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Background: The emergence of immune checkpoint inhibitors (ICIs) has opened
a new chapter for the treatment of non-small cell lung cancer (NSCLC), and the
best beneficiaries of ICI treatment are still being explored. Smoking status has been
repeatedly confirmed to affect the efficacy of ICIs in NSCLC patients, but the specific
mechanism is still unclear.

Methods: We performed analysis on the Memorial Sloan Kettering Cancer Center
(MSKCC) clinical NSCLC cohort receiving ICI treatment, The Cancer Genome Atlas
(TCGA) Pan-Lung Cancer cohort, and Gene Expression Omnibus (GEO) database
GSE41271 lung cancer cohort that did not receive ICI treatment, including survival
prognosis, gene mutation, copy number variation, immunogenicity, and immune
microenvironment, and explored the impact of smoking status on the prognosis of
NSCLC patients treated with ICIs and possible mechanism. In addition, 8 fresh NSCLC
surgical tissue samples were collected for mass cytometry (CyTOF) experiments to
further characterize the immune characteristics and verify the mechanism.

Result: Through the analysis of the clinical data of the NSCLC cohort treated with ICIs in
MSKCC, it was found that the smokers in NSCLC receiving ICI treatment had a longer
progression-free survival (HR: 0.69, 95% CI: 0.49–0.97, p = 0.031) than those who
never smoked. Further analysis of the TCGA and GEO validation cohorts found that the
differences in prognosis between different groups may be related to the smoking group’s
higher immunogenicity, higher gene mutations, and stronger immune microenvironment.
The results of the CyTOF experiment further found that the immune microenvironment
of smoking group was characterized by higher expression of immune positive regulatory
chemokine, and higher abundance of immune activated cells, including follicular helper
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CD4+ T cells, gamma delta CD4+ T cells, activated DC, and activated CD8+ T cells.
In contrast, the immune microenvironment of non-smoking group was significantly
enriched for immunosuppressive related cells, including regulatory T cells and M2
macrophages. Finally, we also found highly enriched CD45RAhighCD4+ T cells and
CD45RAhighCD8+ T cells in the non-smoking group.

Conclusion: Our research results suggest that among NSCLC patients receiving ICI
treatment, the stronger immunogenicity and activated immune microenvironment of the
smoking group make their prognosis better.

Keywords: non-small cell lung cancer, immune checkpoint inhibitors, prognosis, bioinformatics, mass cytometry

INTRODUCTION

Lung cancer is one of the most frequently occurring types
of tumor malignancy with the highest incidence worldwide.
However, the 60-month overall survival rate of patients remains
extremely poor and is less than 10% of stage IV patients. Smoking
is one of the leading known risk factors (Herbst et al., 2018; Duma
et al., 2019). Immune checkpoint inhibitors (ICIs) are mainly
used to treat programmed cell death 1 (PD-1), programmed cell
death ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4
(CTLA4) pathways. In recent years, ICIs have achieved significant
therapeutic effects in the treatment of advanced NSCLC. Multiple
monoclonal anti-PD-1/PD-L1 monoclonal antibodies (mAbs)
(including nivolumab, pembrolizumab, and atezolizumab) have
been approved by the U.S. Food and Drug Administration to treat
advanced NSCLC, further confirming the importance of ICIs in
the treatment of advanced NSCLC (Constantinidou et al., 2019;
Lin et al., 2019).

However, the ICIs’ therapeutic effect in NSCLC is affected
by many factors: a healthy intestinal microbial environment,
antibiotic use, and smoking status all affect its efficacy (Yi et al.,
2018; Pinato et al., 2019). At present, the PD-L1 expression
level, tumor mutation burden (TMB), microsatellite instability
(MSI), and DNA mismatch repair (dMMR) are also used as
indicators to evaluate the efficacy of ICIs in treating NSCLC
patients. However, due to individual differences and other
factors, all these indicators have specific limitations. Therefore,
determining the best beneficiaries is crucial for developing
clinical NSCLC treatment strategies (Kim et al., 2019; Ruiz-
Banobre and Goel, 2019; Chiu et al., 2020). Several study cohorts
have shown the impact of different smoking statuses specific to

Abbreviations: ICI, immune checkpoint inhibitor; NSCLC, non-small cell lung
cancer; MSKCC, Memorial Sloan Kettering Cancer Center; TCGA, The Cancer
Genome Atlas; GEO, Gene Expression Omnibus; CNV, copy number variation;
CyTOF, mass cytometry; GDSC, Genomics of Drug Sensitivity in Cancer;
CTRP, Cancer Therapeutics Response Portal; PRISM, Profiling Relative Inhibition
Simultaneously in Mixtures; IC50, half maximal inhibitory concentration; AUC,
area under the dose–response curve; PD-1, programmed cell death 1; PD-L1,
programmed cell death ligand 1; CTLA4, cytotoxic T lymphocyte antigen 4; TMB,
tumor mutation burden; MSI, microsatellite instability; dMMR, DNA mismatch
repair; PFS, progression-free survival; DOR, duration of response; GEP, gene
expression profile; OS, overall survival; GSEA, Gene Set Enrichment Analysis; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TKI, tyrosine-
kinase inhibitors; Tfh, follicular helper T cells; gdT, gamma delta T cells; Treg,
regulatory T cells; IFN gamma, interferon-gamma; TNF, tumor necrosis factor.

the treatment of ICIs. Gainor et al.’s (2020) retrospective analysis
showed that different smoking frequencies could lead to different
immunobiological characteristics in patients, influencing the
efficacy of treatment with ICIs. Patients who are heavy smokers
have better PFS (progression-free survival) and DOR (duration
of response) in the treatment of PD-1 (Gainor et al., 2020).
Several meta-analyses also show that previous or current smokers
are more likely to benefit from treatment with ICIs than non-
smokers (El-Osta and Jafri, 2019; Raphael et al., 2020).

