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There is growing interest in harnessing lifestyle and pharmaceutical interventions to boost

immune function, reduce tumor growth, and improve cancer treatment efficacy while

reducing treatment toxicity. Interventions targeting glucose metabolism are particularly

promising, as they have the potential to directly inhibit tumor cell proliferation. However,

because anti-tumor immune effector cells also rely on glycolysis to sustain their clonal

expansion and function, it remains unclear whether glucose-modulating therapies

will support or hinder anti-tumor immunity. In this perspective, we summarize a

growing body of literature that evaluates the effects of intermittent fasting, calorie

restriction mimetics, and anti-hyperglycemic agents on anti-tumor immunity and

immunotherapy outcomes. Based on the limited data currently available, we contend

that additional pre-clinical studies and clinical trials are warranted to address the

effects of co-administration of anti-hyperglycemic agents or glucose-lowering lifestyle

modifications on anti-tumor immunity and cancer treatment outcomes. We stress that

there is currently insufficient evidence to provide recommendations regarding these

interventions to cancer patients undergoing immunotherapy. However, if found to be

safe and effective in clinical trials, interventions targeting glucose metabolism could act

as low-cost combinatorial adjuvants for cancer patients receiving immune checkpoint

blockade or other immunotherapies.

Keywords: immunotherapy, immune checkpoint blockade, tumor immunology, caloric restriction, calorie

restriction mimetics, intermittent fasting, fasting-mimicking diet, time-restricted feeding

INTRODUCTION

Cancer encompasses a broad family of diseases that involve abnormal and unregulated cell
proliferation. Hanahan and Weinberg (1) have detailed the underlying characteristics that
all cancers possess, including sustained proliferative signals, dysregulated cellular energetics,
avoidance of immune-mediated killing, tumor-promoting inflammation, invasion, and metastasis.
These factors promote a feed-forward loop favoring an immune-evading microenvironment
that supports tumor progression. The balance between protective anti-tumor mechanisms
and tumor-promoting/immunosuppressive factors is critical for dictating cancer progression
or remission (2).
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Can Glucose Metabolism be Targeted to
Improve Immunotherapies?
Cancer immunotherapies are designed to enhance the protective
immune responses that can eliminate established tumors
and are promising treatment options for many cancers.
Cancer immunotherapy comprises multiple strategies, including
cytokine therapies, targeted antibodies, adoptive cell transfers,
genetically engineered chimeric antigen receptor (CAR) T
cells, cancer vaccines, genetically engineered oncolytic viruses,
and immune checkpoint blockade (ICB). Successes have been
observed within each category; however, ICB-based therapies are
the most frequently utilized immunotherapy and are currently
FDA-approved as treatment options in patients with many
types of advanced cancers. ICB uses antibodies to disrupt the
receptor/ligand pairs that send inhibitory signals to effector
T cells (e.g., Programmed Death-1 [PD-1] and Programmed
Death-Ligand 1 [PD-L1]) (3). Despite demonstrated clinical
benefit, typically <50% of patients receiving ICB experience
objective, durable responses (4, 5). This challenge has led
to a major push to improve ICB efficacy by developing
novel combinatorial treatment strategies to reduce cancer
cell viability and proliferation, increase tumor infiltration by
effector T cells, and/or promote T cell effector function in the
tumor microenvironment.

One combinatorial approach that has garnered much
attention in recent years is the use of glucose-limiting lifestyle
changes or anti-diabetic drugs (summarized in Table 1) that
can be co-administered with immunotherapy. The rationale
underlying this approach is that tumor cells are often dependent
on glucose as a primary energy source. This glycolytic
dependency arises from the continuous proliferation of tumor
cells, which necessitates uninterrupted access to energy and the
building blocks of cellular biomass. To meet these requirements,
cancer cells utilize glycolysis, even in the presence of oxygen, a
process referred to as aerobic glycolysis or the “Warburg effect”
(6). Thus, lifestyle and pharmacologic interventions that reduce
intra-tumoral glucose levels may slow cancer cell replication and
render cancer cells more susceptible to immune-mediated killing,
thereby boosting the effectiveness of immunotherapy.

A major concern with any treatment approach focused on
limiting glucose availability is that it may have unintended
negative consequences for protective immunity. This is because
effector CD8+ T cells also rely on glucose-dependent, Warburg-
style metabolism for their clonal expansion and anti-cancer
functions, including cytolytic activity and cytokine secretion (7).
Prior studies report that dysregulated CD8+ T cell metabolism
within the tumor microenvironment impairs T cell effector
functions and promotes tumor progression (8, 9). For instance,
in treatment-naive human subjects with clear cell renal cell
carcinoma, tumor-infiltrating CD8+ T cells exhibit a loss
of proliferative capacity due to metabolic defects, including
impaired glucose uptake and glycolytic capacity; fragmented
and hyperpolarized mitochondria; and increased production of
reactive oxygen species (10). These observations lend validity
to concerns that further limitations of intra-tumoral glucose
will impair both T cell and tumor cell metabolism. However,
an elegant study by Chang et al. provided evidence that ICB

may selectively protect T cells from reduced glucose availability
within the tumor microenvironment (8). In this report, the
authors illustrated that ICB administration with either anti-
CTLA-4, anti-PD-1, or anti-PD-L1 improved the glycolytic
capacity and Interferon-gamma (IFNγ) production of CD8+

tumor-infiltrating T cells (8). The same study determined that
anti-PD-L1 inhibited glucose uptake and glycolysis in tumor
cells. Therefore, ICB may differentially alter the metabolic
programming of tumor cells vs. anti-tumor immune cells
to favor cancer regression. This observation makes ICB a
particularly attractive type of immunotherapy to combine with
glucose-limiting lifestyle interventions or anti-diabetic drugs,
as the result may be impaired tumor cell metabolism and
viability, with concomitantly improved T cell metabolism and
effector function.

However, it remains unclear whether interventions that lower
plasma glucose exert a net positive or negative effect on tumor
proliferation, anti-tumor immunity, and cancer immunotherapy
outcomes, particularly in the context of ICB. Minimal pre-
clinical data exists, and no clinical trials have been conducted
to determine if glucose-limiting lifestyle interventions or anti-
diabetic drugs interact with other immunotherapy platforms,
like adoptive cell therapies, cancer vaccines, or CAR T cells.
These immunotherapy strategiesmay drive an immunometabolic
profile more susceptible to reductions in glucose availability;
therefore, broad-sweeping conclusions cannot be drawn on the
applicability and safety of glucose-targeting therapies as an
adjuvant to all immunotherapy strategies. Below, we review
pre-clinical data regarding the effects of glucose-lowering
interventions on tumor cell proliferation and anti-tumor
immunity. Several reports have indicated that glucose-regulatory
interventions may actually improve the efficacy of ICB and
possibly other types of immunotherapy. When available, we
also provide information about human subject data or ongoing
clinical trials that are investigating these interventions in cancer
patients. In light of the growing use of anti-hyperglycemic agents
and surging popular interest in intermittent fasting and calorie
restriction mimetics, we focus our discussion on this subset of
promising interventions. Although other targeted therapies, like
tyrosine kinase inhibitors (e.g., PI3K inhibitors), are promising
for modulating signaling cascades relevant to glucosemetabolism
and for impacting immune responses following immunotherapy
(11), these interventions were not discussed here because their
primary modes of action are not glucose regulation.

CALORIE RESTRICTION (CR)

CR is typically defined as a reduction in daily energy intake
of at least 10–20% below regular ad libitum feeding, without
inducing malnutrition (Table 1). CR has been explored in pre-
clinical and clinical studies for its ability to extend lifespan and
improve cardiometabolic health and is now being explored for its
anti-cancer properties.

Pre-clinical Findings
Abundant evidence from animal models demonstrates that
CR reduces cancer incidence and delays cancer progression
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TABLE 1 | Defining lifestyle interventions and pharmaceutical agents.

