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Abstract

Background: Sugar-protein glycocalyx coats healthy endothelium, but its ultrastructure is not well described. Our
aim was to determine the three-dimensional ultrastructure of capillary endothelial glycocalyx in the heart, kidney,
and liver, where capillaries are, respectively, continuous, fenestrated, and sinusoidal.

Methods: Tissue samples were processed with lanthanum-containing alkaline fixative, which preserves the structure
of glycocalyx.

Results: Scanning and transmission electron microscopy revealed that the endothelial glycocalyx layer in
continuous and fenestrated capillaries was substantially thicker than in sinusoids. In the heart, the endothelial
glycocalyx presented as moss- or broccoli-like and covered the entire luminal endothelial cell surface. In the kidney,
the glycocalyx appeared to nearly occlude the endothelial pores of the fenestrated capillaries and was also present
on the surface of the renal podocytes. In sinusoids of the liver, glycocalyx covered not only the luminal side but
also the opposite side, facing the space of Disse. In a mouse lipopolysaccharide-induced experimental endotoxemia
model, the capillary endothelial glycocalyx was severely disrupted; that is, it appeared to be peeling off the cells
and clumping. Serum concentrations of syndecan-1, a marker of glycocalyx damage, were significantly increased
24 h after administration of lipopolysaccharide.

Conclusions: In the present study, we visualized the three-dimensional ultrastructure of endothelial glycocalyx in
healthy continuous, fenestrated, and sinusoidal capillaries, and we also showed their disruption under experimental
endotoxemic conditions. The latter may provide a morphological basis for the microvascular endothelial
dysfunction associated with septic injury to organs.
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Background
The sugar-protein glycocalyx coats all healthy vascular endo-
thelium [1–3] and plays a key role in microvascular and
endothelial physiology through its influence on the regula-
tion of microvascular tone and endothelial permeability,
maintenance of an oncotic gradient across the endothelial
barrier, regulation of adhesion/migration of leukocytes, and
inhibition of intravascular thrombosis [4–8]. Components of
glycocalyx include cell-bound proteoglycans, glycosamino-
glycan side chains, and sialoproteins [9–11]. Proteoglycans
consist of a core protein, such as a syndecan family protein,
to which glycosaminoglycan is linked. Because glycosamino-
glycan side chains contain a high density of negative charges,
electrostatic repulsion drives albumin away from the vessel
wall, toward the center of the lumen [12].
Endothelial cell structures are specific for each organ

and include at least three types of capillaries: continuous,
fenestrated, and sinusoidal [13–15]. Continuous capillaries
are characterized by the presence of an uninterrupted
endothelium with a continuous basal lamina. This type is
found in muscle tissues, heart, lung, brain, and other or-
gans. Fenestrated capillaries are found in the renal glom-
eruli and endocrine glands, among other tissues. They are
characterized by the presence of circular fenestrae or
pores that penetrate the endothelium. Sinusoids are found
in the liver and hematopoietic organs such as the bone
marrow and the spleen. Sinusoidal capillaries are a special
type of open-pore capillary also known as discontinuous
capillaries, which have larger openings with diameters of
30–40 μm in the endothelium. Given the structural and
functional differences among the endothelium types, one
could speculate that the morphology of glycocalyx would
also vary among the different types of endothelial cells.
The endothelial glycocalyx has matrix properties and

restricts larger macromolecules to the vessel lumen, which
called into question the conventional theory that simple fil-
tration is regulated through variable gaps between the cells,
as stated in the Starling Principle of transvascular fluid dy-
namics [16]. However, the revised Starling Principle sug-
gests Starling forces are only applied across the endothelial
glycocalyx as a molecular sieve for plasma proteins [17, 18].
In fact, the hydraulic permeability rises dramatically when
the endothelial glycocalyx is experimentally removed [19].
The endothelial glycocalyx is reportedly damaged under
stress conditions such as sepsis [20]. Diffuse and persistent
alterations in the glycocalyx are linked to widespread endo-
thelial dysfunction, altered permeability, and impaired oxy-
gen and nutrient delivery to cells [8]. However, there have
been few reports directly examining the morphology of the
glycocalyx in each capillary type. In the present study,
therefore, we investigated the three-dimensional ultra-
structure of vascular endothelial glycocalyx in the
heart, kidney, and liver under normal and patho-
logical conditions.

