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Abstract

Background: Inference of gene regulatory networks is a key goal in the quest for understanding fundamental
cellular processes and revealing underlying relations among genes. With the availability of gene expression data,
computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data’s
high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-
layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target
genes and describe their regulation type.

Results: The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool
of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign
scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by
applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among
genes.

Conclusions: The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory
relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks.
The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are avail-
able from: http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/.

Background
Fundamental biological processes including cell differen-
tiation, metabolism, the cell cycle or signal transduction
are governed by the expression of genes. Gene products
and especially the amounts and temporal patterns in
which these products are expressed in the cell enable
cell survival and numerous cellular functions. A holistic
view on the regulatory mechanisms governing the
dynamics of genes expression requires the understand-
ing of the networking and interactions among genes and
their products, since it is known that genes act in a col-
lective manner to achieve biological functions [1,2]. By
understanding the complex relations within these gene
regulatory networks (GRN) we can highlight inhibitory
or excitatory interactions, as well as how intracellular or
extracellular factors affect gene products or dysregulate
cellular processes.

The recent advances in biotechnology allowed simulta-
neous measurements of mRNA production from virtually
all genes within genomes through high-throughput tech-
nologies such as the microarrays [3]. This resulted in
massive amounts of data that proved to be a significant
challenge for traditional analysis techniques due to the
inherent combinatorial problems arising from the large
number of variables. Advanced computational models
are required to fill in the knowledge gap. These models
have to cope with peculiarities of the data such as mea-
surement noise. Additional challenges are posed by the
modelling task, such as the under-determinism caused by
the large number of variables compared to the available
number of experiments. Also, since groups of genes are
commonly acting to activate/inhibit a regulated gene, the
computational search space grows to a much larger
potential search space of virtually countless combinations
[4].
Initial computational approaches for inferring gene

regulatory networks from gene expression data consisted
of classical techniques. Boolean networks are binary
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models that consider the expression of a gene to be
either on or off, and model the effects of other genes on
a specific target gene through a Boolean function. A
major drawback is the fact they do not consider inter-
mediate levels of gene expression, hence resulting in
information loss [5-7]. Furthermore, they assume transi-
tions between genes activation states to be synchronous,
which is biologically implausible [8]. Bayesian networks
(BN) are a mixture of probability calculus and graph
theory, and attempt to model gene regulatory networks
as directed acyclic graphs in which the nodes represent
the genes and the edges connecting the nodes represent
regulatory interactions, which are encoded via condi-
tional dependences learned from the data. Although
effective in dealing with noise, incompleteness and sto-
chastic aspects of gene regulation, they fail to consider
temporal dynamic aspects that are an important part of
regulatory networks modelling [9]. Dynamic Bayesian
networks (DBN) evolved feedback loops to effectively
deal with the temporal aspects of regulatory networks
but their benefits are hindered by the high computa-
tional cost required for learning the conditional depen-
dencies in the cases where large numbers of genes are
involved [10]. Linear additive regulation models [11]
revealed certain linear relations in regulatory systems
but failed to capture nonlinear dynamics aspects of
genes regulation. Other approaches included differential
equations, which besides the high computational costs
have also the disadvantage of being sensitive to noisy
data (as is the case of data resulting from microarray
experiments) [2,12].
Recent approaches tried to overcome the drawback of

traditional methods in several ways [13]. Keedwell and
Narayanan [4] used a hybrid neuro-genetic algorithm to
mitigate the under-determinism problem. Their method
combines genetic algorithms (GA) with a single layer
artificial neural-network (ANN), where each chromo-
some of the GA selects from the whole data set a small
number of regulating genes and the ANN is used to
determine how the expression levels of these input
genes affect another gene’s expression. However, the
lack of a recurrent structure and the training method of
the ANN may pose serious problems when modelling
the complex temporal dynamics of gene expression reg-
ulation and renders the method vulnerable to local
minima traps, respectively.
Some of the most effective approaches towards pro-

blems regarding temporal information processing are
the recurrent neural networks (RNNs) [14] and recur-
rent fuzzy neural networks (RFNNs) [15]. Recurrent net-
works, in general, can deal with temporal and spatial/
temporal problems by adapting self loops and backward
connections to their topologies and structures, both of
which are used to memorize past information. Recently,

Xu et al [8] used an RNN combined with Particle
Swarm Optimization (PSO) to capture the complex non-
linear dynamics of gene regulatory networks. Although
RNNs are generally efficient for temporal sequence pro-
duction problems, it has been shown that recurrent
fuzzy networks outperform recurrent neural networks
[16,17] in problems that involve concurrent spatial and
temporal mapping like the one of regulatory networks
reconstruction. Additionally, fuzzy-based approaches are
better candidates in dealing with the uncertainties of
modelling noisy data, due to their high-level, human-
like reasoning [18,19]. In [18] regulatory interactions
among genes are extracted in the form of fuzzy IF-
THEN rules by searching for statistically significant
fuzzy dependency relationships among genes. In [19],
Sokhansanj et al perform an exhaustive search for possi-
ble rules describing gene interactions (they use the same
IF-THEN formalism), under the framework of a linear
fuzzy logic scheme that restricts the search space. How-
ever, both methods have the drawback of requiring
prior data discretization, while [19] has the additional
disadvantage of not considering temporal information.
In this study, we propose a novel multi-layer evolu-

tionary trained neuro-fuzzy recurrent network (ENFRN)
applied to the problem of GRN reconstruction, which
addresses the major drawbacks of currently existing
computational methods. Our choice was driven by the
benefits, in terms of computational power, that neural
network based methods provide [4,14,15]. The self-orga-
nized nature of ENFRN algorithm is able to produce an
adaptive number of temporal fuzzy rules that describe
the relationships between the input (regulating) genes
and the output (regulated) gene. Related to that, another
advantage of our approach is that it overcomes the need
of prior data discretization, a characteristic of many
computational methods which often leads to informa-
tion loss [18-21]. The dynamic mapping capabilities
emerging from the recurrent structure of ENFRN and
the incorporation of fuzzy logic drive the construction
of easily interpretable fuzzy rules of the form: ‘IF gene x
is highly expressed at time t THEN its dependent/target
gene y will be lowly expressed at time t+1’. The evolu-
tionary training, based on the PSO framework, tries to
avoid the drawbacks of classical neural networks train-
ing algorithms. Additionally, we are approaching the
under-determinism problem by selecting the most suita-
ble set of regulatory genes via a time-effective procedure
embedded in the construction phase of ENFRN. Also,
besides determining the regulatory relations among
genes, our method can determine the type of the regula-
tion (activation or repression) and at the same time
assign a score, which might be used as a measure of
confidence in the retrieved regulation. Experiments on
real data sets derived from microarray experiments on
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Saccharomyces Cerevisiae prove the ability of the pro-
posed method to capture biologically established gene
regulatory interactions, outperforming at the same time
other computational methods.

