Naureen Mushtaq⁴¹, Andrew Walter⁴², Nada Jabado⁴³, Aysha Alsahlawi⁴³, Jean-Pierre Farmer⁴³, Christina Coleman Abadi⁴⁴, Sabine Mueller⁴⁴, Claire Mazewski⁴⁵, Dolly Aguilera⁴⁵, Nathan Robison⁴⁶, Katrina O'Halloran⁴⁶, Samuel Abbou⁴⁷, Pablo Berlanga⁴⁷, Birgit Geoerger⁴⁷, Ingrid Øra^{48,49} Christopher L. Moertel⁵⁰, Evangelia D. Razis⁵¹, Anastasia Vernadou⁵¹, François Doz^{3,52}, Theodore W. Laetsch², <u>Sébastien Perreault</u>¹; ¹CHU Sainte-Justine, Montréal, Canada. ²Children's Hospital of Philadelphia, Philadelphia, USA. ³Institut Curie, Paris, France. ⁴Hopp Children's Cancer Center Heidelberg (KiTZ); German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK); Heidelberg University Hospital, Heidelberg, Germany. ⁵University Medical Center Göttingen, Göttingen, Germany. 6Ghent University Hospital, Ghent, Belgium. 7Department of Pediatric Hematology/Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland. 8St. Anna Children's Hospital, Depart- ment of Pediatrics, Medical University of Vienna, and St. Anna Children's Cancer Research Institute (CCRI), Viennes, Austria. ⁹Cincinnati Children's Hospital Medical Center, Cincinnati, USA. ¹⁰Memorial Sloan Kettering Cancer Center, New York City, USA. ¹¹Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic. ¹²Hospices Civils de Lyon, Lyon, France. ¹³Institut d'Hématologie et d'Oncologie Pédiatrique and Pluridisciplinar Research in pediatric Oncology for Perspectives in Evaluation Care and Therapy (PROSPECT), Centre Leon Berard, Lyon, France. 14Hospital for Sick Children, Toronto, Canada. 15 Hematology department, faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia. ¹⁶Children's Cancer Centre, Royal Children's Hospital; Murdoch Children's Research Institute; Department of Pediatrics, University of Melbourne, Melbourne, Australia. 17IWK Health Centre, Halifax, Canada. ¹⁸University of Iowa Stead Family Children's Hospital, Iowa City, USA. ¹⁹Perth Children's Hospital; Brain Tumour Research Programme, Telethon Kids Institute; Paediatrics, School of Medicine, University of Western Australia, Perth, Australia. ²⁰Rigshospitalet, Copenhagen, Denmark. ²¹Kanagawa Children's Medical Center, Yokohama, Japan. ²²Sydney Children's Hospital, Sydney, Australia. ²³Texas Children's Hospital, Juney on Mustralia. ²³Texas Children's Hospital, Houston, USA. ²⁴Taipei Medical University Hospital, Taipei, Taiwan. ²⁵University of Michigan, Michigan, USA. ²⁶Children's National Hospital, Washington, D.C, USA. ²⁷Arnold Palmer Hospital, Orlondo, USA. ²⁸B.C. Children's Hospital, Vancouver, Canada. ²⁹Children's Hospital, London Health Sciences Centre, London, Canada. ³⁰Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. ³¹Monash Children's Hospital, Clayton, Australia. Monash University, Clayton, Australia. The Hudson Institute of Medical Research, Clayton, Australia. 32Phoenix Children's Hospital, Phoenix, USA. 33IOP-GRAACC/ UNIFESP, Sao Paulo, Brazil. 34Hospital Infantil Universitario Niño Jesús, Madrid, Spain. 35 Cliniques universitaires Saint-Luc, Bruxelle, Belgium. ³⁶Vall d'Hebron Children's Hospital, Barcelona, Spain. ³⁷Department of Oncology, University Children's Hospital, Zurich, Switzerland. ³⁸Institut Bergonié, Bordeaux, France. 39Children's Minnesota, Minneapolis, USA. 40 American University of Beirut Medical Center, Beirut, Lebanon. ⁴¹Aga Khan University Hospital, Karachi, Pakistan. ⁴²Nemour Alfred I duPont Hospital for Children, Wilmington, USA. ⁴³Montreal Children's Hospital, Montréal, Canada.⁴⁴University of California, San Francisco, USA. ⁴⁵Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, USA. ⁴⁶Children's Hospital Los Angeles, Los Angeles, USA. 47Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France. ⁴⁸Lund University, Lund, Sweden. ⁴⁹Karolinska University Hospital, Stockholm, Sweden. ⁵⁰University of Minnesota Masonic Children's Hospital, Minneapolis, USA. ⁵¹Hygeia Hospital, Athènes, Greece. 52University of Paris, Paris, France