Intervention Definition

Continuous calorie restriction A chronic state in which caloric intake is less than caloric need by reducing daily energy intake by a

minimum of 10-20%.

Intermittent fasting approaches Intermittent energy

restriction

Restricting energy intake to ∼60–75% below energy requirements for short periods, followed by

periods with normal energy intake (e.g., the 5:2 diet [consisting of ∼5 days of eucaloric feeding and

∼2 days of a very-low-calorie diet per week]).

Short-term fasting Temporarily fasting, typically for a period between 24 and 48 h.

Fasting-mimicking diet Maintaining a fasting-like state by periodically consuming a very-low-calorie, low-protein diet (not

necessarily fasting).

Time-restricted feeding Reducing food intake to a set number of hours each day (e.g., eating in a <10 h daily period).

Ketogenic diet An ultra-low carbohydrate diet (typically ∼5% of kcal) that does not directly restrict calories or require

periods of fasting. Successful generation of ketone bodies can suppress appetite and reduce plasma

glucose concentrations in cancer-free individuals.

Caloric restriction mimetics

(e.g., Hydroxycitrate, Resveratrol)

Compounds that mimic the beneficial effects of caloric restriction.

Anti-hyperglycemic agents

(e.g., Metformin)

Agents that lower glucose levels in the blood and are often used to treat type 2 diabetes mellitus.

through multiple mechanisms (12–14). For example, CR can
impair cancer cell proliferation by reducing plasma glucose and
insulin, which in turn alters expression of cell cycle proteins,
modifies tumor suppressor gene function, and disrupts metabolic
pathways (15). CR can also reduce insulin-like growth factor-
1 (IGF-1), a nutrient-sensing growth factor that is stimulated
by glucose (16, 17). IGF-1 activates phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin
1 (mTORC1) signaling pathways in cancerous cells to promote
glycolysis and tumor cell proliferation, while simultaneously
inhibiting apoptosis (17–20). Thus, the pleiotropic effects of CR
converge to blunt the proliferative capacity of tumor cells. Pre-
clinical data suggest that CR can sensitize cancerous cells to
radiotherapy and chemotherapy by negatively regulating anti-
apoptotic defense mechanisms (15, 21, 22). Additionally, Farazi
et al. reported that chronic CR preserved antigen-specific CD4+

T cell priming and induced a significant survival benefit when
combined with anti-OX40 (CD134) immunotherapy in aged
tumor-bearing mice (23). Therefore, CR appears to both inhibit
tumor cell proliferation and maintain anti-tumor immunity and
has the potential to be combined with immunotherapy based on
this pre-clinical finding.

Clinical Findings
Despite the potential to enhance immunotherapies, concerns
about loss of lean mass and aversion to CR limit therapeutic
translation to cancer patients who may already be struggling
with cachexia and loss of appetite. Beneficial effects have been
observed in an adjuvant setting when combined with targeted
therapy or chemotherapy (15); however, to date, there have
been no trials examining the effects of CR on ICB in humans
(Table 2). Therefore, it is not clear whether CR can be safely
combined with ICB or other immunotherapies to improve
patient outcomes. Given the possibility for CR to accelerate
cachexia in cancer patients, such studies should be approached
with caution.

INTERMITTENT FASTING

Alternatives to CR include intermittent fasting approaches
such as short-term fasting, the fasting-mimicking diet (e.g.,
periodically consuming a very-low-calorie, low-protein diet to
mimic a fasting-like state), and time-restricted feeding (eating in
a ≤10-h daily period) (Table 1).

Pre-clinical Findings
Intermittent fasting interventions (including intermittent
energy restriction) have been shown repeatedly to reduce
glycemia, improve insulin sensitivity, and reduce whole-body
cell proliferation rates in studies of both tumor-free animals
and humans (24–29)—suggesting that these approaches target
glycemic pathways and have anti-proliferative effects. Studies in
tumor-bearing mice show that fasting for 72 h reduces plasma
glucose concentrations by ∼40% and IGF-1 by ∼70% (30).
The fasting-mimicking diet can achieve similar reductions in
plasma glucose and IGF-1 without the need for a prolonged fast
(26). Thus, intermittent fasting may provide several of the same
mechanistic benefits as CR, while mitigating adverse outcomes
on lean mass.

A recent literature review of pre-clinical models by Lv
et al. (13) reports that intermittent fasting approaches were
significantly preventive against cancer in∼60% of animal studies.
Both the fasting-mimicking diet and time-restricted feeding have
been associated with improved cancer treatment outcomes in all
animal models of cancer tested thus far, through immunologic
and metabolic mechanisms similar to those induced by CR
(31–34). In particular, these two interventions have improved
responses to anthracycline-based chemotherapies, leading to
decreased tumor outgrowth in murine models of sarcoma, lung,
colon, melanoma, and breast cancer (31, 32). Delayed tumor
growth was dependent upon increased percentages of intra-
tumoral cytotoxic CD8+ T cells, with concomitant reductions
in regulatory T cells, and elevated expression of the stress-
responsive protein heme-oxygenase-1 (HO-1) in the tumor
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TABLE 2 | Ongoing or completed clinical trials investigating lifestyle or pharmaceutical agents targeting glucose metabolism in combination with immunotherapy.

Intervention Drug treatment(s) Disease(s) NCT reference Outcome/anticipated

completion date

Continuous calorie restriction N/A N/A N/A N/A

Intermittent fasting approaches Intermittent energy

restriction

Chemotherapy Breast and ovarian

cancer

NCT03162289 Recruiting, May 2020

Short-term fasting N/A N/A N/A N/A

Fasting-mimicking diet Chemo-immunotherapy

(carboplatin/ pemetrexed

and pembrolizumab)

Non-small cell lung

cancer

NCT03700437 Not yet recruiting

Time-restricted feeding N/A N/A N/A N/A

Ketogenic diet N/A N/A N/A N/A

Caloric restriction mimetics

(e.g., Hydroxycitrate, Resveratrol)

N/A N/A N/A N/A

Anti-hyperglycemic agents

(e.g., Metformin)

Nivolumab+Metformin Non-small cell lung

cancer

NCT03048500 Recruiting, Feb 2021

The following online clinical trial registries were searched:

• World Health Organization—International Clinical Trials Registry Platform (http://apps.who.int/trialsearch/),

• U.S. National Library of Medicine (https://clinicaltrials.gov/),

• Health Canada Clinical Trial Database (https://health-products.canada.ca/ctdb-bdec/index-eng.jsp),

• European Union Clinical Trials Register (https://www.clinicaltrialsregister.eu/ctr-search/search),

• Australian New Zealand Clinical Trials Registry (http://www.anzctr.org.au/BasicSearch.aspx),

• Chinese Clinical Trial Registry (http://www.chictr.org.cn/searchprojen.aspx),

• Japan Primary Registries Network (https://upload.umin.ac.jp/cgi-open-bin/ctr_e/index.cgi?function=02).

microenvironment. Importantly, key findings, such as increased
tumor immunogenicity in mice on the fasting-mimicking diet,
could be achieved simply by culturing tumor cells in low glucose
culture medium prior to tumor challenge, which mirrors the
decreased glucose concentrations achieved in vivo with this
dietary intervention (30, 32). These data suggest that limited
glucose availability stresses tumor cells and ultimately may
promote stronger anti-tumor immunity. Of note, anthracyclines
such as mitoxantrone and doxorubicin are known to cause
immunogenic tumor cell death (35), explaining their ability to
act in concert with fasting-based dietary changes to improve
anti-tumor immunity. At this time, no pre-clinical studies have
examined the ability of intermittent fasting to enhance the
efficacy of ICB or other immunotherapies.

Clinical Findings
Currently, there remains a shortage of clinical data investigating
the effects of intermittent fasting on ICB efficacy in humans.
To date, only one clinical trial (ISRCTN77916487) (Table 2)
has investigated the effects of intermittent fasting (the 5:2 diet
consisting of ∼5 days of eucaloric feeding and ∼2 days of
a very-low-calorie diet per week) on cancer-related pathways
in individuals at high risk for breast cancer (36). Although
the cohort size was limited (n = 24), 55% of women showed
evidence of reduced glycolysis, gluconeogenesis, glycogen
synthesis, and lipid synthesis, suggesting that intermittent energy
restriction altered glucose metabolism and decreased anabolic
gene expression in over half of patients. Changes in breast
epithelial cell differentiation were observed in some patients,
but no changes in peripheral blood lymphocytes were observed.
Given that responses were observed in just over half of study
participants, it will be important in future studies to identify

the factors determining individual responsiveness or resistance
to intermittent fasting interventions.

Relatively few clinical trials are investigating the effects
of intermittent fasting alone or in combination with chemo-
immunotherapy in cancer patients with active disease (Table 2).
One trial (NCT03700437) is investigating the ability of a
fasting-mimicking diet to improve combined chemotherapy/ICB
(carboplatin/pemetrexed and pembrolizumab [anti-PD-1])
outcomes in patients with advanced non-small cell lung
cancer. Subjects are being provided Chemolieve R© (L-
Nutra, Los Angeles, CA), a plant-based, ∼300 kcal per day
dietary intervention ∼72 h prior to and ∼24 h post chemo-
immunotherapy for the first four cycles of treatment. Another
trial (NCT03162289) is investigating the potential interaction
between chemotherapy and intermittent energy restriction
(fasting with the exception of ∼300–400 kcal/day of vegetable
juices immediately before and after each chemotherapy cycle)
in breast and ovarian cancer patients. Future clinical trials
will need to determine not only the best type of intermittent
fasting approach to combine with specific cancer therapies,
but also the relative timing of intermittent fasting or
fasting-mimicking interventions vs. administration of ICB
or other immunotherapies.

KETOGENIC DIET

There also is interest in using other dietary interventions, such
as the ultra-low carbohydrate ketogenic diet (Table 1), to slow
cancer progression and/or improve treatment efficacy. Ketogenic
diets do not directly restrict calories or require periods of fasting
but restrict carbohydrate to typically<5% of energy intake. Given
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their ability to heavily shift metabolism toward fat oxidation
and drive the generation of ketone bodies, which also suppress
appetite, they effectively reduce plasma glucose concentrations
in cancer-free individuals (37). Thus, there is a growing interest
in administering ketogenic diets to cancer patients, with the
goal of leveraging reduced systemic glucose as a means of
inhibiting tumor cell proliferation (38–40), possibly through
the induction of oxidative cellular damage and/or increases in
cytokine production and cytolysis via tumor-reactive CD8+ T
cells (41, 42).

Pre-clinical Findings
Numerous pre-clinical studies show beneficial anti-cancer effects
of the ketogenic diet independent of therapy or in combination
with radiotherapy or chemotherapy (41–45); however, to our
knowledge, no preclinical study has reported the effects of
ketogenic diet on immunotherapy outcomes. Thus, it is not
clear at this time whether the degree of glucose limitation that
occurs during the use of a ketogenic diet will inhibit or promote
anti-tumor immunity and immunotherapeutic outcomes.

Clinical Findings
The beneficial effects of the ketogenic diet observed in pre-
clinical models have not translated clinically to all tumor types;
however, there are promising results demonstrating the potential
of the ketogenic diet to be used as an adjuvant for targeted
cancer therapies, as recently reviewed by Klement (46). Ketogenic
diet administration in women with ovarian or endometrial
cancer, some of whom were treated with chemotherapy, showed
beneficial effects on overall physical function and serum insulin,
but this study was under-powered to evaluate effects on treatment
outcomes or overall survival (40). However, some studies report
a decrease in insulin sensitivity and increase in the inflammatory
marker high-sensitivity C-reactive protein (hs-CRP) (47), raising
some concerns. To our knowledge, the ketogenic diet has
not been combined with immunotherapy in any clinical trials
(Table 2). Given the growing lay interest in this diet as a
weight loss and diabetes intervention, clinical trials designed
to determine its impact on cancer treatment outcomes are
urgently needed.