Results and Discussion
We applied our method on Saccharomyces Cerevisiae
gene expression data obtained from cell cycle microar-
ray experiments to identify regulatory interactions and
construct putative regulatory networks. The cell cycle
process consists of four phases: G1 (in which the cell
grows and, under appropriate conditions, commits to
division), S (in which the DNA is synthesized and chro-
mosomes replicated), G2 (a ‘gap’ between S and M), and
M (in which chromosomes are separated and the cell is
divided). After the M phase, the cell enters the G1
phase, hence completing a ‘cycle’ [22].
The datasets we employed originate from a study con-

taining measurements of virtually all yeast genes (6178)
across 77 time points (experiments). In Spellman et al.’s
experiments, yeast cell cultures were synchronized with
different methods including alpha factors arrest (two
complete cycles, sampled each 7 min, totally 18 samples),
temperature arrest of temperature sensitive mutants
(cdc15, three complete cycles, sampled each 10 min,
totally 24 samples) and elutriation synchronization (one
complete cycle, sampled each 30 min, totally 14 samples)
[23]. This data set includes also a subset from a previous
experiment in which the cells were synchronized by tem-
perature arrest of a cdc28 allele (17 samples taken at 10
min intervals) [24], as well as 4 samples initially intended
for a study on cyclins CLN3p and CLB2p.
It must be noted at this point that all the results in

this study were obtained using cdc15 as training set for
the ENFRN models, while alpha and cdc28 subsets as
testing data sets. The choice for this training set was
based on the fact that it had the largest amount of time
points. Alpha subset was chosen because it originates
from the same experimental setting to the training data
set and possesses the largest amount of data after cdc15.
At the same time, it allows us to provide comparison to
other methods that have used the same data set. Cdc28
was chosen to provide a means of testing the method
against data originating from a different experimental
setting than that of the training. For reasons of simpli-
city and coherence we will present in the following
results based on alpha data set (used as testing set).
Similar results were obtained when using cdc28 subset
as testing set. Full details on the results of cdc28, as well
as general settings of the parameters of the algorithm
and additional information regarding both test data sets,
are provided in ‘Additional file 1’.
To evaluate the performance of ENFRN and compare

our results with those of other published methods, we

used four groups of genes. The first one consisted of
eight histone genes (HHT1, HHT2, HHF1, HHF2,
HTA1, HTA2, HTB1 and HTB2) that encode the four
core histones (H2A, H2B H3 and H4). The histones are
the main protein components of chromatin, forming its
fundamental packaging unit. Since the chromosomes
(consisting among others of DNA and histones) need to
be replicated before cell division, the expression of his-
tone genes should be regulated tightly for the proper
functioning of the replication process [23]. Using a com-
posite score lower than 0.6 for selecting a regulatory
interaction, we have built the network presented in Fig-
ure 1. Out of the 14 currently known genetic interac-
tions we have retrieved 11. The rest of the interactions
we have retrieved are indexed in the yeast databases as
physical interactions, thus being indirectly supported (as
shown in Table 1) [25,26]. The existence of a physical
interaction among two entities reflects the fact that pro-
tein products of the respective genes interact at protein
level and the existence of the interaction was experi-
mentally proven. For example, the HHF1 - HTA2 was
marked as a physical interaction by several Affinity Cap-
ture-MS experiments [27]. This could reflect the exis-
tence of certain correlations in their gene expression
level, therefore triggering our method to retrieve it as a
valid interaction. Table 1 lists all extracted interactions,
their type and corresponding composite score, as well as
comparative information on the currently existing biolo-
gical knowledge. It should be noted that when compar-
ing to the results of Chen et al [28], our method
retrieved 16 interactions (both genetic and physical),
while only 12 were retrieved with the Bayesian Network
approach of Chen et al. The comparison is even more
relevant when restricted to the genetic interactions,
which are the main goal of the compared approaches
(due to the gene expression data employed): ENFRN-
based method identified 11 genetic interactions out of
16, as noted above, while in the case of the Bayesian
Network only 6 out of 12 were genetic interactions.
Table 2 provides intermediate results regarding the
ENFRN performance during the optimization process.
In a second experiment we further tested and com-

pared our approach against other well known algorithms
for GRN reconstruction, on a well studied pathway con-
sisting of 14 genes. Specifically, we have compared
against Bayesian Networks (BNs) and Dynamic Bayesian
Networks (DBNs). The target sub-network we studied
(part of a SS cell cycle pathway consisting of 45 genes
around the cyclin-dependent protein kinase CDC28/
YBR160w) has been used as a benchmark dataset in
many similar studies [10,13]. Our method outperformed
the ones we have used for comparison. As we can
resolve by inspecting Figure 2 and Table 3, our ENFRN-
based approach extracted 15 biologically validated
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Table 1 Information regarding the extracted interactions based on alpha test data set.

a/a Regulator Target Type Composite Score Genetic Interaction Physical Interaction

1. HTB1 HTA1 + 0.49589 1 1

2. HTA1 HHF1 + 0.44116 1 1

3. HHF1 HTA2 - 0.58690 0 1

4. HTB1 HHF1 + 0.59115 1 1

5. HHF1 HTB2 + 0.53736 0 1

6. HHF2 HTA1 - 0.54367 1 1

7. HHF2 HTA2 - 0.46783 0 1

8. HHF2 HHF1 + 0.48136 1 1

9. HHT1 HTA1 + 0.56520 1 1

10. HHT1 HTB1 - 0.59864 0 1

11. HHT1 HTB2 + 0.52335 0 1

12. HHT1 HHF2 - 0.59846 1 1

13. HTA1 HHT2 + 0.58984 1 1

14. HHT2 HHF1 + 0.52567 1 1

15. HHF2 HHT2 + 0.53911 1 1

16. HHT2 HHT1 + 0.55456 1 1

The table shows regulator and target genes implicated in the interaction, the type of regulation determined and the value of composite score. In the last two
columns we provide the kind of biological evidence that supports the interaction.