BACKGROUND: TRK fusions are detected in less than 3% of CNS tumors. Given their rarity, there are limited data on the clinical course of these patients. METHODS: We contacted 166 oncology centers worldwide to retrieve data on patients with TRK fusion-driven CNS tumors. Data extracted included demographics, histopathology, NTRK gene fusion, treatment modalities and outcomes. Patients less than 18 years of age at diagnosis were included in this analysis. RESULTS: Seventy-three pediatric patients with TRK fusion-driven primary CNS tumors were identified. Median age at diagnosis was 2.4 years (range 0.0–17.8) and 60.2 % were male. NTRK2 gene fusions were found in 37 patients (50.7%), NTRK1 and NTRK3 aberrations were detected in 19 (26.0%) and 17 (23.3%), respectively. Tumor types included 38 high-grade gliomas (HGG; 52.1%), 20 low-grade gliomas (LGG; 27.4%), 4 embryonal tumors (5.5%) and 11 others (15.1%). Median follow-up was 46.5 months (range 3-226). During the course of their disease, a total of 62 (84.9%) patients underwent surgery with a treatment intent, 50 (68.5%) patients received chemotherapy, 35 (47.9%) patients received radiation therapy, while 34 (46.6%) patients received NTRK inhibitors (3 as first line treatment). Twenty-four (32.9%) had no progression including 9 LGG (45%) and 9 HGG (23.6%). At last follow-up, only one (5.6%-18 evaluable) patient with LGG died compared to 11 with HGG (35.5%-31 evaluable). For LGG the median progression-free survival (PFS) after the first line of treatment was 17 months (95% CI: 0.0-35.5)

and median overall survival (OS) was not reached. For patients with HGG the median PFS was 30 months (95% CI: 11.9-48.1) and median OS was 182 months (95% CI 20.2-343.8). CONCLUSIONS: We report the largest cohort of pediatric patients with TRK fusion-driven primary CNS tumors. These results will help us to better understand clinical evolution and compare outcomes with ongoing clinical trials.

HGG-12. RAPID PTEFB-DEPENDENT TRANSCRIPTIONAL REORGANIZATION UNDERPINS THE GLIOMA ADAPTIVE RESPONSE TO RADIOTHERAPY

Faye Walker¹, Lays Martin Sobral¹, Etienne Danis¹, Bridget Sanford¹, Ilango Balakrishnan¹, Dong Wang¹, Angela Pierce¹, Sana Karam¹, Natalie Serkova¹, Nicholas Foreman¹, Sujatha Venkataraman¹, Robin Dowell², Rajeev Vibhakar¹, <u>Nathan Dahl¹</u>; ¹University of Colorado, Aurora, CO, USA. ²University of Colorado, Boulder, CO, USA

