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ABSTRACT Here, we report the draft genome sequence of Sporomusa sphaeroides
strain E (DSM 2875), a strict anaerobic homoacetogenic bacterium. It is able to grow
autotrophically on different one-carbon compounds. The strain possesses several
genes of the Wood-Ljungdahl pathway. The genome consists of a single chromo-
some (4.98 Mb).

The autotrophic metabolism of diverse acetogenic bacteria is used for the develop-
ment of economically relevant chemicals such as acetate, ethanol, butyrate, and

butanol. Likewise, the quest for alternative, renewable, and sustainable energy sources
resulted in an increased interest for processes involving anaerobic digestion. Among
the most studied organisms involved in anaerobic digestion processes are Gram-
positive acetogens like Clostridium ljungdahlii, C. aceticum, and the thermophile
Moorella thermoacetica. Gram-negative acetogens comprise several species of the
Sporomusa genus (1–3).

The publication of genome sequences of many acetogens involved in biotechno-
logical processes improves knowledge and drives the development of new and more
efficient production platforms (4–8). In this study, we report the draft genome se-
quence of Sporomusa sphaeroides E (DSM 2875). This organism has been isolated from
mud samples of the German Leine River (9).

A MasterPure complete DNA purification kit (Epicentre, Madison, WI, USA) was used
to isolate chromosomal DNA of S. sphaeroides E (DSM 2875). The extracted DNA was
used to generate 454 shotgun, 454 paired-end, and Illumina shotgun libraries (paired-
end) according to the manufacturers’ protocols (Roche Life Sciences, Mannheim, Ger-
many, and Illumina, Inc., San Diego, CA, USA). The libraries were sequenced using a 454
GS-FLX system (Titanium GS70 chemistry; Roche Life Sciences, Mannheim, Germany)
and a Genome Analyzer II (Illumina, Inc.). Sequencing resulted in 251,686 454 shotgun
reads, 100,698 454 paired-end reads (1.6-kb and 2.8-kb insert sizes), and 7,621,534
Illumina paired-end reads (112 bp). Assembly of the reads using Roche Newbler
assembly software 2.6 for scaffolding and MIRA software (10) resulted in 35 scaffolds
with 108 contigs. The average coverage was 26.8-fold for 454 and 171.44-fold for
Illumina. Some gaps were closed using PCR and Sanger sequencing of the products.
Analysis of the obtained sequences was completed using Gap4 (version 4.11) software
of the Staden package (11, 12). The final draft genome of S. sphaeroides (16 contigs)
consists of a single chromosome of 4.98 Mb with an overall G�C content of 47.21%.
Gene prediction and annotation were performed using Prokka (13). The draft genome
harbored 17 rRNA genes, 88 tRNA genes, 3,564 protein-coding genes with predicted
functions, and 1,150 genes coding for hypothetical proteins.
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The cluster of genes encoding enzymes of the methyl and carbonyl branches of the
Wood-Ljungdahl pathway is present in the genome and showed the same organization
as described for S. ovata DSM 2662 (6). The genome contains genes encoding for
enzymes involved in the metabolism of one-carbon compounds, including cooS for the
putative synthesis of the carbon monoxide dehydrogenase (CODH) required for grow-
ing on CO. Five genes of the formate dehydrogenase (fdhs) complex involved in the
oxidation of formate were also detected. Finally, the methyltransferase genes mtaB and
mtaD, required for methanol-specific methyl transfer (14), were also present.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number LSLJ00000000. The version described
in this paper is the first version, LSLJ01000000.
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