Figure 1 Reconstructed small-size networks using the proposed ENFRN method. The networks learned using our proposed method for (A)
the 8 histones dataset and (B) using the third group of genes (out of the total 19 genes of the original set, RAD54 and POL1 are not shown as,
there were found no interactions implicating them). Arrows correspond to positive and tee’s to negative regulation. Edge colour reflects the
composite score value as a measure of confidence in the interaction (blue corresponds to scores <0.5, red to those >0.5). Dashed lines
correspond to retrieved interactions that have no genetic but physical interaction counterparts in experimental databases. The larger network (B)
is characterized by more than 80% agreement with current biological knowledge.
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interactions (when BN had 3 and DBN had 5), 4 inter-
actions that are biologically validated via an intermediate
gene (when BN had 4 and DBN 4) and 3 interactions
that are erroneous (when BN had 7 and DBN 4). Addi-
tionally, in order to explicitly test the efficiency of our
proposed hybrid network, we have replaced ENFRN

with another neuro-fuzzy recurrent network named
RSONFIN [16], and applied it within the same frame-
work for reconstructing GRNs described in this paper.
The results shown in ‘Additional file 1’, indicate the
superiority of ENFRN in terms of both biologically vali-
dated interactions and computational time. ENFRN

Table 2 Information regarding the increase of efficiency and simultaneous decrease of complexity throughout the
various training phases of ENFRN

Composite Score Values in ENFRN Structures Number of Rules and Output Nodes in ENFRN Structures

a/a Regulator Target Initial Simplified

Initial Simplified Trained Rules Output Rules Output

1 HTB1 HTA1 0.899 0.935 0.533 12 9 12 9

2 HTA1 HHF1 1.056 0.988 0.435 11 8 9 8

3 HHF1 HTA2 0.644 0.698 0.595 12 10 11 10

4 HTB1 HHF1 0.842 0.815 0.536 12 8 10 8

5 HHF1 HTB2 0.654 0.642 0.560 12 8 10 8

6 HHF2 HTA1 0.741 0.773 0.618 14 10 12 10

7 HHF2 HTA2 0.657 0.669 0.543 14 10 12 10

8 HHF2 HHF1 0.748 0.785 0.503 14 9 12 8

9 HHT1 HTA1 0.898 0.916 0.664 12 9 10 9

10 HHT1 HTB1 1.095 1.097 0.811 12 10 10 9

11 HHT1 HTB2 0.632 0.660 0.567 12 8 10 8

12 HHT1 HHF2 0.841 0.791 0.755 12 9 10 9

13 HTA1 HHT2 1.233 1.188 0.606 11 9 8 8

14 HHT2 HHF1 0.658 0.625 0.567 14 9 14 9

15 HHF2 HHT2 0.890 0.881 0.589 14 10 13 10

16 HHT2 HHT1 0.962 0.975 0.749 14 10 10 9

We can depict a decrease at the complexity levels (i.e. 87% of the 16 extracted interactions described in table) between the initial and the simplified structures
followed by a corresponding decrease in the score levels between the phases of the initial and the trained ENFRN.

Figure 2 Reconstruction of a KEGG pathway. In this figure we present the KEGG pathway (A) and the reconstructed analogue of our ENFRN-
based method. A grey shaded rectangle represents genes that compose a complex. The edges inside these circles are considered as correct
edges since genes inside the same circle will co-express with some delay. In blue colour we have correct determined interactions, in dotted
blue we have interactions that are true via an intermediate gene and false interactions are indicated in red colour. 71.4% of the interactions
extracted were in absolute accordance with biological knowledge, and this percentage rose to 85.7% when considering the interactions that
were correct via an intermediate gene.
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managed to infer the reconstructed GRN faster than all
methods used for comparison. Additional details and
evidence regarding the computational times of the com-
pared methods are provided in ‘Additional file 1’.
We next proceed evaluating our approach on larger

datasets. Hence, the third set we tested, consisted of 19
genes which include DNA polymerases (POL1, POL2,
POL12, and POL30), DNA helicase (HPR5), type B
cyclin genes (CLB5 and CLB6), DNA primases (PRI1
and PRI2), radiation sensitive genes (RAD53 and
RAD54), repair related genes (MSH2, MSH6, and
PMS1), replication protein A encoding gene (RFA3),
DNA replication initiation factor (CDC45), securin gene
(PDS1), nucleosome assembly factor (ASF1), and a sub-
unit of the cohesin complex (MCD1). These genes play
an important role in the process of cell cycle conducting
important cellular activities such as DNA replication
initiation, DNA damage-induced checkpoint arrest,
DNA damage repair, formation of mitotic spindle, and
so on. As observed in Figure 2, ENFRN retrieved 21 reg-
ulatory interactions among 17 genes (there was no inter-
action found for RAD54 and POL1). Bold edges denote
retrieved interactions that are backed by genetic interac-
tion while dashed edges correspond to those having
physical interaction counterparts in experimental data-
bases (Biogrid and SGD). Thin edges denote interactions
that could not be found neither in Biogrid nor SGD. For
16 out of 21 interactions there exists biological experi-
mental evidence stored in the Biogrid and Saccharo-
myces Genome Database (SGD). This is more than
double the number of valid interactions the method of
Chen [29] found using the same group of genes. Of par-
ticular interest is the upregulation of cyclin CLB5
involved in DNA replication during S phase by the
securing gene PDS1. This regulation is substantially sup-
ported by experimental evidence at both genetic and
protein level [30,31], however it has not been retrieved
by Chen et al’s method. The composite score of ENFRN
for this interaction was relatively low (0.36518), thus
underlining the high confidence of the retrieved regula-
tion. An interesting case is that of PRI2-POL12, which
we inferred as a valid interaction. Although we could
not find existing biological experimental information
regarding the respective genetic interaction, there was
significant evidence of physical interaction among the
protein products of this pair of genes from a series of
Affinity Capture-MS experiments [32,33]. It must be
noted that this interaction was marked as a valid genetic
interaction by Chen et al [28], although their cited evi-
dence highlighted it as a protein-protein interaction via
Tandem Affinity Purification experiments [32,34]. A
complete list of our interactions, their composite scores
and experimental information can be found in ‘Addi-
tional file 1’.

Table 3 This table represents interactions detected by
the three computational models, ENFRN, BN and DBN.