CALORIE RESTRICTION MIMETICS AND
ANTI-HYPERGLYCEMIC AGENTS

Because prolonged CR is difficult to maintain and negatively
impacts lean mass, there also is mounting interest in CR
“mimetics,” or compounds that produce many of the same
benefits as CRwithout the need to reduce caloric intake (Table 1).
Many CR mimetics are anti-hyperglycemic agents themselves,
such as the diabetes medications metformin and acarbose, and
the natural phenolic acid compound resveratrol (48–51). As
summarized below, multiple studies have begun to examine
whether repurposing these anti-hyperglycemic agents to target
the metabolic pathways used by cancer cells and/or to reverse
metabolic defects within anti-tumor immune populations can
improve immunotherapy treatment outcomes.

Pre-clinical Findings
In murine models, the CR mimetic hydroxycitrate, a citric
acid derivative and inhibitor of ATP citrate lyase, has shown
similar efficacy to short-term fasting in mice with tumors. One
study demonstrated that hydroxycitrate enhanced the ability
of the anthracycline chemotherapeutic mitoxantrone to retard
subcutaneous tumor outgrowth in models of fibrosarcoma and
breast cancer (31). In that study, improvements in outcomes
were dependent upon CD8+ T cells and decreases in regulatory
T cell infiltration into tumors, as well as heightened tumor
cell autophagy.

Metformin is a commonly-prescribed anti-hyperglycemic
agent that has multiple mechanisms of action that include
the activation of AMP-activated protein kinase (AMPK), the
inhibition of Complex I of the mitochondrial respiratory
chain, and the reduction in hepatic gluconeogenesis (52).
Several pre-clinical studies have combined metformin
(53, 54) or other anti-diabetic drugs such as phenoformin
(55) with ICB. These combination therapies reduced
myeloid-derived suppressor cell accumulation in tumors
while simultaneously increasing proliferation and cytokine
secretion in intra-tumoral CD8+ T cells, leading to a net
reduction in tumor outgrowth. An explanation for these
improvements in T cell function is the finding that metformin
treatment of mice with B16 melanoma tumors inhibited
tumor cell metabolism (both oxidative phosphorylation
and glycolysis) but concurrently enhanced endogenous
CD8+ T cell metabolism (oxidative phosphorylation) and
cytokine production (53). To our knowledge, only one pre-
clinical study has examined the effects of metformin on
CD19-CAR T cells. In this study, metformin was found
to inhibit CD19-CAR T cell proliferation and cytotoxicity,
and induce apoptosis of these cells in vitro; metformin also
suppressed the cytotoxicity of CD19-CAR T cells in vivo (56).
It remains to be determined if the metabolic programming
of genetically engineered, ex vivo expanded T cells differs
from that present during endogenous T cell responses.
Nevertheless, this is an area of intense research (57, 58)
that warrants further investigation, as these results suggest that
metformin may impede CD8+ T cell effector functions in some
therapeutic settings.

Another popular CR mimetic is resveratrol, a food-derived
compound capable of suppressing multiple signaling pathways
related to cell proliferation, genome instability, and tumor
angiogenesis while enhancing immunosurveillance mechanisms
(59, 60). Data from in vitro (61) and in vivo (49, 62) studies
demonstrate that resveratrol induces apoptosis in cancerous
cells by suppressing the anti-apoptotic B cell lymphoma 2
(Bcl-2) family of regulator proteins and inhibiting nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-KB)
and activator protein-1 (AP-1). An immunomodulator (59)
and chemosensitizing agent (63, 64), resveratrol also improves
interleukin (IL)-2-based immunotherapy outcomes in models of
melanoma (65) and neuroblastoma (66). These improvements
are mediated, in part, by increased immune cell infiltration into
the tumor microenvironment, blunted expansion of regulatory
T cells, and enhanced in vitro susceptibility of tumor cells to
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the cytotoxicity of IL-2-activated killer cells. Overall, these pre-
clinical studies suggest that resveratrol both improves anti-tumor
immunity and directly increases tumor susceptibility to immune-
mediated killing.

Clinical Findings
In human studies, epidemiological analyses suggest that
chronic administration of some types of anti-hyperglycemic
medications (e.g., biguanides such as metformin) or natural
polyphenols (such as resveratrol) can reduce cancer risk
(50, 67, 68), but few studies have investigated their ability to
be combined with immunotherapy. One retrospective cohort
study (n = 55 patients) observed trending improvements in
overall and progression-free survival in study participants with
metastatic malignant melanoma who receive the metformin
in combination with ICB (ipilimumab [anti-cytotoxic T-
lymphocyte-associated protein 4 or CTLA-4], nivolumab
[anti-PD-1], and/or pembrolizumab); however, these changes
failed to reach statistical significance compared to ICB alone
(69). Another trial is currently investigating metformin in
combination with immunotherapy in non-small cell lung cancer
(NCT03048500). No clinical studies have reported on the
ability of hydroxycitrate or resveratrol to impact ICB efficacy;
however, trials in cancer-free (70–72) and tumor-bearing (73–75)
subjects suggest that resveratrol can alter systemic metabolites
to improve T cell function and favor an anti-cancer response.
Clearly, there is a need for larger retrospective analyses and
multi-center prospective studies to evaluate the potential benefits
of combining anti-hyperglycemic agents or CR mimetics, such
as hydroxycitrate, metformin, or resveratrol, with ICB or other
types of immunotherapy.

LIMITATIONS

As clinical data on glucose-modulating interventions discussed
above are sparse or non-existent, there is a pressing need
for safety and efficacy data from both animal studies and
carefully conducted, prospective clinical trials in cancer
patients receiving glucose-modulating interventions in the
context of ICB or other immunotherapies. In particular,
before proceeding to clinical trials, it is important to better
understand the mechanisms of interaction of glucose-
modulating interventions with the immune system. Because
this information is currently lacking, we caution that there
is insufficient data to justify combining glucose-modulating

lifestyle-based interventions and/or anti-hyperglycemic agents
with immunotherapy in advanced cancer patients. However,
this is a promising area of research that warrants further
investigation, particularly as several of the lifestyle interventions
discussed here, such as intermittent fasting or use of over-the-
counter calorie restriction mimetics, are gaining popularity
in the lay public and may therefore be adopted by some
cancer patients in an attempt to improve their health and
treatment outcomes.

CONCLUSION AND OUTLOOK

Here, we have summarized existing pre-clinical murine and
human subject data regarding the effects of lowering glucose
availability in tumors, either via lifestyle modifications or the
use of anti-hyperglycemic agents, on anti-tumor immunity and
immunotherapy outcomes. Although the data are preliminary
and should be interpreted cautiously, most studies indicate
that such glycemic-targeting interventions do not appear to
negatively compromise anti-tumor immunity in the context
of ICB, and several studies provide evidence of improved T
cell function and number, with simultaneous reductions in
tumor cell proliferation. It is important to note that these
beneficial trends may be reversed in the context of CAR
T cell therapies. Future pre-clinical studies should seek to
identify the mechanisms by which glycemic pathways both
directly and indirectly modulate the metabolism, function,
and viability of cancer cells vs. CD8+ effector T cells and
other leukocyte subsets. Moreover, since many of these lifestyle
and pharmacologic interventions are pleiotropic, it will also
be important to determine whether there are additional
immunomodulating or anti-proliferative effects induced through
glucose-independent mechanisms.
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