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Translation in eukaryotes is highly regulated during initiation, a process

impacted by numerous readouts of a cell’s state. There are many cases in

which cellular messenger RNAs likely do not follow the canonical ‘scanning’

mechanism of translation initiation, but the molecular mechanisms under-

lying these pathways are still being uncovered. Some RNA viruses such as

the hepatitis C virus use highly structured RNA elements termed internal

ribosome entry sites (IRESs) that commandeer eukaryotic translation

initiation, by using specific interactions with the general eukaryotic trans-

lation initiation factor eIF3. Here, I present evidence that, in addition to its

general role in translation, eIF3 in humans and likely in all multicellular

eukaryotes also acts as a translational activator or repressor by binding

RNA structures in the 50-untranslated regions of specific mRNAs, analogous

to the role of the mediator complex in transcription. Furthermore, eIF3 in

multicellular eukaryotes also harbours a 50 7-methylguanosine cap-binding

subunit—eIF3d—which replaces the general cap-binding initiation factor

eIF4E in the translation of select mRNAs. Based on results from cell bio-

logical, biochemical and structural studies of eIF3, it is likely that human

translation initiation proceeds through dozens of different molecular

pathways, the vast majority of which remain to be explored.

This article is part of the themed issue ‘Perspectives on the ribosome’.
1. Introduction
For most genes, the connection between genotype and phenotype requires

protein synthesis, translation of the genetic code in messenger RNA (mRNA)

into functional proteins. The fundamental mechanisms of how proteins are

synthesized on the ribosome are now the subject of sophisticated biochemical

and biophysical experiments that build on the insights from the first atomic-

resolution structural models of the ribosomal subunits and intact ribosome,

including many publications from Venki Ramakrishnan’s laboratory [1]. Struc-

tural insights into translation are accelerating with the advent of new

technologies for cryo-electron microscopy (cryo-EM) [2,3]. However, the

myriad ways that cells regulate how and when mRNAs are translated remain

to be understood in mechanistic terms.

In eukaryotes, translation initiation serves as a key ‘gatekeeper’ to protein

production levels. A canonical model for translation initiation has emerged

that requires over a dozen translation initiation factors or eIFs [4]. Cellular

mRNAs are capped with a 7-methylguanosine (m7G) structure at the 50 end

recognized by translation initiation factor eIF4E. Once assembled with eIF4E

in the context of a larger eIF4F complex, mRNAs are recruited to the small

(40S) subunit of the ribosome that harbours additional initiation factors in a

43S complex. Finally, helicases in eIF4F help the 48S pre-initiation complex

scan the mRNA from the 50 end to the appropriate start codon, usually but
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not always the first encountered [5]. The two initiation factors

eIF4E and eIF2 are known to serve as major focal points of

translation regulation. Multiple pathways that sense cellular

metabolism and stress converge on eIF4E to determine the

level of translation from cellular mRNAs, and include the

mechanistic target of rapamycin complex 1 and MAPK-inter-

acting kinases Mnk1 and Mnk2 [6,7]. In parallel and not

entirely independently, the nutritional state of the cell and

stress control the levels of active eIF2, which delivers initiator

tRNA to translation pre-initiation complexes [5,6,8]. These

pathways, when perturbed, can contribute to human diseases

including cancer [7,9,10].

Although eIF4E acts at the start of the scanning mechan-

ism of translation initiation, many variations have been

identified that tune the levels of protein synthesis for select

mRNAs, including upstream open reading frames (uORFs)

that modulate the expression of a downstream ORF [11].

In the case of yeast GCN4 and human ATF4, uORFs connect

levels of translation of these critical transcription factors

directly to the nutritional state of the cell [6,11]. Another

prominent example common among positive-strand RNA

viruses is the use of structured RNA elements in the 50

untranslated regions (50UTRs) preceding virally encoded

ORFs. These structured regions—termed internal ribosome

entry sites or IRESs—recruit the translational machinery

directly to the start codon [4]. Viral IRES elements are

thought to help viruses circumvent immune surveillance

mechanisms that repress general translation, mediated by

reducing active levels of eIF2, the initiation factor that loads

initiator tRNAMet
i at the start codon in the 48S complex

[12–14]. Other sequence- and structure-specific mechanisms

for regulating translational efficiency of classes of mRNAs

are beginning to emerge, including, for example, 50-terminal

oligopyrimidine sequences in mRNAs [15], TISU elements

[16], structured RNA elements in histone mRNAs [17] and

in the 50UTRs of homoeobox (Hox) genes [18], RNA elements

that lead to ribosome shunting [16] and other translational

enhancers [19]. Finally, gathering evidence indicates that

mRNAs can be post-transcriptionally modified with pseu-

douridine, N6-methyladenosine and N1-methyladenosine

[20]. How these regulate translation initiation remains

unclear. However, evidence suggests that N6-methyladeno-

sine can stimulate translation initiation in conditions in

which eIF4E is limiting [20].