Model Derived
Interaction

a/a Regulator Target Composite
Score

Type ENFRN DBN BN

1. FUS3 FAR1 0.35898 T √ - -

2. FAR1 CLN2 0.35138 T √ - -

3. SIC1 CLB5 0.53303 T √ - -

4. CLB5 CLB6 0.40858 T √ - -

5. CLB6 CLB5 0.53303 T √ - √

6. CLN2 CLN1 0.54337 T √ - √

7. CLN3 CDC28 0.34730 T √ - -

8. CLN1 SIC1 0.54336 T √ - √

9. CDC28 CLB6 0.41569 T √ - -

10. CLB6 CDC28 0.39661 T √ - -

11. CDC28 CLN1 0.54336 T √ - -

12. CLN3 SWI4 0.33336 T √ √ -

13. CDC20 CDC28 0.49565 T √ - -

14. CDC28 CLB5 0.53309 T √ - -

15. SWI4 CLN1 0.38757 T √ √ -

16. CLN2 SIC1 - T - √ -

17. SIC1 CLN2 - T - √ -

18. CLN1 CLN2 - T - √ -

19. CLN2 CLB6 0.38983 I √ √ -

20. CDC20 CDC6 0.40848 I √ √ √

21. SIC1 CDC6 0.55806 I √ - -

22. FAR1 SIC1 - I - - -

23. FAR1 FUS3 - I - √ √

24. FUS3 CDC28 - I - √

25. CLN1 FAR1 - I - - √

26. CLN1 CLB5 - I - - √

27. CLB6 MBP1 0.37033 F √ - -

28. SWI6 CLN3 0.56508 F √ - -

29. FUS3 CLN3 0.57180 F √ - -

30. CDC6 SIC1 - F - √ -

31. CDC6 CLB6 - F - √ -

32. CDC6 CLB5 - F - √ -

33. CDC20 FAR1 - F - √ -

34. SIC1 FAR1 - F - - √

35. CDC6 FUS3 - F - - √

36. FAR1 CLN3 - F - - √

37. CLB5 MBP1 - F - - √

38. SIC1 MBP1 - F - - √

39. MBP1 SIC1 - F - - √

40. CDC6 CLN3 - F - - √

The 3rd column provides scores of the final trained ENFRN structure
responsible for determining a specific interaction. Column ‘Type’ indicates
whether a determined interaction is true (T), true via an intermediate gene (I)
or false (F). In the last column we indicate which models detected the
interaction described in columns 1 and 2.
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In a final experiment we aimed at testing the perfor-
mance of ENFRN on a larger group of genes. This
group of genes was selected by Chen et al and includes
20 cell-cycle target genes and their regulators [29], a
total of 41 genes. Due to the particularities of this data-
set (e.g. the cyclin CLB is a densely connected hub-like

gene [25]), we have relaxed the constraint on the num-
ber of possible regulators for a gene from 5 to 8. As
presented in Figure 3, our method retrieved a total of
83 interactions. Out of these, 32 were found to have
corresponding genetic interaction experimental evi-
dence, while 16 interactions corresponded to previously

Figure 3 Medium-size reconstructed network. Gene network retrieved using the group of 41 genes (properties of edges follow the ones
described in Figure 1). No regulatory interaction was found for MNN1. The 32 genetic interactions, 16 physical interactions and 8 intermediate
connections correspond to 67.4% accordance with current biological knowledge. All interactions have a composite score below 0.5 and
therefore edges are blue coloured.
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proven physical interactions [25,26]. This totalled to
57.8% accordance to currently valid biological knowl-
edge. Interestingly, we have found 8 cases in which
experimentally valid interactions from the Biogrid data-
base are connected in our network through only one
intermediate node. As noted by other studies, these
indirect interactions might reflect a conjunctive action
of the respective entities for the regulation of the target
entity [28,29]. This means that a total of 67.4% of the
edges in our network are supported directly or indirectly
by biological experimental evidence.
Our results highlight the crucial role of cyclins in the

cell cycle, of which the most typical is CLB2 as reported
by others [29,35]. Accordingly, ENFRN identified the
upregulating interaction among CLB1 and CLB2 [29].
Worth to be noted is also the activation of the NDD1 by
the CLB2 that takes place in the G2 phase of the cycle,
which is part of the larger scale interactions between
CLB2 and the SFF complex (consisting of FKH1, FKH2
and NDD1-directly connected in our network) [29,35].
MCM1, a DNA binding protein that works with the SFF
complex, has been placed in direct interaction with
FKH2, thus highlighting its role within the complex.
The important role of the cyclin-dependent kinase

SIC1 is captured by its close interaction with the G1-
cyclins CLN1,3. Additionally, the documented inhibition
of SIC1 by the SFF component FKH2 and the inhibition
of SWI5 by the same FKH2 were correctly retrieved
[29,36]. The control of the cyclins CLN1,2 by the SBF
complex (via SWI4 activation of CLN1) [37,38] is
reflected by the direct interconnection among these
genes. Also, the suggested upstream activation of CLN1
by CLN3 at the beginning of the cell cycle [39] was
promptly retrieved by our method.
In a number of cases the microarray data show tran-

scriptional co-regulation patterns and although the gene
products are not physically interacting, this tight genetic
connection might suggest that genes sustain indirect
connections through other gene products [40]. Compu-
tational methods usually accommodate this scenario by
considering indirect connections through one or even
two intermediate nodes [28,29,40]. A large number of
such interactions can be identified in our network, such
as the indirect activation of CLB2 by the SBF and MBF
complexes (SWI4 and MBP1, through PCL7) [35].
Another example is the loop where the transcription of
SWE1 activated by CLN3 takes place in our network
indirectly, through genes CLN1 and YHP1 [29]. Addi-
tional information on the interactions and their compo-
site scores is presented in ‘Additional file 1’.
As a final comment we should notice that many of the

gene regulatory interactions take place exclusively at a

specific phase of the cell-cycle, the pair of interacting
genes remaining silent for the rest of the cycle. Problems
arise in such cases from the reduced availability of experi-
mental samples (e.g. G2 phase of the cycle is represented
in the experimental dataset we used by only 2 samples).
Despite the great difficulties deriving from this fact, we
have proven that the proposed ENFRN-based method
managed to acquire biologically validated relations among
genes from about 60% to even 100% (depending on the
data set) percent of the extracted interactions.