Methods
In vivo animal studies
After starvation for 16 h, 10-week-old male mice were
intraperitoneally administered lipopolysaccharide (LPS,
20 mg/kg; Sigma-Aldrich, St. Louis, MO, USA). Forty-eight
hours after LPS administration, the survival rate was
determined. Blood was then collected from the ophthalmic
artery, after which the mice were killed, and heart, liver,
and kidney specimens were obtained.

Electron microscopy
To detect endothelial glycocalyx using electron microscopy
[21], mice were anesthetized and perfused with a solution
composed of 2% glutaraldehyde, 2% sucrose, 0.1 M sodium
cacodylate buffer (pH 7.3), and 2% lanthanum nitrate
through a cannula placed in the left ventricle 48 h after LPS
administration [22]. Before perfusion, an incision was made
in the right atrial appendage, and the neck was ligated with
a silk suture. In addition, a perfusion pump was used for
injection at a steady rate of 1 ml/minute.
Thereafter, the left ventricle, liver, and kidney were har-

vested and diced. Three or four pieces of approximately
1 mm3 each were immersed in the perfusion solution for
2 h for fixation and then soaked overnight in a solution
without glutaraldehyde before being washed in alkaline
(0.03 mol/L NaOH) sucrose (2%) solution. The specimens
were then dehydrated through a graded ethanol series.
The frozen fracture method was used to prepare sam-

ples for examination using scanning electron microscopy
(SEM). Each sample was laid on an iron plate chilled with
liquid nitrogen, and ethanol was sprinkled onto it. Once
the ethanol was frozen, the sample was fractured using a
chisel such that it was not touched directly. The samples
were then incubated in tert-butyl alcohol at room
temperature. After the tert-butyl alcohol had solidified, it
was freeze-dried, and the specimens were examined using
SEM (S-4500; Hitachi, Tokyo, Japan). In addition, for
further elemental analysis of each sample, energy-
dispersive X-ray spectroscopy was performed under SEM.
To prepare samples for transmission electron micros-

copy (TEM), each specimen was embedded in epoxy
resin. Ultrathin sections (90 nm) stained with uranyl
acetate and lead citrate were then examined using TEM
(HT-7700; Hitachi). For usual electron microscopy, 2.5%
glutaraldehyde in 0.1 mol/L phosphate buffer (pH 7.4)
was used instead of perfusion buffer as described above.

Measurement of syndecan-1 in the plasma
Following LPS administration to mice, plasma concentrations
of syndecan-1 were measured (n= 5) using an enzyme-linked
immunosorbent assay (860.090.192; Diaclone, Besancon
Cedex, France).
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Quantitative assessments of the endothelial wall
thickness
Quantitative assessments of the endothelial wall thick-
ness were performed on six randomly chosen capillary
vessels in TEM images using ImageJ software (National
Institutes of Health, Bethesda, MD, USA). The average
thickness of the endothelial wall was found by measur-
ing at five points of the endothelial capillary wall, except
for the nuclear part.

Quantitative assessments of the endothelial glycocalyx area
Quantitative assessments of the endothelial glycocalyx
occupation area of the capillary lumen area were per-
formed on six randomly chosen capillary vessels in TEM
images using ImageJ software.

Statistical analysis
Values are shown as the mean± SE. Survival was analyzed
using the Kaplan-Meier method with the log-rank Cox-
Mantel method. The significance of differences was evaluated
using t tests. p < 0.05 was considered significant.

Results
Glycocalyx in continuous capillaries
Capillaries in the heart are classified as continuous. Stand-
ard SEM examination of the luminal side of the cardiac ca-
pillary endothelium showed intracellular tight junctions but
no transcellular perforations; also undetected was the endo-
thelial glycocalyx (Fig. 1a1 and a2). However, lanthanum ni-
trate staining revealed moss-like or broccoli-like structures
on the endothelial cells, which we suspected were endothe-
lial glycocalyx (Fig. 1b1). To confirm those structures were,
in fact, endothelial glycocalyx, we used the backscattered
electron method under SEM (Fig. 1b2). The detected back-
scattered high-energy electrons that rebounded from the
sample surface indicated the presence of metals in the sam-
ple. The location of backscattered electrons was consistent
with a bush-like structure, suggesting the structure was
endothelial glycocalyx stained with lanthanum nitrate. For
further confirmation, we performed an elemental analysis
of this structure using energy-dispersive X-ray spectroscopy
(Fig. 1c1). Spectroscopic analysis showed the structure con-
tained lanthanum as well as carbon, oxygen, and phos-
phorus (Fig. 1C2), which indicates that the structure was
glycocalyx. In addition, TEM confirmed the presence of
bush-like structures on the surface of the endothelial cells
(Fig. 1d1 and d2). The percentage of endothelial glycocalyx
area in capillaries was 13.6 ± 2.0%.