Here I describe how recent advances in understanding the

structure and function of translation initiation factor eIF3 help

illuminate the wide variety of initiation mechanisms that are

likely to exist in eukaryotes. This review focuses primarily on

mammalian eIF3, with reference to other organisms such as

the yeast Saccharomyces cerevisiae to highlight universal fea-

tures of eIF3 structure and function. In most multicellular

eukaryotes, eIF3 is composed of 13 subunits, named eIF3a–

eIF3m [21–23]. Land plants, which diverged from animals

about 1.6 billion years ago [24], retain a 13-subunit eIF3

complex [25], and Arabidopsis and wheat germ extracts have

been used extensively to study translation initiation [25].

Filamentous fungi—less evolutionarily diverged from

metazoans—also contain a 13-subunit eIF3 [23]. Although

S. cerevisiae eIF3 has contributed greatly to our understanding

of eIF3 function [5], it is composed of only six subunits [21].

These six subunits (eIF3a, eIF3b, eIF3c, eIF3g, eIF3i and eIF3j)

are conserved with those in humans, but may have evolved

distinct regulatory roles in yeast when compared with
multicellular eukaryotes, for example in interactions with

other initiation factors [26,27].
2. Discovery of eIF3 and its roles in general
translation initiation

Mammalian eIF3, originally isolated by biochemical fraction-

ation and functional reconstitution of translation initiation, is

the largest of the translation initiation factors, with a molecu-

lar mass of approximately 800 kDa. Most of its subunits were

identified by the mid-1970s. The Staehelin and Blobel labora-

tories were the first to note the multiple protein composition

of eIF3 [28,29], and identified nine to 10 separate polypep-

tides [29,30]. Hershey was able to identify 11 bands in eIF3

purified from rabbit reticulocytes [31]. Its full composition,

however, took many decades to decipher owing to the

presence of one labile subunit—eIF3j [32]—and a second

with anomalous mobility on denaturing gels—eIF3m

[22,33]—that may also be labile in the eIF3 complex [34,35].

Although the composition of mammalian eIF3 took

significant effort to establish, its central roles in translation

initiation were identified in the 1970s using in vitro reconsti-

tution of translation on natural mRNAs and viral genomes

with biochemically fractionated factors. The Anderson lab-

oratory initially described eIF3 (IF-M3) as required for

translation of natural mRNAs but not poly-U [36]. A similar

activity was described by Heywood [37], and was addition-

ally shown to be required for ribosome recycling [38].

In parallel efforts, the Staehelin laboratory showed that eIF3

(IF-E3) is required for binding Met-tRNAMet
i to the 40S sub-

unit in the absence of mRNA [28], the first evidence for the

role of eIF3 in the formation of the 43S pre-initiation complex

identified by Hunt & Jackson [39] and Hirsch [40,41]. Making

the first connection between eIF3 and viral translation,

Strycharz et al. [42] showed that eIF3 is essential for

translation of the encephalomyocarditis viral RNA.

During subsequent years, multiple groups refined the

purification of most of the translation initiation factors,

allowing for a much deeper analysis of initiation mechanisms

[43–49]. Of particular note with respect to eIF3 function,

purified eIF3 could be phosphorylated [50] or reductively

methylated [44,51] in vitro and tracked through the various

steps of initiation. Using radiolabelled eIF3, these groups

showed eIF3 binds the 40S subunit in the absence of other

translation initiation factors, stabilizes eIF2/Met-tRNAMet
i /

GTP binding to the 40S subunit, is required for maximal

binding of natural mRNAs to the 40S subunit, inhibits 60S

subunit joining and is released upon 80S initiation complex

formation [44,50,51] (figure 1). Thus, even at this early

stage in understanding eukaryotic translation initiation—

before the role of the eIF4F complex had been established

[46–49] and the remaining core initiation factor, eIF5B, had

been found [53]—the central importance of eIF3 to translation

initiation was apparent.
3. Early insights into eIF3 structure and binding
to pre-initiation complexes