BACKGROUND: Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. PTEFb-mediated promoter proximal pause-release of Pol II is a conserved regulatory mechanism for synchronous transcriptional induction best described in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. DESIGN/METHOD: In order to examine the dynamics of chromatin reorganization following radiotherapy, we performed a combination of ChIP-, ATAC-, and RNA-seq in model systems of diffuse intrinsic pontine glioma (DIPG) and other pediatric high-grade gliomas (pHGG) following IR exposure. We interrogated IR-induced gene expression in the presence or absence of PTEFb blockade, including both mechanistic and functional consequences of concurrent inhibition or genetic depletion. We utilized culture models with live cell imaging to assess the therapeutic synergy of PTEFb inhibition with IR, as well as the therapeutic index of this intervention relative to normal controls. Finally, we employed orthotopic models of pHGG treated with conformal radiotherapy and CNS-penetrant PTEFb inhibitors in order to assess tolerability and anti-tumor effect in vivo. RESULTS: Rapid genome-wide redistribution of active chromatin features and PTEFb facilitates Pol II pause-release to drive nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of PTEFb imparts a transcription elongation defect, abrogating canonical adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. CON-CLUSION: These studies reveal a central role for PTEFb underpinning the early adaptive response to radiotherapy, opening new avenues for combinatorial treatment in these lethal malignancies.

HGG-13. COMBINED CDK INHIBITION AND ARGININE-DEPRIVATION AS TARGETED THERAPY FOR ARGININE-AUXOTROPHIC GLIOBLASTOMA MULTIFORME CELLS Christin Riess^{1,2}, Katharina del Moral³, Adina Fiebig⁴, Philipp Kaps³, Charlotte Linke³, Burkhard Hinz⁵, Anne Rupprecht², Markus Frank⁶, Tomas Fiedler⁴, Dirk Koczan⁷, Sascha Troschke-Meurer⁸, Holger N. Lode⁸, Nadja Engel⁹, <u>Carl Friedrich Classen³</u>, Claudia Maletzki¹⁰, ¹Univ.-Children's Hospital, Rostock, MV, Germany. ²University Medicine Clinic III, Rostock, MV, Germany. ³Univ.-Children's Hospital, Rostock, mv, Germany. ⁴Institute for Microbiology, Rostock, mv, Germany. ⁵Institute for Pharmacology, Rostock, mv, Germany. ⁶Medical Biology and Electron Microscopy Center, Rostock, mv, Germany. ⁷Inst.f. Immunology, Rostock, mv, Germany. ⁸Ped. Hematology and Oncology, Greifswald, mv, Germany. ⁹Oral Surgery, Rostock, mv, Germany. ¹⁰University Medicine Clinic III, Rostock, mv, Germany

INTRODUCTION/BACKGROUND: Glioblastoma multiforme show constitutive activation of cyclin-dependent kinases (CDKs) or arginine auxotrophy. This renders tumor cells vulnerable towards arginine-depleting substances, such as arginine deiminase from Streptococcus pyogenes (SpyADI). Previously, we confirmed the susceptibility of patient-derived GBM cells towards administration of SpyADI as well as CDK inhibitors (CDKis). To improve effects, we applied a sequential (SEQ) CDKi/SpyADI approach to examine mechanistic insights and drug susceptibility. MATER-IALS AND METHODS: Three arginine-auxotrophic patient-derived GBM lines with different molecular characteristics were cultured in 2D and 3D (spheres and glioma stem-like cells (GSC)) and effects of this combined CDKi/SpyADI approach were analyzed. This included viability staining via Calcein AM in 2D and 3D-Glo in 3D culture and cell death analysis via flow cytometry. Therapy-induced morphological changes were identified with transmission electron microscopy (TEM). Besides, 3D-invasiveness, cellular stress, and DNA damage responses were measured. RESULTS: All SEQ-CDKi/SpyADI combinations yielded synergistic antitumoral effects, characterized by impaired cell proliferation, invasiveness, and viability. Notably, this SEQ-CDKi/SpyADI approach was most effective in 3D models. Mitochondrial impairment was demonstrated by increasing mitochondrial