Conclusions
Fundamental processes occurring in organisms are car-
ried out through complex networks of regulatory inter-
actions among genes and their products. The inference
of gene regulatory networks based on experimental data
obtained from microarrays has become an important
way to understand these regulatory mechanisms. Herein
we describe a novel evolutionary trained neuro-fuzzy
recurrent network to model the regulatory networks and
reveal interactions between genes. Our model is able to
identify potential regulators of genes through a time effi-
cient process. The recurrent structure of ENFRN
ensures that the dynamics of gene expression are prop-
erly retained while, at the same time, the self-organizing
properties of the method automatically account for the
discretization process. The self-organization combined
with the inherent fuzzy logic successfully manage to
deal with the important amount of noise present in
microarray data and at the same time provide an effi-
cient representation of the interactions through fuzzy
rules.
One of the key characteristics of the proposed

approach is that by incorporating ENFRNs neural net-
work-specific processing and learning capabilities the
method can be applied (after the training process is con-
cluded) to unseen samples arriving from microarray data
of different experimental settings in order to test
whether the same regulatory interactions are valid
within the new data set.
The proposed ENFRN-based method successfully

extracted relations that in their majority were in accor-
dance with biologically proven regulatory interactions,
outperforming other computational approaches. In cer-
tain cases our algorithm picked up interactions that
could not be retrieved in the lists of experimental inter-
actions currently existing in databases. It might be pos-
sible that some of these interactions are valid but
currently unknown, since the available experimental
data is still far from complete at present. However,
those interactions and especially the ones assigned a
high degree of confidence should be further examined.
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Methods
Evolutionary Recurrent Neuro Fuzzy Network
This section presents the proposed method, its architec-
tural structure together with key aspects of its function-
ing: dynamic mapping capability, temporal information
storage and fuzzy inference system.
Unlike other neuro-fuzzy network architectures, where

the network structure is fixed and the rules should be
assigned a priori, there are no fuzzy rules initially in the
architecture we are presenting; they are constructed
during learning, in a self organized manner. The two
learning phases (the structure and parameter learning)
are used to accomplish this task. The structure learning
phase is responsible for the generation of fuzzy IF-
THEN rules as well as the judgment of the feedback
configuration, and the parameter learning phase for tun-
ing the free parameters of each dynamic rule (such as
the shapes and positions of membership functions).
These are accomplished through repeated training on
the input-output patterns. The way the input space is
partitioned determines the number of rules.
Under the framework of the GRNs reconstruction that

this paper addresses, the input and output spaces corre-
spond to the expression profiles of the input and output
genes, respectively. A fuzzy rule derived by ENFRN is
time-dependent and is realized via linguistic labels cor-
responding to fuzzy sets (represented in this study by
Gaussian membership functions) that describe the varia-
tions of the expression profiles of the input-output
genes. Those labels are unified in a rule via a fuzzy
AND operation:

IF g1(t-1) is low AND g2(t-1) is high AND ... gN(t-1) is low
THEN go(t) is high
where low, medium, and high correspond to linguistic
labels represented by fuzzy sets and partition the input
and output space. The left hand side of a rule such as
the one described above corresponds to a certain cluster
of the expression profiles of the input genes (regulators),
while the right hand side on a corresponding partition
of the output space (target genes).
Given the scale and complexity of the data, the num-

ber of possible rules describing the gene expression data
at hand is kept under constraint by employing an
aligned clustering-based partition method for the input
space, meaning that both input and output variables
may have a different number of fuzzy sets describing
them [16,41]. Additionally, we enforce a setting in
which rules with different preconditions may have the
same consequent part. By incorporating the clustering
scheme, we are able to tackle the problem of rule set
combinatorial explosion that appears when using other
neuro-fuzzy approaches [42].

ENFRN Architecture
Following, we give a detailed layer by layer description
of the multilayer architectural structure of ENFRN
described in Figure 4. The purpose of the following
description is to indicate the signal propagation and the
operation functions of the nodes in each layer. Through-
out the paper, we use the symbol �i

(k) to denote the
input of node i in the k-th layer while the symbol ψi

(k)

will denote the output of node i in the k-th layer.

Figure 4 Architectural structure of ENFRN. Some of the basic properties of the network are the ability to allow each input and output
variable to be described by a different number of linguistic labels and that more than one rule can be assigned the same antecedent.
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Layer 1: Every node in the first layer represents an
input variable in the ENFRN. The values of the nodes
on this layer are directly transmitted to the next layer
without any computation.

 i i ix1 1     (1)

where xi is the value of the i-th input (gene expres-
sion) value.
Layer 2: Each one of the nodes in this layer represents

a Gaussian membership function that corresponds to a
linguistic label (e.g. low-expressed, average-expressed,
highly-expressed, etc.) and is described by:
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where cij and sij corresponds to the mean and stan-
dard deviation of the Gaussian membership function,
respectively and ψij is the j-th membership function of
the i-th input variable. Additionally, in this layer we
have the implementation of recurrence in ENFRN, spe-
cifically the input for each one of the nodes in this layer
at a certain time point t, is described by:

  ij i ij ijt x t t2 2 1            (3)

where bij denotes the link weight for the feedback unit
and �ij is the j-th membership function of the i-th input
variable. As it can be deduced from (3) each linguistic
node, acts also as a memory unit storing past informa-
tion for ENFRN concerning the input.
3rdLayer: The third layer, named Rules Layer, is com-

prised of rule nodes. Each one of the rule nodes per-
forms precondition matching for the corresponding rule,
using the following chain of fuzzy AND operations to
incorporate its input values:

 i i

i

3 3    (4)
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where Di = diag(1/si1, 1/si2, ..., 1/sin), ci = (ci1, ci2, ...,
cin)

T. The output of every one of the rule nodes corre-
sponds to the firing strength of a rule; meaning how

well fitted is the corresponding rule, such as to ade-
quately describe the current input pattern.
4thLayer: ENFRN partitions the output space. The

nodes are called output linguistic nodes and correspond
to the subsequent part of a fuzzy rule; the output for
every node is given by:

 i i

i

4 4     (6)

As can be deduced from the equation above, the out-
put for every one of the nodes of the current layer is
the sum of the output of the rule nodes that have as
consequent part the current node.
5thLayer: In this last layer we have the defuzzification

process:

y
wij ii

ii

j i 
 

 

 




5
5

5
(7)

wij are the widths of the fuzzy sets of the output layer.
Each one of the nodes corresponds to the value that
ENFRN has calculated to be the predicted output value
for the corresponding output variable.

