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Abstract. The Saccharomyces cerevisiae EMP47 gene 
encodes a nonessential type-I t ransmembrane protein 
with sequence homology to a class of intracellular lec- 
tins defined by ERGIC-53 and VIP36. The 12-amino 
acid COOH-terminal  cytoplasmic tail of Emp47p ends 
in the sequence KTKLL,  which conforms with the con- 
sensus for di-lysine-based ER-localization signals. De- 
spite the presence of this motif, Emp47p was shown to 
be a Golgi protein at steady-state. The di-lysine motif 
of Emp47p was functional when transplanted onto 
Ste2p, a plasma membrane protein, conferring E R  lo- 
calization. Nevertheless, the di-lysine motif was re- 
quired for Golgi-localization of Emp47p and showed 
the same charge-independent,  posit ion-dependent 
characteristics of other  di-lysine motifs. 

a -COP has been shown to be required for E R  local- 
ization of di-lysine-tagged proteins. Consistent with 

this finding, the Ste2p-Emp47p hybrid protein was mis- 
localized to the cell surface in the oL-COP mutant ,  
retl-1. Surprisingly, the Golgi-localization of Emp47p 
was unaffected by the retl-1 mutation. To investigate 
whether Emp47p undergoes retrograde transport from 
the Golgi to the E R  like other di-lysine-tagged proteins 
we developed an assay to measure this step after block 
of forward transport in a secl2 mutant. Under  these 
conditions retrograde transport led to a specific redis- 
tribution of Emp47p from the Golgi to the ER. This re- 
cycling occurred from a Golgi subcompartment con- 
taining od,3 mannose-modified oligosaccharides 
suggesting that it originated from a medial- or later 
Golgi compartment.  Thus Emp47p cycles between the 
Golgi apparatus and the E R  and requires a di-lysine 
motif for its a -COP-independent ,  steady state localiza- 
tion in the Golgi. 

T 
HE secretory pathway in eukaryotic cells is topo- 
logically separated into several distinct membrane- 
bound compartments performing different functions. 

Newly synthesized secretory proteins are transported 
through the compartments in a vectorial fashion. For some 
steps in this pathway specific positive signals have been 
identified that ensure proper delivery of a particular 
polypeptide to its final destination. Transport of secretory 
proteins from one compartment to the next is generally 
believed to be mediated by vesicles with characteristic coats, 
an increasing number of which are being characterized 
(Ladinsky et al., 1994; Narula and Stow, 1995). 

The concept of secretory proteins passing through stable 
compartments must also account for the proper localization 
of those proteins that accomplish the specific functions 
characteristic for any given compartment. This localization 
problem for resident proteins can be solved by one or a com- 
bination of the following mechanisms: (a) passive retention 
because forward transport requires a signal, (b) active re- 
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tention via some intermolecular interaction, and (c) re- 
trieval/recycling after transport to another compartment. 
Proteins that function in sorting and transport between 
compartments will also have to be recycled if they are used 
for more than one round of transport. 

For the localization of ER proteins two mechanisms 
conserved from yeast to mammalian cells have been un- 
covered in recent years, both belonging to class c as de- 
fined above. The first is the HDEL/KDEL retrieval system 
for ER-proteins. The COOH-terminal peptide sequence 
HDEL (Saccharomyces) or KDEL (mammalian cells) on 
lumenal, but also on a few transmembrane proteins, is rec- 
ognized by a specific receptor, Erd2p, present in the Golgi 
apparatus. Ligand transported out of the ER is bound by 
the receptor and the receptor/ligand complex then returns 
to the ER (Dean and Pelham, 1990; Lewis and Pelham, 
1990, 1992; Lewis et al., 1990; Semenza et al., 1990). For 
transmembrane proteins of the ER another short COOH- 
terminal peptide sequence was identified that conferred 
ER localization (P~i~ibo et al., 1987; Nilsson et al., 1989; 
Jackson et al., 1990). This motif contains two critical tysine 
residues at either position - 3 , - 4  or - 3 , - 5  with respect to 
the COOH terminus of the protein. Using chimeric pro- 
teins, evidence was obtained in mammalian cells (Jackson 
et al., 1993) that the di-lysine motif, similarly to the 
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Table L Strains of Saccharomyces cerevisiae Used in This Study 

Strain Genotype Source 

RH448 MATa, his4, leu2, ura3, lys2, barl-1 Lab strain 
RH732 RH448 exceptpep4::URA3 Lab strain 
RHI201 MATa/c~, his4/his4, leu2/Ieu2, ura3/ura3, lys2/lys2, barl/barl Lab strain 
RHI491 MA Ta, sec l 2-4, ura3, his4, leu2, lys2,bar l-1 Lab strain 
RH2825 RH732 except emp47::LYS2 Lab strain 
RH2826 RH2825 except myc-EMP47::LEU2 This study 
RH2827 RH2825 except mye-EMP47-TKKLL::LEU2 This study 
RH2828 RH2825 except myc-EMP47-KTQLL::LEU2 This study 
RH2829 RH2825 except myc-EMP47-QTKLL::LEU2 This study 
RH2830 RH2825 except myc-EMP47-QTQLL::LEU2 This study 
RH2831 RH2825 except myc-EMP47-RLAIlKTKLL::LEU2 This study 
RH2833 RH2825 except myc-EMP47-TKKAA::LEU2 This study 
RH2834 RH2825 except myc-EMP47-RQEII::LEU2 This study 
RH3045 RH448 except emp47::LYS2 This study 
RH3046 RH3045 except myc-glyco-EMP47::LEU2 This study 
RH3047 RH3045 except myc-EMP47::LEU2 This study 
RH3048 RH 1491 except myc-EMP47::LEU2 This study 
RH3049 RH1491 except myc-glyco-EMP47::LEU2 This study 
RH3050 RH2825 except myc-EMP47-RTRLL::LEU2 This study 
RH3051 RH2825 except myc-EMP47-KTKLLS4::LEU2 This study 
RH3187 MATa, trpl, leu2, his4, ura3, hurl, retl-1 This study 
RH3193 MATa, trp l , leu2, his4, ura3, barl This study 
RH3196 RH3187 except ste2 : :LEU, STE2EMP47PTAIL: : URA3, myc-EMP47: : TRP t, retl- 1 This study 
RH3199 RH3193 except ste2::LEU, STE2EMP47PTAIL:: URA3, myc-EMP47::TRPI This study 
RH3274 RH3187 except pep4:: URA3 This study 
RH3275 RH448 except emp47::LYS2, myc-EMP47-QTQLL::LEU2 This study 
RSY918 MATa, mnn4 R. Scheckman 
RSY919 MAT~, mnnl, mnn2, ura3 R. Scheckman 

HDEL/KDEL, can mediate retrieval of proteins from 
post-ER compartments. Analyzing sugar modifications 
and the subcellular distribution of chimaeric proteins in 
yeast, Townsley and Pelham (1994) and Gaynor et al. 
(1994) provided convincing evidence for retrieval, possibly 
from the Golgi cisterna that is functionally defined by the 
presence of Ochlp. This glycosyltransferase adds the first 
c~1,6 mannose in outer chain modification of N-linked oli- 
gosaccharides in yeast (Nakanishi-Shindo et al., 1994; 
Gaynor et al., 1994). The first hint towards the molecular 
machinery of that retrieval system came from the observa- 
tion that a di-lysine motif can be recognized in vitro by 
coatomer (Cosson and Letourneur, 1994). The suggestion 
that COP I-coated vesicles may play a role in the itinerary 
of di-lysine proteins was strongly supported by a genetic 
screen in yeast. Mutants were identified that abrogated the 
ER-localization of an c~-factor receptor with an engineered 
di-lysine motif. These mutants were shown to be affected 
in the genes coding for s-COP (RET1), 13'-COP (SEC27), 
and ~-COP (SEC21) (Letourneur et al., 1994). 

One protein of mammalian origin bearing a di-lysine 
signal is ERGIC-53 (Schindler et al., 1993). This protein 
is located in the ER-Golgi intermediate compartment 
(ERGIC) t at steady-state but can cycle between early 
compartments of the secretory pathway (Schweizer et al., 
1988, 1990). ERGIC-53 and VIP36, a transmembrane pro- 
tein isolated from secretory vesicles (Fiedler et al., 1994), 
were speculated to function as intracellular lectins based 
on sequence homology with leguminous lectins (Fiedler 
and Simons, 1994). Indeed ERGIC-53 has recently been 

1. Abbreviations used in this paper: AL, anti-lumenal; AT, anti-tail; ER- 
GIC, ER-Golgi intermediate compartment. 

rediscovered as a major intracellular mannose-binding 
protein from a monocytic cell line (Arar et al., 1995). 

In the present study we report the cloning and sequenc- 
ing of a novel gene from Saccharornyces cerevisiae, EMP47, 
coding for a type I transmembrane protein with a di-lysine 
motif and with sequence homology to the ERGIC-53/ 
VIP36 protein family. We characterized the distribution of 
Emp47p and showed that its steady-state Golgi localiza- 
tion requires its di-lysine motif, but is independent of 
c~-COP, even though Emp47p cycles between the ER and 
the Golgi. We suggest models for Emp47p function based 
on its trafficking pattern. 

Materials and Methods 

Strains and Growth Conditions 

Strains of Saccharomyces cerevisiae used in this study are listed in Table I. 
Unless otherwise mentioned, indicated strains were grown in complete 
medium (2% yeast extract, 2% peptone, 40 ~,g/ml uracil and adenine, and 
2% glucose) to exponential phase (2~1 × 107 cells/ml) at 30°C. For cloning 
purposes Escherichia coli XL 1 blue (Stratagene, La Jolla, CA) was used if 
not otherwise indicated. 

Cloning of EMP47 
Degenerate oligonucleotides deduced from the NH2-terminal sequence of 
p44 (NH2-HPLGDTSDAGKL; Singer-KrUger et al., 1993) were used to 
identify a clone designated 61 (Birgit Singer-Krtiger, 1993) from a yeast 
genomic library (Heitman et al., 1991). Clone 61 contained an insert of 
~5.4 kb. The insert was mapped with respect to the site hybridizing with 
the degenerate oligonucleotides. A 2.3-kb EcoRI fragment was deter- 
mined to comprise the whole gene. This fragment was subcloned into 
pBSK-  (Stratagene, La Jolla, CA). Restriction fragments of the EcoRI- 
clone were sequenced using the dideoxynucleotide chain termination 
method (Sanger et al., 1977). Remaining gaps in the sequence were filled 
in by priming the sequencing reactions with specific oligonucleotides. 
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Biocomputing 
All sequence analysis was performed on a VAX-computer using the pro- 
grams of the GCG-package (Genetics Computer Group, Madison, WI) 
and additional programs implemented by the Biozentrum Biocomputing 
Unit led by R. Doelz. 

Construction of Deletion Disruption Mutants 
in EMP47 
The 2.3-kB EcoRI fragment was snbcloned into a p B S K -  vector deleted 
for its single Sall site. The HincII fragment between nucleotides 469-1218 
(numbering according to Fig. 1 A) was replaced with a 1.1-kb HindIII 
fragment blunt ended with Klenow enzyme and comprising URA3. Alter- 
natively the NsiI fragment between nucleotides 106-1375 was deleted, the 
ends blunted with T4 polymerase and the 4.2-kb SalI fragment of pDP6 
(Fleig et al., 1986) comprising LYS2 was inserted. The resulting plasmid 
was cut with EcoRI and the digest transformed into RH1201, RH448, and 
RH732 using the LiAc-transformation method (Gietz et aL, 1992) which 
was applied for all yeast transformations described in this work. Success- 
ful disruption was monitored by Western blotting with antiserum AL (see 
below). 

Recombinant EMP47 Variants 
Myc-tagging: the 2.3-kB EcoRI fragment was partially digested with NsiI, 
the opened sites were cut back to blunt ends and relegated. A clone with 
the NsiI site at 1375 destroyed was opened at the remaining NsiI site at 
nucleotide 106. Annealed oligonucleotides coding for the 9E10 epitope 
(Evan et al., 1985) were introduced, reconstituting the NsiI site at the 3' 
end of the epitope. The oligonucleotides introduced the sequence 
EQKLLSEEDLNEA at amino acid 9 of mature Emp47p. