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BACKGROUND: TRK fusions are detected in less than 3% of CNS tu-
mors. Given their rarity, there are limited data on the clinical course of these 
patients. METHODS: We contacted 166 oncology centers worldwide to re-
trieve data on patients with TRK fusion-driven CNS tumors. Data extracted 
included demographics, histopathology, NTRK gene fusion, treatment mo-
dalities and outcomes. Patients less than 18 years of age at diagnosis were 
included in this analysis. RESULTS: Seventy-three pediatric patients with 
TRK fusion-driven primary CNS tumors were identified. Median age at 
diagnosis was 2.4 years (range 0.0–17.8) and 60.2 % were male. NTRK2 
gene fusions were found in 37 patients (50.7%), NTRK1 and NTRK3 ab-
errations were detected in 19 (26.0%) and 17 (23.3%), respectively. Tumor 
types included 38 high-grade gliomas (HGG; 52.1%), 20 low-grade gliomas 
(LGG; 27.4%), 4 embryonal tumors (5.5%) and 11 others (15.1%).  Me-
dian follow-up was 46.5 months (range 3-226). During the course of their 
disease, a total of 62 (84.9%) patients underwent surgery with a treatment 
intent, 50 (68.5%) patients received chemotherapy, 35 (47.9%) patients 
received radiation therapy, while 34 (46.6%) patients received NTRK in-
hibitors (3 as first line treatment). Twenty-four (32.9%) had no progres-
sion including 9 LGG (45%) and 9 HGG (23.6%). At last follow-up, only 
one (5.6%-18 evaluable) patient with LGG died compared to 11 with 
HGG (35.5%-31 evaluable). For LGG the median progression-free survival 
(PFS) after the first line of treatment was 17 months (95% CI: 0.0-35.5) 

and median overall survival (OS) was not reached. For patients with HGG 
the median PFS was 30 months (95% CI: 11.9-48.1) and median OS was 
182 months (95% CI 20.2-343.8). CONCLUSIONS: We report the largest 
cohort of pediatric patients with TRK fusion-driven primary CNS tumors. 
These results will help us to better understand clinical evolution and com-
pare outcomes with ongoing clinical trials.
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BACKGROUND: Dynamic regulation of gene expression is fundamental 
for cellular adaptation to exogenous stressors. PTEFb-mediated promoter 
proximal pause-release of Pol II is a conserved regulatory mechanism for 
synchronous transcriptional induction best described in response to heat 
shock, but this pro-survival role has not been examined in the applied con-
text of cancer therapy. DESIGN/METHOD: In order to examine the dy-
namics of chromatin reorganization following radiotherapy, we performed 
a combination of ChIP-, ATAC-, and RNA-seq in model systems of diffuse 
intrinsic pontine glioma (DIPG) and other pediatric high-grade gliomas 
(pHGG) following IR exposure. We interrogated IR-induced gene expression 
in the presence or absence of PTEFb blockade, including both mechanistic 
and functional consequences of concurrent inhibition or genetic depletion. 
We utilized culture models with live cell imaging to assess the therapeutic 
synergy of PTEFb inhibition with IR, as well as the therapeutic index of this 
intervention relative to normal controls. Finally, we employed orthotopic 
models of pHGG treated with conformal radiotherapy and CNS-penetrant 
PTEFb inhibitors in order to assess tolerability and anti-tumor effect in 
vivo. RESULTS: Rapid genome-wide redistribution of active chromatin fea-
tures and PTEFb facilitates Pol II pause-release to drive nascent transcrip-
tional induction within hours of exposure to therapeutic ionizing radiation. 
Concurrent inhibition of PTEFb imparts a transcription elongation defect, 
abrogating canonical adaptive programs such as DNA damage repair and 
cell cycle regulation. This combination demonstrates a potent, synergistic 
therapeutic potential agnostic of glioma subtype, leading to a marked induc-
tion of tumor cell apoptosis and prolongation of xenograft survival. CON-
CLUSION: These studies reveal a central role for PTEFb underpinning the 
early adaptive response to radiotherapy, opening new avenues for combina-
torial treatment in these lethal malignancies. 
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INTRODUCTION/BACKGROUND: Glioblastoma multiforme show 
constitutive activation of cyclin-dependent kinases (CDKs) or arginine 
auxotrophy. This renders tumor cells vulnerable towards arginine-depleting 
substances, such as arginine deiminase from Streptococcus pyogenes 
(SpyADI). Previously, we confirmed the susceptibility of patient-derived 
GBM cells towards administration of SpyADI as well as CDK inhibitors 
(CDKis). To improve effects, we applied a sequential (SEQ) CDKi/SpyADI 
approach to examine mechanistic insights and drug susceptibility. MATER-
IALS AND METHODS: Three arginine-auxotrophic patient-derived GBM 
lines with different molecular characteristics were cultured in 2D and 3D 
(spheres and glioma stem-like cells (GSC)) and effects of this combined 
CDKi/SpyADI approach were analyzed. This included viability staining via 
Calcein AM in 2D and 3D-Glo in 3D culture and cell death analysis via 
flow cytometry. Therapy-induced morphological changes were identified 
with transmission electron microscopy (TEM). Besides, 3D-invasiveness, 
cellular stress, and DNA damage responses were measured. RESULTS: All 
SEQ-CDKi/SpyADI combinations yielded synergistic antitumoral effects, 
characterized by impaired cell proliferation, invasiveness, and viability. Not-
ably, this SEQ-CDKi/SpyADI approach was most effective in 3D models. 
Mitochondrial impairment was demonstrated by increasing mitochondrial 