Glycocalyx in fenestrated capillaries
The endothelial cells comprising the fenestrated capillaries
found in renal glomeruli have pores that allow small mole-
cules to penetrate but limit protein diffusion. Using SEM
without lanthanum nitrate staining, we readily detected the

pores in the glomerular endothelium (Fig. 2a1). In addition,
the backscattered electron method confirmed the presence
of endothelial glycocalyx covering the luminal surface of
the glomerular capillaries (Additional file 1: Figure S1a).
SEM with lanthanum nitrate staining showed that the pores
were narrowed by glycocalyx such that they were nearly oc-
cluded (Fig. 2a2 and a3). In addition, TEM with lanthanum
nitrate fixation showed that the endothelial glycocalyx layer
lined the open fenestrations and covered the surface of the
podocytes (Fig. 3a2 and a3). The percentage of endothelial
glycocalyx area in capillaries was 16.7 ± 1.8%.

Glycocalyx of sinusoids
Sinusoids in the liver form large and irregularly anastomos-
ing structures. The endothelial cells comprising the sinus-
oid wall are flattened and have no basement membrane
(Figs. 2c1 and 3b1). Backscattered electrons were detected
from the sinusoidal capillaries in lanthanum nitrate-stained
specimens (Additional file 1: Figure S1c). The endothelial
glycocalyx of sinusoids did not occlude the open fenestra-
tions, and the height of the glycocalyx was less than in con-
tinuous and fenestrated capillaries (Figs. 2c3 and 3b3). In
addition, TEM revealed the presence of glycocalyx around
the endothelial cells, not only on the luminal side but also
on the side facing the space of Disse. The percentage of
endothelial glycocalyx area in capillaries was 3.7 ± 0.3%.

Glycocalyx under septic vasculitis conditions
To produce an experimental endotoxemia model, we intra-
peritoneally administered 20 mg/kg LPS to 10-week-old
C57BL6 male mice. Forty-eight hours after LPS administra-
tion, 8 (16%) of the 50 injected mice were still alive
(Additional file 2: Figure S2a). Syndecan-1 is the core
protein in heparan sulfate proteoglycan, which comprises
glycocalyx. Syndecan-1 is released from the endothelium
upon injury to the glycocalyx, causing its concentration in
the circulation to increase [23]. We found that plasma
syndecan-1 levels had reached 7.8 ± 0.9 ng/ml 12 h after
LPS injection and 14.4 ± 2.0 ng/ml 24 h after injection. By
48 h after LPS injection, however, plasma syndecan-1 levels
had returned to baseline (Additional file 2: Figure S2b). In
the heart, LPS injection induced edematous changes to the
continuous capillaries, whereby fibrin was deposited inside
the capillary lumen. In the LPS-administered mice, the
endothelial wall thickness was significantly increased com-
pared with sham mice (sham 101.4 ± 10.1 nm, LPS 285.4 ±
37.7 nm; p < 0.05). In addition, the glycocalyx was occasion-
ally peeled from the luminal surface of the capillary to form
debris (Figs. 4a and 5a). The percentage of endothelial
glycocalyx area in capillaries was significantly decreased
under septic conditions compared with sham mice
(Additional file 3: Figure S3a). In the kidney, LPS injection
broke the three tightly bound layers of the glomerular capil-
lary consisting of the fenestrated endothelial cells, basement