Structurally, James Lake and collaborators showed quite soon

after its discovery that eIF3 associates with the platform of

the 40S ribosomal subunit [54] (figure 2), but its overall



Figure 1. Early model for the mechanism of translation initiation. The nomen-
clature of initiation factors changed as follows [52]: eIF-1 now eIF1, eIF-2 now
eIF2, eIF-3 now eIF3, eIF-4A now eIF4A, eIF-4B now eIF4B, eIF-4C now eIF1A,
eIF4-D now eIF5A, eIF-5 now eIF5. Figure from [44].

0° 45° 90°

(a)

(b)

Figure 2. Negative stain EM images of ‘native’ 40S subunits. (a) Examples of
negatively stained particles. (b) Model of eIF3 bound to the 40S subunit, in
three orientations. These 40S subunit preparations retained eIF3 bound to the
platform region. From [54].
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architecture remained unclear. Bielka and co-workers first

proposed eIF3 to be flat and triangular in shape [55,56].

The first three-dimensional reconstruction of eIF3 bound to

the 40S subunit determined by Joachim Frank’s laboratory,

at approximately 5 nm resolution, more clearly revealed

eIF3 projecting away from the platform and the interface

between the two ribosomal subunits [57]. From these early

structural results, it was not yet clear how eIF3 accomplished

its roles in translation initiation or recycling, although Bielke’s

group found it to be located in close proximity to eIF2, which

bound between the head and body of the 40S subunit [58]. In

2005, the Doudna and Nogales groups published the first

cryo-EM reconstruction of eIF3, revealing its five-lobe archi-

tecture for the first time [59]. This reconstruction at

approximately 30 Å resolution coupled with additional EM

images identified the possible location of eIF4G binding to

eIF3, and the position of the HCV IRES bound to eIF3 off

the ribosome. Notably, the authors combined these recon-

structions with modelling based on the three-dimensional

reconstruction of negative-stain images of eIF3 bound to the

40S subunit [57] to provide a framework for understanding

eIF3 structure and function. Although state-of-the-art at the

time, the low resolution led the authors to contour the EM

map to enclose a volume consistent with the molecular

mass of the imaged particle, in this case approximately

800 kDa in mass. However, the choice of contour level is

directly impacted by the assumption that a particle is rigid

at the resolution of the reconstruction. As described in §4,

eIF3 turns out to be highly flexible outside of its core, a feature

of the complex not appreciated structurally for many years.

With the identification of the genes for nearly all of

the subunits in eIF3 [60], it was possible to identify its evo-

lutionary similarity to the COP9 signalosome—or CSN

complex—and 26S proteasome regulatory lid complex

[61–65]. However, advances into the mechanisms of eIF3

function during these years occurred primarily by using gen-

etics in S. cerevisiae and biochemistry to study the conserved

subunits eIF3a, b, c, g, i and j. Hinnebusch and co-workers

used yeast to map interactions between eIF3 domains

[66–68], and to identify a previously unknown ‘multifactor

complex’ (MFC) between eIF3, eIF1, eIF2, eIF5 and initiator
tRNA(Met) as a bona fide translational intermediate in the

assembly of translation initiation complexes in vivo [67–69].

Several following papers identified contacts between eIF3

subunits, other translation initiation factors in the MFC,

eIF4G and the 40S subunit important for translation initiation

in yeast [70]. However, while many of these interactions may

be conserved across eukaryotes, some aspects of translation

initiation have likely diverged. In addition to the larger

number of subunits in eIF3, the MFC in humans seems to

involve different interactions between the eIFs than in yeast,

and furthermore may participate in multiple pathways

of delivering Met-tRNAi to the 40S subunit during 43S

complex assembly [71].
4. Insights into mechanisms of mammalian eIF3
in translation initiation

Attempts to biochemically dissect mammalian eIF3 lagged

those in yeast, owing to the difficulty in reconstituting the

complex to enable mutagenesis. However, purified factors

enabled a number of new insights into eIF3 function. Studies

with purified translation factors helped identify the bio-

chemical role of eIF3 in preventing 40S and 60S subunit

association after recycling, an activity that required the

ternary complex of eIF2/GTP/Met-tRNAi [72]. Purified

translation factors also enabled the first mapping of trans-

lation factor requirements for viral IRES translation

initiation, in particular how eIF3 and other factors interact

with different types of IRES [73,74]. To begin dissecting

mammalian eIF3, the Hershey and Sonenberg groups used

baculovirus expression in insect cells to reconstitute mamma-

lian eIF3 subassemblies comparable to the yeast eIF3 complex

[75] and eIF3 with up to 11 subunits in composition [34].

Using a complex of six subunits—interestingly lacking two

universally conserved in eukaryotes, eIF3g and eIF3i—the

Sonenberg group could demonstrate that this minimal

mammalian eIF3 (eIF3a, b, c, e, f and h) assembled translation

initiation complexes in vitro [34]. Unfortunately, it has not
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Figure 3. Structural core of human eIF3. Comparisons of negatively stained
reconstructions of recombinant 12-subunit eIF3 (approx. 700 kDa), eight-
subunit core of eIF3 (approx. 400 kDa), and the cryo-EM reconstruction of
natively purified intact eIF3 (approx. 800 kDa). From [81].
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Figure 4. Cryo-EM reconstruction of the 8-subunit core of human eIF3. The
position of the eight subunits in the core of eIF3, left, were determined by
N-terminal tagging and comparison with the proteasomal lid, right. From [27].
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been possible to test the function of this six-subunit complex

in multicellular eukaryotes, as several of the non-essential

subunits in vitro are essential in vivo [76–78].

My laboratory began working on determining the

structure of human eIF3 in the late 2000s, making the

choice to reconstitute human eIF3 using Escherichia coli as

an expression host rather than using baculovirus expression

or native purification. Although this precluded isolating

eIF3 with possible post-translational modifications [33,79], it

would allow us to functionally dissect eIF3 with far more

precision than we could with natively purified eIF3 [80],

and potentially with high enough yields for structural

biology. We found that it was possible to functionally recon-

stitute human eIF3 in E. coli, minus two flexible regions—the

C-terminus of eIF3a and N-terminus of eIF3c—and the first

four amino acids of eIF3a [81]. This reconstitution revealed

the eight-subunit structural core of eIF3, related in architec-

ture to the proteasomal lid and COP9 signalosome through

its PCI/MPN (proteasome, CSN, eIF3/Mpn1 Pad1-N-term-

inal) domain containing subunits: eIF3a, eIF3c, eIF3e, eIF3f,

eIF3h, eIF3k, eIF3l and eIF3m [65]. Remarkably, the core of

eIF3, about 400 kDa in mass, had the same overall shape as

intact eIF3 (figure 3). Thus, from these first reconstitutions,

it became abundantly clear that at least half of eIF3 was

conformationally dynamic [81] and would require imaging

in intact pre-initiation complexes to determine its structure

to high resolution. Notably, hints of eIF3 flexibility had already

been observed with respect to eIF3j, which approaches the

mRNA decoding centre of the 40S subunit from the side

facing the 60S subunit, in nearly the opposite direction to

the known binding site of eIF3 to the 40S subunit platform

[82]. Our reconstitutions of eIF3 using E. coli also revealed

that eIF3 function for at least HCV IRES-mediated translation

initiation would require all of the 12 stably associated sub-

units of eIF3, minus possibly only eIF3j; subassemblies

lacking eIF3b, eIF3g and eIF3i were not functional [81].

Using E. coli reconstituted eIF3 also allowed us to map the

position of subunits in the mammalian complex for the first

time [27]. We used N-terminal MBP or GST tags and com-

parisons with the proteasome lid architecture [83–85] to

identify the locations of each of the eight core subunits,

along with the approximate positions of eIF3d and eIF3j N-

termini (figure 4). We also identified binding between the

eIF3 core and eIF1, interactions possibly conserved in the

MFC [70,71]. Interestingly, mammalian eIF3 also interacts

with eIF1A, perhaps through interactions that differ between

yeast and humans. In yeast, contacts between eIF1A and

yeast eIF3 occur in flexible and less-conserved N-terminal
regions of eIF3c deleted in the reconstituted human eIF3

complex [26,27].
5. Towards atomic-resolution structural
understanding of eIF3 function

The cryo-EM reconstruction of the human eIF3 core complex

was determined at quite low resolution, of about 15–20 Å

(figure 4), but did allow homology modelling of the PCI/

MPN subunits and nearby alpha-helical repeat segments,

by comparison with atomic-resolution structures of subunits

within the proteasome lid [27,86]. Using homology models

within the low-resolution cryo-EM map allowed us to use

a resolution at the level of ‘blobology’ to identify two pre-

viously unrecognized RNA-binding motifs in eIF3 [87].

These two predicted RNA-binding helix–loop–helix (HLH)

motifs are located at the N-terminus of eIF3a and near the

N-terminus of eIF3c, just C-terminal of the less-conserved

region of eIF3c beginning near amino acid 302. We could

show by mutagenesis that the motif in subunit eIF3a is crit-

ical for eIF3 binding to both the HCV IRES, and to the 40S

ribosomal subunit, and seems to control initial recognition

of the AUG start codon. By contrast, the RNA-binding

motif in eIF3c is less critical for 40S subunit and IRES bind-

ing, but influences the later step of eIF5B-mediated 60S

subunit joining [87] (figure 5).

Given the size of the RNA-binding motifs, it was puzzling

that the HLH motif in eIF3a is important both for binding to

the HCV IRES and to the 40S ribosomal subunit. How could

a small protein motif bind both the HCV IRES and the 40S

subunit at the same time? Sterically, this seemed implausible,

and we wondered if it might be involved in serial interactions

during pre-initiation complex formation. Remarkably, two

cryo-EM reconstructions of mammalian eIF3 bound to the

40S subunit, one in a 43S-like complex [88] and a second in

complex with the HCV-like CSFV IRES and 40S subunit

[89], revealed two different modes of eIF3 binding. In the

43S complex, eIF3 binds the platform of the 40S subunit,

whereas the IRES displaces eIF3 from the 40S through

direct IRES RNA–protein interactions (figure 6a). These

results helped explain how the HLH motif in eIF3a could

be responsible both for binding to the 40S subunit and

HCV IRES. In a subsequent structural investigation of eIF3

bound to the 40S subunit that combined the approximately

12 Å cryo-EM reconstruction of the 43S complex [88], X-ray

crystal structures of yeast eIF3 subunits and subcomplexes

and cross-linking–mass spectrometry, it was possible to
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model the interaction between the HCV IRES and subunits

eIF3a and eIF3c at the amino acid and RNA nucleotide

resolution (figure 6b) [90].

Structural insights into eIF3 and translation initiation are

continuing at a rapid pace, using both yeast and mammalian

systems for cryo-EM reconstructions [91–93]. One of the most

striking findings of these cryo-EM reconstructions is the fact

that eIF3 effectively wraps around the 40S subunit, reaching

from under the mRNA decoding site—the binding location

for eIF1A [93] (figure 7a)—to the 40S subunit platform

[91–93] and then entirely around the solvent side of the

40S subunit reaching past the mRNA entry tunnel [90–93]

(figure 7b). The core of mammalian eIF3 is the most distal

part of the eIF3 complex from the 80S ribosomal subunit

interface (figure 6a), with extensions from the core extending

to contact multiple regions of the pre-initiation complex

(figure 7). Furthermore, these extensions are highly dynamic
even in the context of pre-initiation complexes, both in yeast

and mammals [93,94]. These cryo-EM reconstructions will

enable many new biochemical and genetic explorations of

eIF3 function in translation in the years to come.
6. Roles of eIF3 as the ‘mediator’ of translation
initiation

The role of eIF3 in stimulating translation initiation from

structured viral IRES elements [4] by binding directly to the

highly structured HCV IRES and not the 40S ribosomal

subunit [89] raises questions of how general this mechanism

of initiation may be. To test whether eIF3 controls alternative

modes of translation initiation on cellular transcripts, we

used photoactivatable-ribonucleoside-enhanced cross-linking

and immunoprecipitation [95] with 4-thiouridine to identify
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transcripts that specifically interact with eIF3 in human 293T

cells. Although we were concerned that we may only purify

eIF3 cross-linked near the start codon [96], surprisingly, we

found highly discrete sites of cross-linking to approximately

500 cellular transcripts [97]. Of these, most sites of cross-

linking occurred at the 50UTR as would be expected for the

role of eIF3 in initiation. These mRNAs fell into distinct regulat-

ory categories related to cell proliferation, the cell cycle, apoptosis

and differentiation. Remarkably, we found that eIF3 binding to

secondary structural elements in the 50UTR of select mRNAs

could not only activate translation, but could also repress trans-

lation. For example, translation of JUN mRNA, encoding the

immediate early response transcriptional regulator c-Jun in the

AP-1 transcription factor, is activated by eIF3. By contrast,

BTG1 mRNA, encoding a transcriptional regulator B-cell translo-

cation gene 1 that promotes terminal differentiation, is repressed

by eIF3. Both these activities of eIF3 depend on the 50 7-methyl-

guanosine cap on the mRNA [97].

The eIF3-binding sites within the mRNAs that cross-

linked to eIF3 interact with four of its subunits—eIF3a,

eIF3b, eIF3d and eIF3g—in all possible combinations of 1,2,

3 and 4 of the subunits. Although it is possible that the differ-

ences in cross-linking pattern could be due in part to the

distribution of uridines in the sequences (i.e. the sites of 4-

thiouridine incorporation), the pattern of cross-linking

suggests that there may in fact be dozens of different ways

that mRNAs are recruited to the 40S subunit for translation

initiation, hints of which have already been revealed in

cryo-EM reconstructions of the 43S pre-initiation complex

and classical swine fever virus (CSFV) IRES pre-initiation

complex (figure 6) [88,89]. In support of this idea, two of

the mRNAs we characterized in depth—JUN and BTG1—

harbour distinct secondary structures in their 50UTRs that

either activate or repress translation, respectively [97].
7. eIF3 possesses a 50 m7G cap-binding subunit
The 50 cap dependence of JUN mRNA translation activation

requires a mechanistic explanation. Why, when the eIF3-
binding secondary structure in the JUN mRNA is mutated

thereby disrupting translation of c-Jun, does the eIF4F cap-

binding complex not substitute to drive translation initiation?

More generally, conditions of stress or nutrient deprivation

lead to eIF4E sequestration and inactivation, yet many

transcripts in the cell continue to be translated well [98],

including JUN [99–101]. By analysing JUN mRNA translation

initiation, we discovered that the eIF4F complex is not

involved in JUN translation, which instead depends on a pre-

viously unknown 50 cap-binding activity in subunit eIF3d

[102]. Using the same cross-linking approach originally pion-

eered by Nahum Sonenberg to identify eIF4E [46,103], we

found that eIF3d binds specifically to the 50 m7G cap.

However, cap-binding by eIF3d does not seem to occur for

mRNAs in general. We determined the X-ray crystal structure

of the eIF3d cap-binding domain and found a striking

homology to the recently identified DXO family of cap

exonucleases [104]. However, eIF3d has an ‘RNA gate’

motif that blocks access to the 50 cap-binding pocket. Only

upon allosteric activation by specific RNA structures—exem-

plified by the eIF3-binding site in the JUN 50UTR—does

eIF3d bind the cap to promote translation [102]. Notably,



rstb.royalsocietypublishing.org

7
the JUN mRNA also includes an RNA element near the 50 cap

that prevents eIF4F binding and activation of translation,

likely to enforce the eIF3 dependence of JUN translation to

specific biological contexts (figure 8). Inhibition of eIF4F

activity to promote alternative translation pathways is also

required for the translation of homoeobox mRNAs [18]. The

cap-binding domain in eIF3d—universally conserved in mul-

ticellular eukaryotes—likely serves to drive the translation of

select regulatory mRNAs, many of which may also encode

RNA structures that prevent the action of eIF4F in translation

initiation [102].
Phil.Trans.R.Soc.B
3

8. Conclusion
The surprising discovery that eIF3 can activate or repress

translation of specific mRNAs bears a striking parallel to

the role of the mediator complex in transcription [97,105].
In the future, it will be important to identify trans-acting

factors that are likely required for the function of eIF3 in

transcript-specific translation regulation. Further efforts to

understand how eIF3 stimulates translation of mRNAs

marked with N6-methyladenosine [106] will also require

new mechanistic insights. Finally, all of these newly iden-

tified biological roles for eIF3 will require new structural

insights into both the canonical scanning model, and into

the molecular events underlying the myriad additional

translational regulatory pathways that are continuing to

be uncovered.
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