Partitioning of input and output space
The creation of a new rule within ENFRN corresponds
to the creation of a new cluster in the input space.
Therefore the way the input space is partitioned (clus-
tered determines the number of fuzzy rules created.
Thus, the number of rules created by ENFRN is pro-
blem depended, the more complex a problem is, the
greater becomes the number of rules.
In order for the ENFRN to decide whether a new rule

must be generated for the description of an incoming
pattern (x, y), a two criteria scheme is adapted. The first
one computes the overall error Ek, which is defined as
the difference between the output of ENFRN and the
input signal and is given by:

E y yk k
d

k  (8)

where yk is the value computed by the model based on
the current input pattern xk while yk

d is the desired
output for the same pattern.
The second criterion is based on the calculation of the

distance di between the observation xk and all the exist-
ing till point rules

d j x R j Nk k j r    ,    1 2, ,..., (9)
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where Nr is the number of the rules, each one of the
dk is computed by using equation (5). Then we find the

d d jkmin arg min    (10)

If both the criteria below are true then, we create a
new rule

E

d
k error

dist





min .

(11)

The first criterion checks whether the error of the
model is greater than a specific value, indicating that
under the current state of the network we cannot han-
dle the new pattern without a large value of error. The
second checks to see whether the pattern is ‘close’
enough to a cluster, so that it can become a member of
it, or if a new cluster has to be created for it.
If the procedure described leads to the creation of a

rule, the next step is the assignment of initial centers
and widths of the corresponding membership functions.
Since later on (at the structure fine tuning phase of the
learning algorithm) the ENFRN structure will be opti-
mized, we simply set:

c t xi i( ) 1 (12)


i t

d
( )

ln( min)
  1

1 1
(13)

where δ is a constant deciding the overlap of the clus-
ters, dmin is the distance of the closest cluster (from the
current pattern), and ci, si are the center and width for
the membership function of each input variable. Similar
methods have been used before, such as [41,43]. To
reduce the number of fuzzy sets of each input variable
and to avoid the existence of redundant fuzzy sets, we
check the similarities between them in each input
dimension. For the similarity measure of two fuzzy sets
we use the formula previously derived in [44], which
concerns bell - shaped membership functions.
Finally, ENFRN has to determine if a new output clus-

ter must be created. A cluster in the output space is the

consequent of a rule. We have already mentioned that
one of the characteristics of ENFRN is that more than
one rule can be connected to the same consequent. As a
result, the creation of a cluster in the input space does
not necessarily mean a subsequent creation of a cluster
in the output space. It depends on the incoming pattern,
since the newly created cluster in the input space could
be connected to an already existing cluster of the output
space. The model decides whether or not to create a
new output cluster based on the two criteria described
above (Eq. 11).

PSO for ENFRN Optimization and Learning
After the creation of the initial structure described
above, ENFRN enters a two phase learning process
where the initial structure is optimized and the various
parameters (e.g. centers and widths of the fuzzy sets as
well as link weights among connections) are fine tuned
(as can be visualized in Figure 5). Both phases of this
process are based on PSO.
PSO is an algorithm that simulates the social beha-

viour of organisms, such as birds in a flock [45]. This
behaviour can be described as an automatically and
iteratively updated system. In PSO, a particle represents
a potential solution and its location or position in the
search space is represented by a vector Xi = (x1, x2, ...,
xM). The swarm of particles moves through the problem
space with a velocity that is represented for every parti-
cle by a vector Vi. At every iteration PSO provides a
quality measure for the current position (candidate solu-
tion) of each particle, via a function called fitness func-
tion (FF), in which Xi is used as input. Each particle
makes use of its own memory to keep track of its own
best position Bi (based on the FF value) attained so far.
Additionally every particle has access to the best posi-
tion among all particles BG. The new velocity for the
next iteration is computed for every particle based on
the particle’s own best position as well as the general
best position, like:

v t W v t c n B x t

c n B

i I i i i

G

            
   

1 1 1

2 2               xx ti    (14)

Figure 5 ENFRN learning phases. Overview of the three phases of ENFRN training cycle. The first phase represents the initial creation of the
ENFRN structure, in the second phase the structure is simplified by pruning the rules obtained in the first phase, while in the third phase the
fine-tuning of the ENFRN parameters is performed.

Maraziotis et al. BMC Bioinformatics 2010, 11:140
http://www.biomedcentral.com/1471-2105/11/140

Page 11 of 17



where c1 and c2 are positive constants and n1 and n2
are uniformly distributed random numbers between 0
and 1. While there are various different neighbouring
schemes for different problems, in this study we follow
the standard version of PSO, where each one of the par-
ticles follows the best position acquired by the flock as
can be depicted by Eq (14). These new velocities are
then used to compute the particles new position,
according to:

x t x t v ti i i       1 1 (15)

Particles move through the problem space following a
current of optimum particles using Eqs. (14), (15). The
process is then iterated a fixed number of times or until
a predetermined minimum error is achieved where
hopefully, given a sufficient number of particles the
swarm will converge towards an optimized solution [45].

Structure Optimization
As we have already mentioned, during the creation of
the initial ENFRN structure we do not spent much time
determining the centers and widths of fuzzy sets so as
to find a perfect cluster. This might drive ENFRN, espe-
cially in cases where we have difficult problems such as
the one we study here, to create a rather large structure
containing many rules that could even be redundant.
Hence, at this phase of the learning algorithm of

ENFRN we have developed a scheme for deleting some
of the rules along with their corresponding output
nodes (in cases where they are not connected to other
rule nodes), if they are either redundant or the patterns
they describe could be efficiently represented by other
rules. Therefore, the objective of this part of the learn-
ing process has a dual goal of decreasing the redun-
dancy and simplifying the model. For the optimization
of the ENFRN structure we have employed a discrete
version of the PSO algorithm.
To optimize the number of rule nodes in the initial

network structure we use a version of Binary PSO
(BPSO) algorithm. Potential solutions to our optimiza-
tion problem are encoded through particles that under
BPSO are symbolized as fixed size binary strings Xi =
(Xi1, Xi2, ..., XiM), where Xij Î {0,1}. Given a list of rule
nodes, R = (R1, R2, ..., RM) the first element of Xi, Xi1

corresponds to the first rule R1, the second to the sec-
ond rule R2 and so forth. A value of zero at the coordi-
nate associated to a rule node, indicates that the
corresponding rule is not selected, while unity indicates
that the rule is selected.
It is apparent that the fitness function should be

selected against the number of rule nodes as well as the
performance of the network. The fitness function we are
using in this paper for the BPSO is described as

F X
MSE

M N
i  

  1 2 (16)

where MSE is the well known mean square error, M is
the initial number of rules, as given by the structure
learning phase and N is the number of rule nodes present
in the simplified structure. We can derive from the for-
mulation of the problem that we assume the number of
rule nodes described by each one of the particles to be
lower or at the most the same with the initial number of
rule nodes (therefore it is 0<N<M ® 0 <M-N ® M-N>0
® M-N+1>1). It is obvious from equation (16) that the
closer a particle arrives to an optimized solution in terms
of small value of the error with a minimum number of
rule nodes, the smaller the fitness value is obtained.
Hence, BPSO attempts to minimize the function (16).
The initial population or swarm of particles is com-

posed of a certain number of randomly generated binary
strings. Every coordinate (position) of Xij of a particle is
a uniform random number r drawn on the interval (0,1).
In BPSO as in PSO, every one of the particles is asso-
ciated with a unique vector Vi = (Vi1, Vi2, ..., ViM). The
members Vij in Vi establish the rate of change for each
one of the corresponding coordinate Xij in Xi. Each ele-
ment Vij in Vi is updated according to the equation:

V t W V t c n B X t

c n

ij I ij ij ij            
 

1 1 1

2                22     B X tj
G

ij

(17)

Where the parameters c1, c2, n1, n2 and WI are the
same as the one for equation (14) of PSO.
As we have already mentioned, the value for every

coordinate of the i-th particle Xi can be either 0 or 1.
The algorithm decides on the value based on its respec-
tive velocity Vij and is given by

X t
n V

ij
ij     





1

1

0

3,    if 

,   otherwise


(18)

Where n3 is a uniform random number in the range
[0,1], and

 V t
Vij t

ij    
    1

1

1 1exp
(19)

that is the well known sigmoid function.

Parameters Learning
In this section we describe the algorithmic methodology
we follow to train the parameters of the ENFRN. Several
variations of the family of back propagation algorithms
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(e.g. Back Propagation through time) have been used to
train recurrent multilayer neural and fuzzy neural net-
works by means of error propagation via variational cal-
culus [46]. Even though they are widely used, these
algorithms have many drawbacks. For instance, their
success depends upon the quality of the training data, as
well as the initial values of the weights of the network.
Additionally, they are known to be easily getting trapped
in local minima, losing this way the global minimum of
the error function [47].
The key idea of using PSO in this final phase of the

training process is to fine-tune the centres and widths
for the fuzzy sets comprising the rule and output nodes,
as well as the weights assigned to the recurrent links, so
as to have the minimum number of errors in the predic-
tion of the model. Under the PSO formalism, the first
step towards the training of ENFRN is to create a num-
ber of particles, each of which will be represented by a
vector like:

x m m mi N kN

N kN

k

k

 ( , , , , ,

, , , , ,

11 1

11 1

1

1

1

 

         

        

  

 ,, , , , , , , )  N N kNo k
w w w11 1 1

(20)

where k is the number of input variables, No is the
number of output nodes, mij and sij represent the cen-
ters and widths of the fuzzy sets describing the input
variables, br corresponds to the centers of the fuzzy sets
of the output variable, while wij are the recurrent
weights of the 2nd layer of ENFRN.
A large number of different fitness functions can be

used for the training process, here we are using the fol-
lowing:

F x
T No

y t y ti i
d

i

N

t

T

i

o

  


     

1 2

10

(21)

where T is the number of time points in the dataset, yi
represents prediction of the output based on input value
as calculated ENFRN and yi

d is the actual value given
by the dataset. Hence the purpose of applying PSO in
this final phase of ENFRN learning scheme is to mini-
mize (21) by fine-tuning the parameters of ENFRN
structure.

ENFRN reconstructs GRNs
In this section we present the approach through which,
given an ENFRN structure trained and optimized as
described above, we can determine if the input regulates
the output, the kind of the regulation and also provide a
quantitative measure (which we call regulation score)
specifying how well this task is performed. Additionally,
we propose our approach on handling the important

and computationally expensive problem of determining
a set of possible regulators for a certain target gene.

From ENFRN Structure to Regulation Type
A set of fuzzy rules arriving from a certain ENFRN
structure is employed to determine the regulation type
(i.e. up, down, or even no regulation) that the input
imposes to the output based on a given data set. Each
of the ENFRN rules has a prerequisite part consisting
of a number of fuzzy sets (matching the number of
input variables). These fuzzy sets correspond to lin-
guistic labels describing the values of the input vari-
able. In our case the linguistic labels correspond to a
certain expression level of the input gene (e.g. high,
medium-high, medium, etc). The same applies for the
output.
Throughout this study, we follow the main principle

that for a certain gene x to be considered as a possible
regulator of some other gene y, then x must have a pre-
vious expression status alteration when compared to y.
An expression status alteration (both for input and out-
put genes) occurs when the linguistic label describing
the expression status of a gene at a specific time point t
is different than the value of the linguistic label of the
same gene at time point t-1.
We can mathematically formulate the proposed frame-

work using a function that will provide a Regulation
Score (RS) in a given ENFRN structure:

RS
NIC

f x x yt
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with

 y
yt yt
yt yt

      
  

2 1

2 1
(23)

where xi
t and yi

t are the linguistic labels describing
the input and output at time point t. T is the number of
time steps present at a certain dataset, Nv is the number
of the input variables, NIC is the number of times that
input(s) change(s) expression value between consecutive
time points, and f is specified as a Kronecker delta func-
tion, i.e.:

f k   



1

0

,    k 0

   else,
(24)

As it can be deduced from (22) and (23) we follow a
first order Markov process where we search for an
alteration at the expression levels of all input and output
variables/genes between 2 consecutive time points.
However, due to the recurrent nature of the ENFRN,
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the proposed approach actually takes under considera-
tion all of the previous time dependencies during the
construction and learning processing phases.
The output of (22) can be either positive, negative or

zero, corresponding to up, down and no regulation
respectively (Figure 6, A-C). Inspecting formulas (22),
(23) and (24) we can deduce that the output variable is
mainly responsible for determining the type of regula-
tion, given that there is a corresponding prior (in terms
of time) alteration of expression status in the input vari-
ables. Indeed, if there is a decrease in the expression
levels of the output gene/variable from time point t to
time point t+1 then the term (yt+1-yt) becomes positive,
otherwise it is negative. On the other hand the term (xt
+1-xt), which through (24) gets a discrete value of 0 or 1,
solely indicates whether or not there is a prior change in
the expression of the input. The sign of RS determines
whether the output is up or down regulated by the
input. As we can observe from (22), (23), we normalize
RS, by diving it with the number of times the input
changes expression value. The value of the proposed
score lies between 0 and 1 with 0 being the best case, i.
e. the number of times the input gene changes expres-
sion values is followed by an equal number of altera-
tions in the expression values of the output. Unstable
regulation (RS = 0) means that the input cannot provide
a standard type of regulation for the output or, in other
words, for half of the cases where we have an alteration
of the expressional status of the input we have up-regu-
lation, while for the other half we have down regulation.
If there is more than one input variable in the Input

Layer then those input variables/genes are connected

thought a fuzzy AND operation at the Rule Layer.
Hence, all of the input genes must have a simultaneous
change in their expression profiles. Therefore, in the
case of multiple inputs, if the alteration of the input
variables is not simultaneous for any time point of the
experiment, the output of RS indicates that the input
genes do not regulate the target (Figure 6-D).

Determining potential regulators
Irrespective of the algorithmic methodology followed for
determining the possible regulation of a set of genes to
some target gene(s), the major problem for gene net-
works reconstruction is the computational complexity
rising from the enormous number of candidate regula-
tors (i.e. feature space) that should be considered. This
fact makes the application of many data-driven compu-
tational models prohibitive for accurate prediction of
large scale modelling of regulatory networks. Various
tactics [4,8,48] have been used to overcome this signifi-
cant problem. One of those techniques is to apply clus-
tering [48] towards the construction of co-expressed
clusters of genes, then further analysis proceeds using
just the centres (i.e. mean) of those clusters. This
approach however imposes a very serious amount of
information loss since only general trends concerning
groups of genes can be inferred and not real biological
associations among pairs of genes.
Another approach is to employ heuristic or evolution-

ary schemes, like PSO, for the determination of the best
regulators for a certain target gene [8]. Specifically,
starting from some gene population, BPSO feeds ran-
domly various input subsets of the initial population to

Figure 6 Linguistic rules to regulation type. Simplistic representation of the methodology we follow to translate a set of fuzzy rules extracted
by an ENFRN model to the type of regulation (if any) input gene(s) impose to the output gene. As deduced from figures, the type of regulation
(A) up, (B) down, (C) none is determined by the output given that there is an earlier alteration at the expression of the input, without which we
can not deduce regulation (d).
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sthe main method used (e.g. ANN) to determine the
regulation. Finally, BPSO concludes on the best regula-
tors using as fitness function value the output of the
main method [4]. The application of such algorithms at
this point of the GRNs reconstruction actually leaves
the problem intact. Indeed, considering as input to
those algorithms large set of genes would induce severe
computational complexity. The problem is magnified if
we consider that based on the stochastic nature of those
algorithms the whole process must be repeated several
times.
Within the methodology we follow to reconstruct

GRNs we have developed a procedure that identifies
sets of potential gene regulators by making use of the
ENFRN resources. The key idea of the procedure we fol-
low (visualized in Figure 7), is to take advantage of the
computational efficient first phase of the ENFRN learn-
ing to make an initial coarse selection of possible regula-
tors for a specific gene, out of the whole set of genes
present in a specific dataset. Later, the selected genes
will be thoroughly checked using the remaining optimi-
zation phases of the ENFRN learning process to con-
clude the best regulators. The procedure follows three

stages: in the first stage, each one of the N genes of the
initial data is selected as output for the ENFRN network.
All of the remaining N-1 genes are individually tested as
possible regulators and we select the best Nk candidate
genes. The selection of the best possible regulators is
implemented by means of a composite score (CS):

CS
n MSE n RS


   1

2
(25)

where n is a constant ranging between 0 and 1, indi-
cating the degree of importance we set for the network
MSE value and regulation score RS (eq. 22). In this
study the value of n is set to 0.6.
In the second stage, a set of all possible binary 2Nk

configurations (where 1 represents the presence and 0
the absence of each one of the Nk genes as input to the
ENFRN) of the Nk candidate genes is created. This
choice is based on evidence from previous studies that
genes might act individually as regulators of another
gene or they might act concurrently with a group of
genes to activate or repress a third-party gene or to
achieve a specific biologic function [4]. Each one of

Figure 7 General framework for GRN reconstruction. Detailed schematic description of the three-stage process we propose for determining
the regulators of each one of an initial population of No genes. As we can depict in the first stage of the process (column 1) N-1 ENFRN
structures are created for each one of the N genes. Sequentially combinations of the best NB regulators are tested for the output gene. Finally
using phases 2 and 3 of the ENFRN, we fully train the ENFRN networks (column 3) the best sets of regulators for each one of the output (target)
genes.
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these subsets of genes is inserted as input to the ENFRN
and subsequently the best NB configurations are
selected, in terms of network error. The two stages of
the methodology described so far are based on the first
phase of the ENFRN learning scheme (presented in sec-
tion Partitioning of Input and Output Space), thus mak-
ing use of the significant computational efficiency of this
phase that allows a very large number of genes to be
examined as possible regulators. In the last stage of the
procedure, the NB selected subsets of candidate genes
are optimized using the second and third phase of the
ENFRN learning process and the final NF configurations
are identified. These will be set as the potential regula-
tors of the output gene. It must be underlined at this
point that the procedure might yield a single potential
regulator gene or the whole set of (maximum) Nk genes,
if indeed the expression patterns of these Nk genes indi-
cate them to be plausible regulators of the gene selected
as output. The connectivity within the regulatory net-
work is generally problem-dependent, however, based
on biologically relevant evidence from previous studies
we set the maximum number Nk of possible regulators
to 5 [4], unless otherwise stated.

Additional file 1: In this file there are supplementary text, tables
and figures describing full results of the proposed method on the
three subsets of genes based on cdc28 dataset as well as results for
the alpha datasets not presented in the main manuscript.
Additionally there are descriptions on the parameter values and
intermediate results for the ENFRN models, as well as computational
times for the methods used.
Click here for file
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