Okada et al. Critical Care  (2017) 21:261 Page 3 of 10



Fig. 1 Scanning and transmission electron microscopy showing glycocalyx of continuous capillaries in the heart under normal conditions. a1 Cardiac
capillary without lanthanum nitrate staining. a2 Expanded view of the area within the red rectangle square in (a1). Continuous capillaries in the heart
have a continuous thin basement membrane. b1 Cardiac capillary with lanthanum nitrate staining. The endothelial glycocalyx, which is the bush-like
structure, can be seen on the surface of the vascular endothelium. b2 Backscattered electron microscopic image of the same specimen as in (b1). The
location of backscattered electrons is consistent with the bush-like structure. c1 Energy-dispersive spectroscopic image of a cardiac capillary stained
with lanthanum nitrate. c2 Ingredient analysis of the area within the red rectangle in (c1). The bush-like structure includes lanthanum, indicating this
structure is the endothelial glycocalyx. C Carbon, O Oxygen, P Phosphorus, S Silicon, La Lanthanum. d1 Transmission electron microscopic imaging of
cardiac capillary with lanthanum nitrate staining. d2 Expanded view of the area within the red rectangle in (d1). The endothelial glycocalyx can also be
seen on the surface of the vascular endothelium
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membrane, and podocytes. This caused the endothelial
pores to become less well defined, and there was a widening
of the gap between the basement membrane and the podo-
cytes. The glycocalyx was peeled off and formed a residue
within the capillary lumen (Figs. 4b and 5b). The percentage
of endothelial glycocalyx area in capillaries was significantly
decreased under septic conditions compared with sham
mice (Additional file 3: Figure S3b). In the liver, the fenes-
trations in the sinusoids appeared to be closed by the
edematous changes to the endothelial cells 48 h after LPS
injection. Endothelial glycocalyx appeared to have been shed
into the space of Disse (Figs. 4c and 5c). The percentage of
endothelial glycocalyx area in capillaries was significantly

decreased under septic conditions compared with sham
mice (Additional file 3: Figure S3c).

Discussion
The endothelial glycocalyx has been particularly difficult to
characterize and understand in terms of its three-
dimensional structure because of its fragility and instability
[1]. Indeed, in addition to trauma, surgery, hyperglycemia,
and sepsis, even subtle stimuli such as a plasma volume ex-
pansion can disrupt the glycocalyx structure [20, 23–27].
Disruption of glycocalyx exposes the endothelial cells to
oxidative damage, and vascular hyperpermeability is ob-
served in sepsis and chronic conditions such as diabetes

Fig. 2 Scanning electron microscopy showing glycocalyx in fenestrated capillaries of the kidney and sinusoids of the liver under normal
conditions. a Ultrastructure of glomerular capillaries under normal conditions. a1 Fenestrated capillary without lanthanum nitrate staining. Small
pores are present on the surface of the endothelial cells. a2, a3 Lanthanum nitrate staining to visualize endothelial glycocalyx. a3 Expanded view
of the area within the red rectangle in (a2). Endothelial glycocalyx covers the surface of glomerular capillaries. b Ultrastructure of podocytes on
the outer surface of the glomerulus under normal condition. b1 Podocytes without lanthanum nitrate staining. Many podocytes firmly intertwine
with each other to form a meshwork. b2, b3 Glycocalyx on podocytes visualized by lanthanum nitrate staining. b3 Expanded view of the area
within the red rectangle in (b2). Glycocalyx overlays the surface of podocytes. c Ultrastructure of hepatic sinusoids under normal conditions. c1
Sinusoid without lanthanum nitrate staining. Sinusoids in liver are open-pore capillaries. c2, c3 Visualized glycocalyx in sinusoids. c3 Expanded
view of the area within the red rectangle in (c2). The endothelial glycocalyx in sinusoids does not overlay the open fenestrations but is also
present in the space of Disse
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and hypertension [5, 28]. There has been much effort to
visualize endothelial glycocalyx using TEM and substitution
of the original ruthenium red staining with lanthanum or
alcian blue [7, 29, 30]. In the present study, we adopted lan-
thanum nitrate staining with a careful perfusion method
that entailed (1) incision in the right atrial appendage to re-
lieve pressure during perfusion fixation; (2) neck ligation
for better perfusion of the heart, kidney, and liver; and (3)
use of a perfusion pump to ensure a steady rate of infusion.
With this approach, we were able to successfully observe
the three-dimensional ultrastructure of glycocalyx.

Because the structure of endothelial cells can be continu-
ous, fenestrated, or sinusoid, depending on the organ, we
anticipated that the structure of endothelial glycocalyx
would also vary accordingly. In continuous capillaries in the
heart, moss-like endothelial glycocalyx spread over the en-
tire luminal wall of the vessel. By contrast, endothelial glyco-
calyx in hepatic sinusoids was smaller than in other types of
capillaries. An earlier study demonstrated that sinusoidal
glycocalyx is substantially smaller than that in pulmonary
and cremaster muscle capillaries [31]. The fenestrated capil-
laries of the renal glomeruli have a full basement membrane,

Fig. 3 Transmission electron microscopy showing glycocalyx in glomerular fenestrated capillaries and hepatic sinusoids under normal conditions. a
Ultrastructure of glomerular capillaries under normal conditions. a1 Glomerular capillary without lanthanum nitrate staining. The healthy glomerular
endothelium is composed of three layers, including endothelial cells (black arrow), as well as basement membrane and podocytes (red arrow), which
are bound with each other. a2, a3 Lanthanum nitrate staining to visualize glycocalyx. a3 Expanded view of the area within the red rectangle in (a2).
Glycocalyx is present on the surface of glomerular capillaries and podocytes. b Ultrastructure of hepatic sinusoids under normal conditions. b1
Sinusoid without lanthanum nitrate staining. The sinusoid is composed of discontinuous flat endothelial cells (black arrow) and has large pores. The
space of Disse is situated under the endothelium (red arrow). b2, b3 Visualized glycocalyx in sinusoids. b3 Expanded view of the area within the red
rectangle in (b2). The endothelial glycocalyx layer of sinusoids is thin (black arrow) and is also present in the space of Disse (red arrow)

Okada et al. Critical Care  (2017) 21:261 Page 6 of 10



endothelial glycocalyx, and numerous small pores, and a gly-
cocalyx layer lined the open fenestrations. Anatomically, the
fenestrations are as much as 65 nm wide, but their effective
pore size is only about 15 nm owing to the presence of the
glycocalyx [4, 32]. The effective pore size for glomerular fil-
tration beyond the capillary basement membrane is limited
to about 6 nm by filtration slit diaphragms at the level of
podocyte foot processes. Thus, albumin and larger mole-
cules are not normally filtered into tubular fluid. Sinusoidal
endothelial cells express uptake receptors for hyaluronic
acid. By actively removing this important glycosaminogly-
can, which is a main component of glycocalyx, these cells

prevent development of an effective endothelial glycocalyx
[4]. Systemic inflammation, such as sepsis, leads to endothe-
lial dysfunction, which in turn increases paracellular perme-
ability and outflow of albumin/fluid into the interstitial
space [4]. It is speculated that this effect might be caused by
glycocalyx disruption. Previous reports suggested that
degradation of endothelial glycocalyx contributes to the
pathogenesis of acute respiratory distress syndrome [33, 34].
Similarly, disruption of glycocalyx in cardiac endothelium
was observed under septic conditions.
Albuminuria (a reliable marker of sepsis-induced endothe-

lial barrier alterations) is greatly increased in an experimental

Fig. 4 Scanning electron microscopy showing glycocalyx in continuous, fenestrated, and sinusoidal capillaries under septic conditions. a
Ultrastructure of continuous capillaries in the heart under septic conditions. a1 Continuous capillary without lanthanum nitrate staining.
Thickening of the endothelial wall is presumed to be due to edematous changes related to inflammation. a2, a3 Lanthanum nitrate staining to
visualize the endothelial glycocalyx. a3 Expanded view of the area within the red rectangle in (a2). The endothelial glycocalyx is peeled away from
the surface of endothelial cells, and the residue is found inside the vascular lumen (white arrow). b Ultrastructure of glomerular capillaries under
septic conditions. b1 Fenestrated capillary without lanthanum nitrate staining. Destruction of the small pore structure is observable. In addition,
the endothelial wall appears edematous. b2, b3 Lanthanum nitrate staining to visualize the endothelial glycocalyx. b3 Expanded view of the area
within the red rectangle in (b2). Glycocalyx is cast off from the endothelial cells, and the residue of it exists inside the vascular lumen (white
arrow). c Ultrastructure of hepatic sinusoids under septic conditions. c1 Sinusoid without lanthanum nitrate staining. The large pores are nearly
completely occluded (white arrow). c2, c3 Visualized glycocalyx within sinusoids. c3 Expanded view of the area within the red rectangle in (c2).
The sinusoidal endothelial glycocalyx is peeled away from the endothelial cells, and the residue is present inside the vascular lumen (white arrow)
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model of sepsis, presumably in association with changes to
the structure of glycocalyx [35]. The extent of glycocalyx
injury is estimated indirectly by penetration of red blood cells
[36, 37] or serum syndecan-1 concentration [23]. In fact,
serum syndecan-1 was used as an endothelial injury marker
in recent clinical research [38, 39]. The present study indi-
cated that serum syndecan-1 was increased but endothelial
glycocalyx was degraded after LPS administration. These re-
sults are consistent with that earlier report, provide clear
structural evidence of injured glycocalyx in septic mice, and
support that serum syndecan-1 is useful glycocalyx injury
marker.

There are currently no clinical therapeutic strategies to
treat sepsis through endothelial glycocalyx protection.
This is despite compelling evidence that endothelial glyco-
calyx disruption contributes to the vascular hyperperme-
ability seen in sepsis. Although corticosteroids decrease
the inflammatory damage to the endothelium in systemic
sepsis [40], their use in the treatment of sepsis is contro-
versial because systemic glucocorticoid administration
raises the likelihood of secondary infection. Antioxidant
therapies may help to preserve the integrity of glycocalyx
[25], but definitive evidence of the clinical utility of antiox-
idants in sepsis is still lacking. That said, several previous

Fig. 5 Transmission electron microscopy showing glycocalyx in capillaries under septic conditions. a Ultrastructure of cardiac capillaries under
septic conditions. a1 Continuous capillary without lanthanum nitrate staining. The capillary wall appears edematous, and there is fibrin deposited
inside the capillary lumen. a2, a3 Lanthanum nitrate staining to visualize the endothelial glycocalyx. a3 Expanded view of the area within the red
rectangle in (a2). The endothelial glycocalyx is peeled away, and there is little glycocalyx on the endothelial cells (red arrow). b Ultrastructure of
glomerular capillaries under septic conditions. b1 Glomerular capillary without lanthanum nitrate staining. There is a gap between the podocytes
and basement membrane under septic conditions (red arrows). b2, b3 Lanthanum nitrate staining to visualize the glycocalyx. b3 Expanded view
of the area within the red rectangle in (b2). The glycocalyx is cast off from the surface of the glomerular endothelial cells and podocytes. c
Ultrastructure of hepatic sinusoids under septic conditions. c1 Sinusoid without lanthanum nitrate staining. Whereas the sinusoid is normally
composed of discontinuous flat endothelial cells, here the endothelial cells have become edematous, and the large pores are closed (red arrow).
c2, c3 Visualized glycocalyx in sinusoids. c3 Expanded view of the area within the red rectangle in (c2). The endothelial glycocalyx layer of
sinusoids has peeled off, and the space of Disse has become unclear
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reports have shown that intact glycocalyx may be protect-
ive against endothelial disorders [5, 25, 41, 42]. We there-
fore suggest that control of endothelial glycocalyx has the
potential to mediate a positive therapeutic effect in endo-
thelial disorders.

Study limitations
Because lanthanum has the capacity to bind with not only
glycocalyx but also calcium binding sites, it has been used
as a calcium probe in several biological systems [43].
Therefore, it is hard to say that the lanthanum staining
technique is specific for only glycocalyx. Likewise, lan-
thanum nitrate staining for glycocalyx visualization may
influence the glycocalyx structure by itself. Because the
field able to be observed by electron microscopy is very
tiny, the precision of quantification might be limited.
Cardiac output of 10-week-old mice was estimated 16 ±

1.9 ml/minute according to previous reports [44–46]. The
perfusion rate of 1 ml/minute is much lower than the flow
rate, and we performed incision of the right atrial appendage
before perfusion. However, Arkill et al. used a direct pres-
sure transducer to ensure that perfusion pressure of the fluid
injected would not affect the glycocalyx layer [47]. Our per-
fusion method may have challenges because of the lack of
such direct pressure measurement.

Conclusions
In the present study, we visualized the three-dimensional
ultrastructure of endothelial glycocalyx in healthy con-
tinuous, fenestrated, and sinusoidal capillaries, and we also
showed their disruption under experimental endotoxemic
conditions. The latter may provide a morphological basis
for the microvascular endothelial dysfunction associated
with septic injury to organs.

Additional files

Additional file 1: Figure S1. Backscattered electron images.
Backscattered electron image of a renal glomerulus and a sample of liver
tissue. a–c Backscattered electron images of specimens shown in
Fig. 2a2, b2, and c2, respectively. Backscattered electrons are detected
high-energy electrons from lanthanum. (TIF 26024 kb)

Additional file 2: Figure S2. Profile of septic model mice administered
LPS. a Survival curves for sham and septic model mice. *p < 0.05 vs.
sham. The survival rate is significantly lower in the LPS group than the
sham group. b Time course of the change in syndecan-1 levels measured
by ELISA in plasma from LPS-injected mice. *p < 0.05 vs. before LPS
injection. (TIF 17841 kb)

Additional file 3: Figure S3. Percentage of endothelial glycocalyx area
in capillaries. The percentage of endothelial glycocalyx area of (a) heart,
(b) kidney, and (c) liver capillaries in sham and LPS-injected mice.
*p < 0.05 vs. sham. (TIF 25080 kb)
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