Although current studies are inclined toward the analysis
of smoking status and the efficacy of treatment with ICIs
and prognosis, there has been little exploration of its specific
mechanisms. Nevertheless, most literature considers the
differences in the immune microenvironment among different
groups. Likewise, Li et al. (2018) and Sui et al. (2020) analyzed
the microenvironmental differences between smokers and non-
smokers with lung adenocarcinomas, and found relatively high
proportions of CD8+ T cells, activated CD4+ T cells, and M1
macrophages in smokers with lung adenocarcinomas (Kinoshita
et al., 2016). At the same time, Pan et al. (2017) also demonstrated
higher PD-L1 expression in patients who are smokers, which is
directly related to the efficacy of ICIs, so it has also been widely
explored as a possible factor. However, the hypothesis regarding
this mechanism is relatively one-sided and unsubstantiated.
Both only analyze the slight differences between the immune
infiltrating cells between a certain histological tumor type or
the omics data of mRNA. There is currently no literature on
the overall immune microenvironment and immunogenicity of
smoking and non-smoking NSCLC patients at the multi-omics
and single-cell levels.

In our study, we attempt to further understand the
association between the treatment of NSCLC patients with
ICIs and these patients’ history of smoking. Thus, we first
analyzed the genomic differences between previous or current
smokers and non-smokers from multiple databases such as
TCGA, MSKCC, GEO (including TMB, mutation status, copy
number variation (CNV), immunogenicity, immune-related
gene expression profiles (GEPs), and signaling pathways). We
then used samples from NSCLC patients to verify the results
with CyTOF experiments. We aim to explore the overall
differences in the multi-omics, immune microenvironment, and
the mechanism of prognostic differences between the history
of smoking of NSCLC patients treated with ICIs and provide
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clear guidance for the clinical selection of patients suited to
treatment with ICIs.

MATERIALS AND METHODS

Data Source
To assess the effect of smoking history on the efficacy of treating
NSCLC patients with ICIs, from cBioportal (Cerami et al., 2012;
Gao et al., 2013) we downloaded the NSCLC cohort from MSKCC
with a history of smoking and treatment with ICIs as the
discovery cohort1 [reported by Rizvi et al. (2018)], along with
the analysis of survival, immunogenicity, and gene mutation, for
a total of 240 cases. At the same time, we used cohorts from
TCGA Pan-Lung Cancer2 (Campbell et al., 2016) on cBioPortal
and the NSCLC cohort, GEO:GSE41271, the largest number of
cases in the history of smoking, from the GEO database as
verification to evaluate and verify the differences in genomics
between previous or current smokers, and non-smokers with
NSCLC. After removing patients whose smoking history had not
been recorded, there remained 1,087 cases in the TCGA Pan-
Lung Cancer cohort and 271 cases in the GSE41271 cohort.
According to smoking history, each cohort was divided into a
previous or current smoking group, and a non-smoking group
for the comparative analysis.

Survival Analysis
The R package “survival” and “survminer” were used to calculate
the survival analysis outcome indicators: PFS (progression-
free survival) and OS (overall survival). The same software
and packages were used to perform the survival analysis and
visualization of the survival curve of the MSKCC cohort and the
TCGA Pan-Lung Cancer cohort.

Immunogenicity Analysis
Consistent with other literature, the somatic mutation data in
240 NSCLC samples reported by Rizvi et al. were obtained
from targeted next-generation sequencing (NGS; MSK-IMPACT)
(Chalmers et al., 2017). The non-synonymous mutations in
the immunotherapy cohort (Rizvi et al.) were used as the raw
mutation count and divided by 38 Mb to quantify the tumor
mutation burden (TMB). In 87% of TCGA Pan-Lung Cancer
cases (942 cases), TMB, indel, and SNV neoantigen load data
have been reported in the relevant literature (Thorsson et al.,
2018). The formula log(1+ TMB) was used to normalize the TMB
results. The R package “ggplot2” (Wilkinson, 2011) was used to
visualize the results of the TMB and neoantigen load difference
analysis. Unless otherwise specified, ggplot2 was used throughout
this article to visualize the results of analyses.

Gene Mutation and Copy Number
Variation Analysis
The gene mutation data of the Rizvi et al. cohort was downloaded
directly from cBioportal. Due to the lack of cBioportal mutation

1https://www.cbioportal.org/study/summary?id=nsclc_pd1_msk_2018
2https://www.cbioportal.org/study/summary?id=nsclc_tcga_broad_2016

data in the TCGA Pan-Lung Cancer cohort, we used the TCGA
Barcode as our target and used the R package “TCGAbiolinks”
(Colaprico et al., 2016) to download the corresponding mutation
maf file from the official TCGA website3, and included 952
cases with mutation data and smoking history records. The
R package “complexHeatmap” (Gu et al., 2016) was used to
visualize the top 20 gene mutations and corresponding clinical
features in the immunotherapy cohort in the MSKCC and
the TCGA Pan-Lung Cancer cohort. For MSKCC queue and
TCGA Pan-Lung Cancer queue, CNV segments (hg19) were
downloaded from cBioportal and analyzed using GenePattern
(Hubble et al., 2009)4 GISTIC 2.0. We used the R package
“Maftools” (Mayakonda et al., 2018) to visualize the CNV of the
results of the GISTIC2.0 analysis.

Immune Characteristic Analysis
CIBERSORT (Newman et al., 2015)5 was used to analyze the gene
expression data (Illumina HiSeq, RNA-Seq) of the TCGA Pan-
Lung Cancer cohort downloaded from TCGAbiolinks. The gene
expression data of the GSE41271 cohort (Illumina HumanWG-
6 v3.0 expression beadchip) was downloaded from GEO to
compare the infiltration state of 22 immune cells in the smoking
group and the non-smoking group. In addition, we used the R
package “edgeR” (Robinson et al., 2010) to compare the mRNA
expression of immune-related genes in the smoking group and
non-smoking group in the TCGA Pan-Lung Cancer cohort, and
use the package “limma” (Law et al., 2016) to compare the same
groups and variables in the GSE41271 cohort.

Gene Difference Analysis and
Enrichment Pathway Analysis
The R package “edgeR” was used to analyze the difference
in gene expression data (raw count) in the TCGA Pan-Lung
Cancer cohort, and we used the “limma” package to perform
the genetic difference analysis of the GSE41271 cohort. The R
package “clusterProfiler” (Yu et al., 2012) was used to reform a
Gene Set Enrichment Analysis (GSEA) on the genes that were
significantly different between the two cohorts. Among them,
p < 0.05 in Gene Ontology (GO) terms, Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Reactome were considered to
have significant differences.

Mass Cytometry (CyTOF)
Specimen Source
Eight cases of tumor tissues of NSCLC patients undergoing
surgical treatment were collected from the Department of
Thoracic Surgery at the Zhujiang Hospital of the Southern
Medical University. Each sample was about 1 cm3 in size. All
specimens were approved and signed authorization for their use
was obtained from the patients. The ethics committee of Zhujiang
Hospital of Southern Medical University (Guangzhou, China)
approved the specimen collection process.

3https://portal.gdc.cancer.gov/
4https://cloud.genepattern.org/gp/pages/index.jsf
5http://cibersort.stanford.edu/
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Mass Cell Data Collection
After washing with RPMI 1640 medium, the fresh lung tumor
samples were dissociated into single cells under the irradiation
of deoxyribonuclease and type IV collagenase. ACK lysis buffer
(PLT) was used to remove the red blood cells, and the number
of live and dead cells was then counted to estimate the sampling
efficiency. Cell-ID cisplatin 194Pt (Fluidigm) was used to identify
the dead cells, after which block qualified samples were placed on
ice for 20 min. Each sample was then incubated on ice for 30 min,
with the surface antibody mixture (Maxpar Antibody Labeling
Kit; Fluidigm) and without removing the blocking solution, using
Maxpar Fix and Perm Buffer. The final 500 µMNA intercalator
(Cell-ID Intercalator-Ir; Fluidigm) was incubated with 200 µl
after the resuspended cells were washed in each sample and finally
stored overnight at 4◦C. Subsequently, intracellular staining
was performed, the cells were washed with the intracellular
antibody mixture on ice, pre-fixed, and co-incubated for 30 min.
Then the cells were rinsed and then collected on the CyTOF
system (Helios; Fluidigm) to detect the signal (Han et al., 2018).
Antibody selection is shown in Supplementary Table 1.

Mass Cytometry Data Analysis
We sorted CD45+ cells, and used the FlowJo software and R
package “cytofworkflow” (Nowicka et al., 2017) to complete
quality control, clustering, cell annotation, and visualization.
Then arcsinh with a cofactor of 5 was used when generating
the SingleCellExperiment object. In addition, the cells were
overclustered first (SOM = 100, maxK = 30), based on the
expression of cell-specific markers, and then the same type of
cells was re-clustered. If a cluster of cells highly expressed two
different cell-specific markers (such as CD19 and CD3), they
were defined as “Mixed_cell” and discarded before proceeding
with the following analysis. The difference analysis of the
subpopulation abundance between different cell types is done by
the “diffcyt()” function of the diffcyt package in the cytofworkflow
package, where gender and age are random variables, and the
selected method is a generalized linear mixed model (GLMM).
Benjamini–Hochberg was also used to correct the p value. When
the p value is less than 0.05 and the false discovery rate is less than
0.05, the corresponding cell type is considered to be significantly
different between smokers and non-smokers.

FIGURE 1 | Study design. The discovery cohort from the MSKCC database included 240 NSCLC patients treated with ICIs. The validated cohorts from the TCGA
database and GEO database (GSE41271) that were not treated with ICIs contained 1,144 patients and 275 patients. Also, a cohort of 8 cases of NSCLC who did
not receive ICI treatment collected from Zhujiang Hospital of Southern Medical University underwent CyTOF experimental verification. Figure created with
BioRender.com.
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Statistical Analysis
The Wilcoxon rank-sum test was used to compare the differences
in TMB, indel/SNV neoantigen load, immune cell abundance,
and immune-related gene expression between previous or
current smokers, and the non-smokers. In addition, Fisher’s exact
test was used to compare the difference between the smoking
and non-smoking groups of the top 20 gene mutations in the
immunotherapy cohort in MSKCC and the TCGA Pan-Lung
Cancer cohort. The Kaplan–Meier method and log-rank two-
sided tests were used for survival analysis, with p < 0.05 accepted
as statistically significant. All statistical tests and visualization
were done using the software R (version 4.0.3).

RESULTS

Data Collection and Clinical Features
To study the difference between previous or current smokers, and
non-smokers with NSCLC, we selected four cohorts for analysis.
Three of the cohorts were from public databases, including
Rizvi et al.’s discovery cohort after ICI treatment from the
MSKCC database, the Pan-Lung Cancer cohort from the TCGA
database, and NSCLCs in the GSE41271 dataset for non-ICI
treated patient data from the GEO database; these data were
also based on Wistuba II’s sequencing and analysis of 275 lung
cancer specimens collected from MD Anderson Cancer Center
between 1997 and 2005, which mainly includes adenocarcinomas
(n = 183) and squamous carcinomas (n = 80).

In the last cohort, we collected eight surgical samples of
clinical NSCLC patients from Zhujiang Hospital of Southern
Medical University for CyTOF analysis. These patients also had
not received treatment with ICIs. Ultimately, a total of 1,667
patients were involved in all cohorts. After further excluding
samples for which the patients’ history of smoking had not been
recorded and non-NSCLC cases, a total of 1,606 patients were
finally included for analysis. The flowchart is shown in Figure 1.
The clinical characteristics of MSKCC data discovery cohort and
the TCGA and GEO cohorts are summarized in Supplementary
Tables 2–4, while those of the CyTOF cohort are summarized in
Supplementary Table 5.

Association of Smoking Status,
Treatment With Immune Checkpoint
Inhibitors, Prognosis, and
Immunogenicity
To discover a suitable NSCLC population for treatment with
ICIs, we performed a univariate Cox regression on the survival
prognosis of the MSKCC data for the cohort treated with
ICIs (Figure 2A). We found that smoking status, tumor
mutation burden, and treatment options are significantly related
to the prognosis of patients treated with ICIs. Furthermore,
being a previous or current smoker, high TMB, and two-drug
combination therapy with ICIs were associated with longer
PFS (p < 0.05). The relationship between the TMB level, ICI
combination, and the efficacy of ICIs has been confirmed in the

relevant literature (Kim et al., 2019; Xu et al., 2020; Carretero-
Gonzalez et al., 2021). However, there are few articles on smoking
status and the prognosis of patients treated with ICIs. Therefore,
our study further examines the relationship between this factor
and the prognosis of NSCLC patients treated with ICIs; the
survival curve shows longer PFS in past and current smokers
than in non-smokers (Figure 2B). We also conducted a survival
analysis of previous or current smokers compared with non-
smokers in the TCGA cohort who were not treated with ICIs,
and we found no significant difference in either PFI or OS
(Figures 2C,D), which further shows that smoking status is only
related to the prognosis of patients treated with ICIs.

Subsequently, we further analyzed the difference in TMB
between the smoking and non-smoking groups in the ICI cohort
and found that the TMB of the smoking group was significantly
higher than that of the non-smoking group (Figure 2E,
p < 0.001). We obtained the same result for the patients in the
TCGA database; the TMB and neoantigen scores in the smoking
group were significantly higher than those in the non-smoking
group (Figures 2F,G). These results indicate that among the
NSCLC patients treated with ICIs, the smoking group has a
higher likelihood of receiving a preferable prognosis. Smoking
status may affect the treatment of patients with ICIs via the
difference in TMB and immunogenicity.

Mutation Landscape and Copy Number
Variation in Different Smoking Status
To further analyze the reasons leading to aforementioned results,
we separately included the discovery cohort and the verification
discovery cohort to analyze the difference in the mutation and
CNV among the different groups. The MSKCC and the TCGA
data mutation landscapes showed that the smoking group had
a higher frequency of gene mutations than the non-smoking
group (Figures 3A,B). The MSKCC data were based on the
top 20 mutations in the total data; 90% of the gene mutation
frequencies are higher in the smoking group than in the non-
smoking group (Figure 3A). Fisher’s exact test indicated that
TP53, KRAS, KEAP1, and other genes were significantly mutated
in the smoking group (p < 0.05), and that EGFR is the only
gene that is mutated significantly in the non-smoking group.
Among them, TP53 is a gene that is mutated considerably in the
smoking group in both the discovery and validation sets. Our
previous research also repeatedly confirmed that TP53 mutations
are associated with the better efficacy and prognosis of treating
various tumors with ICIs (Lyu et al., 2020; Zhang Y. et al., 2020).

Based on a report on the close relationship between CNV and
the occurrence and development of lung cancer (Qiu et al., 2017),
we analyzed the difference in CNVs and found that the number of
chromosome copy numbers changes (amplification or deletion)
in the MSKCC data (Figure 3C) and TCGA data (Figure 3D), and
was significantly higher in the smoking group. The significant
detailed amplification or deletion sites among different groups
are shown in Supplementary Figures 1A–D. This feature of more
unstable chromosomes in the smoking group may be an essential
factor in that smoking is more likely to cause tumors. Next, we
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FIGURE 2 | Association between the smoking status and clinical outcomes and immunogenicity in NSCLC. (A) Forest plots for the results of the univariate Cox
regression analyses. The p-value of smoking status is less than 0.05, the main portion of the forest plot presents the hazard ratio (HR) and 95% CI, and the HR
indicates the predictors of favorable (HR < 1) or poor (HR > 1) PFS. (B) Kaplan–Meier analysis was used to compare progression-free survival (PFS) of previous or
current smokers with that of non-smokers in the ICI treatment in NSCLC cohort from MSKCC. (C,D) Kaplan–Meier analysis was used to compare progression-free
interval (PFI) (C) and overall survival (OS) (D) of previous or current smokers with that of non-smokers in the TCGA Pan-Lung Cancer cohort (without ICI treatment).
(E) Comparison of tumor mutational burden (TMB) between the previous or current smokers and non-smokers in the ICI treatment cohort from MSKCC.
(F) Comparison of tumor mutational burden (TMB) between the previous or current smokers and non-smokers in the TCGA Pan-Lung Cancer. (G) Comparison of
neoantigen load between the previous or current smokers and non-smokers in the TCGA Pan-Lung Cancer. (E–G) All expression values are logarithmized by
log(1 + x) using Wilcoxon test for variance analysis. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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FIGURE 3 | Mutation landscape and copy number variation in different smoking status. (A) Top 20 significantly mutated genes in the immunotherapy cohort of
MSKCC database. The mutation landscape was divided into two groups according to smoking status, and genes were ranked by mutation frequencies. The sample
type, sex, and TMB score are annotated in order in the top panel. The genes marked in red indicate that their mutation frequency is significantly different between the
two groups in Fisher’s exact test (p < 0.05). (B) Top 20 significantly mutated genes in TCGA Pan-Lung Cancer. The mutation panorama was divided into two groups
according to smoking status, and genes were ranked by mutation frequencies. The sample type, vital status, and TMB score are annotated in order in the top panel.
The genes marked in red indicate that their mutation frequency is significantly different between the two groups in Fisher’s exact test (p < 0.05). (C,D) Maftools was
used to visualize the copy number alteration (CNV) analysis based on GISTIC2.0 of the MSKCC cohort (C) and TCGA Pan-Lung Cancer cohort (D) under different
smoking status. (E,F) The lollipop graph shows the significantly amplified (E) or deleted (F) sites in the smoking group in the MSKCC discovery cohort and the TCGA
verification cohort and the main genes encoded by the chromosomal sites. The marked site in the middle is the intersection of the two databases. (A,B) *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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conducted a separate analysis of the chromosome fragments that
only changed in the smoking group (Figures 3E,F) and found
that 19q13.2 (ACTN4), 19q12 (CCNE1), 8q24.3 (BAI1), 2q31.2
(ATP5G3), 17q12 (ACACA), and 14q32.33 (AKT1) chromosomal
fragments had been significantly amplified in the smoking group
in both data sets, where the 19q chromosome shows expansion
of two arms. Together, 4q35.2 (SLC25A4), 2q37.3 (AGXT),
1p12 (ADORA3), 1q36.11 (RUNX3), 6q26 (ACAT2), 4p16.3
(ADD1), and 12q24.33 (ACAD5) chromosome fragments are
significantly deleted in the smoking groups in both datasets, while
chromosome 4 also showed changes in multiple arms.

These results indicate that the smoking group is more likely
to comprise driver gene mutations and changes in chromosome
copy number, which facilitates tumor formation in patients.
Moreover, these changes are the likely reasons for the improved
entry points and clinical prognosis of our immunotherapy.

Comparison of Immune Characteristics
Between Smoking and Non-smoking
Groups
To further analyze the reasons for the difference in the efficacy
of ICIs between the smoking group and the non-smoking
group, we further analyzed the immune cell infiltration pattern
between the two groups. Since the MSKCC immunotherapy
cohort lacks RNA-seq data, we introduce the GEO’s GSE41271
data as the second validation set. Then, CIBERSORT software
was used to analyze the infiltration abundance of 22 immune
cells. The results of the TCGA data set showed that immune
cells related to immune activation, such as activated CD4+
T cells, gamma delta T cells, and monocytes, were elevated
significantly in the smoking group. In contrast, immune cells
are related to immune suppression, such as M2 macrophages
and regulatory T cells in the non-smoking group that appeared
to aggregate (Figure 4A), and this result has also been
verified using the GEO database (Supplementary Figure 2A).
In addition, some stimulating immune modulators such as
chemokines (CXCL5, CXCL10), cytolytic activity-related genes
(PRF1, GZMA), and immune checkpoint biomarkers (CD274,
IDOI) were significantly upregulated in the smoking group
according to the analysis of related immune factors (Figure 4B).
This result can also be seen in the same trend in GEO data
(Supplementary Figure 2B).

Subsequently, we provided the immune cell–related marker
gene table based on the study by Thorsson et al. (2018). We
further analyzed the difference in immune infiltration patterns
between smoking and non-smoking groups in the validation set.
Through the differential analysis of immune-related genes in the
TCGA database and GEO database, in the TCGA database 113
immune cell–related genes with significant differential expression
were found, while in the GEO database 28 significant differences
were found in genes. The TCGA heatmap showed that most
of the 113 genes with significant differences were T cell–related
markers, which were significantly higher in the smoking group
(Figure 4C). The heatmap of the 28 substantially different genes
from the GEO database also shows that most of the immune-
related genes with significant differences are activated CD4+

T cells and activated CD8+ T cell markers, which are highly
expressed in the smoking group (Supplementary Figure 2C). We
also found that seven genes were simultaneously verified in both
databases, and six of them were highly expressed in the smoking
group. Among them, HMMR, GAL, and SPC25 are signs of
activated T cells (Supplementary Figures 2D,E).

At the same time, we used the “clusterProfiler” package to
perform a GSEA on the TCGA and the GEO datasets. The
results found that pathways related to the positive regulation of
immune response such as immune response to tumor cells, T
cell activation–related pathways, inflammatory reactions, natural
killer cell–mediated cytotoxicity, MHC class Ib for antigen
processing and presentation, and positive regulation of MHC
class II biosynthesis processes were significantly enriched in the
smoking group (Figures 4D,E). In short, our analysis of the
immune infiltration patterns between different NSCLC groups
revealed that the smoking group has a higher abundance of
immune cells and immune factor infiltration than the non-
smoking group. These data further explain why patients in our
smoking group experienced improved efficacy when treated with
ICIs than in the non-smokers with NSCLC.

The Mass Cytometry Analysis Indicated
That the Smoking Group Had an
Activated Immune Microenvironment
The immune microenvironment in NSCLC has been widely
studied (Conforti et al., 2021); however, the immune
microenvironment of different smoking status in NSCLC
has not been systematically analyzed before. We collected
fresh tumor tissues from eight NSCLC patients from Zhujiang
Hospital of Southern Medical University for CyTOF analysis.
After quality control, we obtained 1,277,343 cells (an average of
≈250,000 cells per sample). Based on the expression of CD3,
CD19, CD68, CD14, and other markers, they were annotated as
T cells, B cells, and myeloid cells, respectively. After preliminary
annotations, each type of immune cell was re-clustered, grouped,
and combined with the expression of 42 surface markers. The
cells were divided into different subtypes. The flow chart of
this process is shown in Figure 1, and the sample quality
control chart, the number of cells in each sample, and the basic
expression heat map of the 42 markers in each sample are shown
in Supplementary Figure 3.

All Immune Cell Groups
According to the immune cell markers, CD45+ cells were divided
using the manual gated circle function of the Flowjo (Figure 5A),
and multi-dimensional data are converted into single-cell two-
dimensional visualization data by R package cytofworkflow.

The overall immune lineage is divided into T
cells (CD3+), B cells (CD19+), and myeloid cells
(CD3−CD19−CD56−CD11b+), visualized in the tSNE diagram
(Figure 5B). In the tumor immune microenvironment of all
NSCLC samples, the proportion of T cells is the highest, followed
by myeloid cells and B cells (Supplementary Figure 4A).
Notably, T cells related to immune regulation and tumor killing
in the smoking group were higher than that in the non-smoking
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FIGURE 4 | Comparison of immune characteristics between different smoking status in NSCLC. (A) CIBERSORT analyses quantifying the proportion of 22 immune
cells in the different smoking status of the NSCLC cohort from TCGA. (B) Frequencies of stimulatory immunomodulators in the different smoking status of the
NSCLC cohort from TCGA. (C) Heatmap showing average changes in the expression levels of immune-related gene between the previous or current smokers and
non-smokers in the TCGA cohort. The genes corresponding to the same lymphocyte or function are identified by the same color on the left side of the squares, and
each square with an exact number represents the logFC of a gene, filled with different back colors, i.e., from red to gray. The logFC values marked in black font
indicate that the absolute value of logFC is ≥ 1 with statistical significance (p < 0.05). (D) The bubble chart shows that immune-related pathways are significantly
different under different smoking states of TCGA and GEO dataset, the color of the circles indicates counts, as shown in the legend, and the size is proportional to
the statistical significance. (E) GSEA of the hallmark gene sets downloaded from MSigDB. All transcripts were ranked by the log2 (fold change) between previous or
current smokers and non-smokers in the TCGA cohort. Each run was performed with 1,000 permutations; immune-related pathways are highly enriched in the
smoking group of TCGA cohort. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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FIGURE 5 | The immune landscape of NSCLC patients sequenced by CyTOF. (A) Schematic diagram of flow gating. CD45+ cells were manually selected and
subjected to sequential gating to identify the Immune cell subsets with CyTOF. (B) t-SNE plot showing the overall distribution difference of immune clusters between
previous or current smokers and non-smokers. (C) Box plot comparing the relative abundance of each immune cluster between different smoking status groups.
Box plot center and box correspond to median and IQR, respectively. Different shapes were used to represent each patient. (D) Bar plot showing the relative
abundance of 4 immune cell types in each sample, faceted by smoking status. (E) The expression of surface molecules showed in different immune lineages.
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group, and the proportion of myeloid cells was larger in the
non-smoking group; there was no significant difference in B cells
between the two groups (Figures 5C,D). Diversified expression
patterns of surface markers were observed in different immune
cell lineages from different smoking status (Figure 5E). These
results preliminarily indicate the difference in immune lineage
distribution between smoking and non-smoking groups.

CD4+ T Cell Clustering
To explore the heterogeneity of the composition of CD4+ T
cell subgroups between different groups, we carried out re-
clustering and downstream analysis of the CD4+ T cell subgroups
(Figure 6A). CD4+ T cells are further divided into eight immune
cell subgroups, including follicular helper CD4+ T cells, gamma
delta CD4+ T cells, CD4+ Tregs, NKT cells, Th0 CD4+ T cells,
Th1 CD4+ T cells, memory CD4+ T cells, and other CD4+
T cells, visualized in the tSNE diagram (Figure 6B). We also
visualized the expression of markers used to annotate CD4+ T
cell subsets in different groups (Supplementary Figures 5A,B).

Among them, the proportion of memory CD4+ T cells was
the highest, and the proportion of NKT cells in all CD4+ T
cells was relatively small (Supplementary Figure 4B). Then, we
compared the proportions of different types of CD4+ T cells
between the smoking and non-smoking groups (Figures 6C,D),
and found that T cell infiltration that promotes the positive
immune response is mainly used in the smoking group. This
phenomenon included follicular helper T cells (Tfh), NKT, Th0,
Th1, and gamma delta T cells (gdT). The proportions of these
cells are significantly higher in the smoking group (p < 0.05,
Figure 6D), while the proportion of Treg (regulatory T cells)
with immunosuppressive effects and memory CD4+ T cells
was significantly higher in the non-smoker group (p < 0.05,
Figure 6D).

Then, we compared the expression levels of immune
exhaustion and activation markers between different groups
(Figure 6E). The expression of CD45RA can be seen slightly
higher in the non-smoking group than the smoking group, which
indicates that the proportion of CD45RAhigh CD4+ T cells in
the non-smoking group may be greater. However, the expression
patterns of exhaustion markers including TIM-3, PD-1, CTLA-4,
and LAG-3, and activation markers including ICOS, CD69, and
HLA-DR in different groups of CD4+ T cells had no difference.
This result was a bit different from the conclusion that activated
CD4+ T cells are more abundant in the smoking group in
the analysis of the transcriptome in TCGA and GEO sets. We
consider that it is due to the small sample size of CyTOF data
and individual differences.

CD8+ T Cell Clustering
To illustrate the differences in CD8+ T cells in different smoking
states, we further re-clustered CD8+ T cells. According to existing
markers, CD8+ T cells are further divided into four immune
cell subgroups (Figure 7A). The tSNE chart shows that the
exhausted CD8+ T cells make up the largest proportion of
NSCLC tissue, and the proportion of effector CD8+ T cells was
relatively small (Supplementary Figure 4C). Then, we compared
the proportions of different types of CD8+ T cells between the

smoking and non-smoking groups and found that, compared
with those in the non-smoking group, the level of effector CD8+
T cells was significantly upregulated (p < 0.001; Figures 7B,C) in
the smoking group. Although exhausted CD8+ T cells accounted
for the largest proportion, there was no significant difference
between different groups (Figure 7C). In addition, Figure 7D
was used to show the proportion of each cell type in each sample
in detail. We also discovered that expression of surface markers,
including CD8a, CTLA-4, CCR7, CD69, CD45RA, IL-7Ra, PD-
1, and CD103, were different in smokers and non-smokers
(Figure 7E). The representative expression patterns of function
surface markers found that CD8+ T cells in the non-smoking
group exhibited a rest state with increased CD45RA expression
and low expression of HLA-DR and CD8+ T cells in the smoking
group showed an activation state with an increased expression of
activation markers (HLA-DR, ICOS, IL-2R) (Figure 7F).

Clustering of Myeloid Cells
In addition to T cells, myeloid cells are also important immune
cells that exert anti-tumor effects and participate in many aspects
of anti-tumor immunity (Cheng et al., 2021). Therefore, to
explore the differences between myeloid cell populations in
the NSCLC of previous or current smokers, and non-smokers,
we re-clustered and re-analyzed the myeloid cells (Figure 8A).
Macrophages accounted for the largest proportion of myeloid
cells in the tumor microenvironment, and immunosuppressive
M2 macrophages accounted for the largest proportion in
macrophages (Supplementary Figure 4D). Furthermore, a
comparative analysis of the proportions of different types of
myeloid cells between the smoking and non-smoking groups
(Figures 8B,C) found that the proportion of activated DC that
exerts a positive immunomodulatory effect in the former was
significantly higher in the group of smokers than in non-smokers
(p < 0.01, Figure 8D), and M2 type macrophages in the non-
smoking group were significantly higher (p < 0.05, Figure 8D).
This result is consistent with the previous results of the TCGA
and GEO’s CIBERSORT.

In summary, the CyTOF results further verify that the
smoking group has an activated immune microenvironment
from the proportion of immune cell infiltration. In comparison,
the immune microenvironment of the non-smoking group is in
a suppressed or rest state. These results can also be verified from
the TCGA and GEO transcriptome data.

DISCUSSION

The efficacy ICIs of NSCLC in different populations is variable,
and smoking status has also become one indicator for judging
the efficacy of ICIs (Gainor et al., 2020). However, the underlying
mechanism of the difference in the efficacy of treatment with
ICIs between smokers and non-smokers remains unclear. Our
research further elaborated on the relationship between smoking
and treatment with ICIs from multiple MSKCC, TCGA, GEO,
and CyTOF data levels. It explained the underlying reasons for
its differences from various aspects such as mutations, CNVs, the
transcriptome, and the immune microenvironment.
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FIGURE 6 | Features of CD4+ T cells in NSCLC with different smoking status. (A) Heatmap of the median marker intensities of the multiple lineage markers in the 8
CD4+ T cell populations obtained by manual merging of the 30 metaclusters generated by FlowSOM. The heat represents the median of arcsinh and 0–1
transformed marker expression calculated over cells from all the samples. (B) t-SNE plot showing the overall distribution of different CD4+ T cell clusters between
previous/current smokers and non-smokers. (C) Bar plot showing the relative abundance of different CD4+ T cell types in each sample, faceted by smoking status.
(D) Box plot comparing the relative abundance of each CD4+ T cell cluster between different smoking status groups. Box plot center and box correspond to median
and IQR, respectively. Different shapes were used to represent each patient. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. (E) The
expression level of several functional markers in different groups.
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FIGURE 7 | Features of CD8+ T cells in NSCLC with different smoking status. (A) Heatmap of the median marker intensities of the multiple lineage markers in the 4
CD8+ T cell populations obtained by manual merging of the 30 metaclusters generated by FlowSOM. The heat represents the median of arcsinh and 0–1
transformed marker expression calculated over cells from all the samples. (B) t-SNE plot showing the overall distribution of different CD8+ T cell clusters between
previous/current smokers and non-smokers. (C) Box plot comparing the relative abundance of each CD8+ T cell cluster between different smoking status groups.
Box plot center and box correspond to median and IQR, respectively. Different shapes were used to represent each patient. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001; ns, not significant. (D) Bar plot showing the relative abundance of different CD8+ T cell types in each sample, faceted by smoking status. (E) t-SNE
plots of markers used to annotate CD8+ T subgroups in different groups. (F) The expression level of several functional markers in different groups.
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FIGURE 8 | Features of myeloid cells in NSCLC with different smoking status. (A) Heatmap of the median marker intensities of the multiple lineage markers in the 7
myeloid cell populations obtained by manual merging of the 30 metaclusters generated by FlowSOM. The heat represents the median of arcsinh and 0–1
transformed marker expression calculated over cells from all the samples. (B) t-SNE plot showing the overall distribution of different myeloid cell clusters between
previous/current smokers and non-smokers. (C) Bar plot showing the relative abundance of different myeloid cell types in each sample, faceted by smoking status.
(D) Box plot comparing the relative abundance of each myeloid cell cluster between different smoking status groups. Box plot center and box correspond to median
and IQR, respectively. Different shapes were used to represent each patient. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. (E) Possible
mechanism for the improved prognosis after immunotherapy of smoking patients in NSCLC. Overview of the key immune cell population changes in previous or
current smokers compared with non-smokers. Different immune cell types and their potential connections through cytokines, chemokines, or receptor–ligand
interactions are shown in this picture. In addition, the genomic changes were also plotted inside the tumor cell. TMB, tumor mutational burden; CNV, copy number
variant; MT, mutation type. Figure created with BioRender.com.
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We performed a Cox regression and survival analysis from
the clinical data, and found that the smoking group was
associated with longer PFS in patients treated with ICIs. Next,
we analyzed the possible mechanism leading to differences
in the efficacy of ICIs between smoking and non-smoking
patients. We found high TMB levels and neoantigen loads in
the smoking group. Subsequently, from MSKCC and TCGA,
we found a higher frequency of gene mutations (TP5, KRAS,
MUC16) in the smoking group compared with the non-smoking
group and a higher level of CNVs. Driver gene mutations,
especially TP53 mutations and higher CNVs, are related to
the better efficacy of ICIs. These high-frequency mutations and
increased CNVs can activate pathways like cell metabolism,
and regulate angiogenesis, T cells, and antigen expression.
In turn, these may activate the immune microenvironment
through direct or indirect relationships, thereby affecting the
efficacy of ICIs (Yi et al., 2020; Zhang J. et al., 2020;
Si et al., 2021).

Subsequently, we introduced a second validation set from
the GEO database GSE41271 as an auxiliary verification
of the TCGA validation set to compare the immune
microenvironment between the different groups. We
learned from the immune infiltrating cells and immune-
related genes (antigen presentation/stimulation/inhibition),
immune cell–related genes, and immune-related pathways
in our comprehensive analysis. This study is also the first
to evaluate the immune microenvironment of smoking
and non-smoking from NSCLC as a whole, and found
that smoking group’s immune microenvironment was
activated in both validation sets, including high expression
of immune infiltrating M1 macrophages, monocytes, and
activated CD4+ T cells; high immune positive regulatory
chemokine expression, cytolytic activity–related genes,
and immune checkpoint biomarkers; high expression of
activated CD4+/CD8+ T cell–related genes HMMR and
GAL; and the activation of immune-related pathways (T
cell activation–related pathways, inflammatory response,
natural killer cell–mediated cytotoxicity). A few studies
have shown that the stimulating effect of tobacco smoke
on the respiratory tract can lead to the release of pro-
inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-8,
and granulocyte-macrophage colony-stimulating factors.
In turn, the number of leukocytes can be increased (such
as T cells, natural killer cells, and monocytes), and the
unstable T cells in constant circulation cause continuous
and permanent inflammatory damage to normal lung tissue
because of long-term exposure to smoke from cigarettes (Chen
et al., 2016; Piaggeschi et al., 2021). In our NSCLC patients
who were also smokers, the increased immune cells and
activated immune microenvironment may instead become the
target of ICI therapy.

Next, we collected eight fresh NSCLC cancer tissues for
CyTOF to further analyze the difference in the immune
infiltration pattern between the smoking and non-smoking
groups. Since T cells play one of the most critical roles in the
tumor microenvironment through their anti-tumor effect, they
are also important target cells for tumor therapy based on the

immune microenvironment (Binnewies et al., 2018). Our analysis
focused on comparing different types of CD4+ T cells and CD8+
T cell infiltration, and found that 80% of T cells related to
positive immunomodulation (such as Tfh, gdT, NKT, Th1, and
activated CD8+ T cells) are highly expressed in previous or
current smokers, while Treg cells related to immunosuppression
were highly enriched in the non-smoking group.

At the same time, we found that CD45RA was highly
expressed in CD4+ T and CD8+ T cells in the non-smoker group.
As we all know, naïve T cells express CD45RA and are usually
functionally quiescent (Sallusto et al., 2004). Huang et al. (2015)
also found a similar result in APC that lower levels of CD4+
naïve/memory ratio were positively correlated with better OS
(p = 0.036 and 0.021, respectively), and CD8+ naïve/memory
ratio can be a candidate marker for predicting PFS and its change
may reflect the progression. Therefore, the CD45RAhighCD4+ T
cells and CD45RAhighCD8+ T cells enriched in the non-smoking
group may also be one of the reasons for the poor prognosis of
ICIs in the non-smoking group.

For the analysis of myeloid cells, we found that M2
macrophages were highly enriched in the non-smoker group.
M2 macrophages in myeloid cells have always been the cell
type that researchers have focused on. They secrete various
immunosuppressive chemokines, cytokines, and extracellular
matrix components; they also negatively regulate immune
response while reshaping immune microenvironment and
promoting tumor progression and metastasis (Han et al., 2021).
In our study, the high infiltration of M2-type macrophages
in non-smokers may also be a fundamental reason for their
poor prognosis. Also, studies have shown M1 macrophages’
high degree of infiltration is associated with better immune
efficacy metastatic urothelial carcinoma (Zeng et al., 2020). This
outcome also suggests that the high M1 macrophage infiltration
in smoking patients in NSCLC may be transformed into the
benefit of immunotherapy.

We summarized the mechanism by which smoking NSCLC
may affect the efficacy of ICIs (Figure 8E). In short, these results
partly explain NSCLC in the smoking group’s better prognosis
in the treatment of ICIs. It is likely the result of multiple factors
working together and complement each other.

This study has some limitations. First, on the multivariate Cox
regression analysis of clinical data from the MSKCC receiving
ICIs cohort, we found that smoking was associated with the
prognosis of ICI treatment, but it was not significant (HR = 0.67,
95% CI: 0.44–1.0, p = 0.059). Due to the lack of NSCLC
cohorts receiving ICI treatment, we are unable to conduct further
verification. Second, there is a lack of mRNA data for the patients
in the NSCLC cohort treated with ICIs. In this set of findings,
we could not directly assess whether the prognosis of ICIs is
different due to differences in their immune characteristics and
immune microenvironment. Third, due to the small number of
collected samples, possible individual differences may make the
results slightly different from the transcriptome results. Finally,
due to the limitations of the selected markers, we had not been
able to make more detailed annotations and studies on B cells.
We still need to expand the sample size for deeper and more
representative research.
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CONCLUSION

Our study confirmed that in NSCLC patients treated with
ICIs, previous or current smokers have a better prognosis
after treatment with ICIs than non-smokers. This outcome
is the same as the smoking group, which had higher gene
mutations, more copy number variations, and a stronger immune
microenvironment. While smoking is one of the main risk factors
for NSCLC, it is also an important indicator for predicting
the efficacy of treatment with ICIs. NSCLC patients who are
treated with ICIs in clinical practice may also consider smoking
status as a key indicator for maximizing the benefits of treating
patients with ICIs.
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