
that physiological markers of stress characterize states of
depression and anxiety, indicative of maladaptive
responses to stress in these states. A generally consistent
finding is of reduced heart rate variability in both
depression and anxiety, most apparent in the high fre-
quent domain for anxiety and in both domains and for
the ratio of high to low frequency in depression. The
picture for cortisol is more mixed, with meta-analyses
providing evidence for both heightened and reduced cor-
tisol reactivity in depression and anxiety. In regard to
cortisol level, assessed using both peak and area under
the curve measures, the most consistent evidence is for
heightened cortisol in depression, including in older
adults with depression. There is an absence of studies
of skin conductance in anxiety. In depression, skin con-
ductance tends to be reduced, both tonically and phasi-
cally, and latency of skin conductance responses are
slowed. Several factors may contribute to the heteroge-
neity of study findings, including the phase of illness,
medication and age. Our illustrative data also highlight
how, because of the heterogeneity inherent to the diag-
noses of depression and anxiety may, more precise rela-
tionships between specific physiological stress markers
and specific symptom phenotypes may be conflated.
Thus, an exciting avenue for future research in the
field is to adopt some of the approaches used in devel-
oping a precision medicine for psychiatry; for example,
to parse individual symptoms and evaluate if more spe-
cific symptom subtypes and dimensions are character-
ized by more specific profiles of maladaptive response
to stress. Our illustration also highlights the potential
value of including additional biological markers, such
as neural circuits implicated in depression and anxiety
and impacted by chronic stress. Elucidating the detailed
relationships between physiological stress markers,
neural circuit dysfunction and resulting symptoms
would advance our understanding of the pathophysio-
logical pathways underlying depression and anxiety and
bring us closer to an objective means to detect these
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conditions earlier, including states of risk prior to the

development of an overt clinical disorder.

Future Directions

Considerable work is needed to further elucidate the pre-

cise relationships between physiological markers of stress

and specific clinical presentations of depression and anx-

iety. Larger studies are needed with standardized patient

groups in regard to phase of illness, age, sex, and unme-

dicated status. It would also be important for studies to

assess multiple physiological markers in the same study so

as to determine if specific profiles of markers characterize

particular symptom dimensions. At a more fundamental

level there is a significant gap in meta-analytic knowledge

about skin conductance markers of anxiety that could be

filled in a future meta-analysis focused on this topic. A

striking observation from the meta-analytic studies we

reviewed is that they have for understandable reasons

focused on lab-based measures of physiology and thus

rely on either a single time point of measurement or a

limited number of measurements over time. Given the

relapsing, remitting course of depression and anxiety,

and the physiological changes that may occur in risk

states due to chronic stress but prior to the onset of man-

ifest symptoms, it is imperative that future studies make

use of new technologies to provide more fine-grained

physiological measurement. Furthermore, given the psy-

chological nature of the appraisal of stress, these measure-

ments should be complemented with contextual

information that can provide the fine-grained mediating

information to better explain the potential differences

across individuals that evolve towards mental disorders

and those that show resilience. This kind of information is

enabled by the evolution of ubiquitous computing sys-

tems that capture not only the expected stress measure-

ments but also information about the environment,

productivity, and workflow agendas, among others.
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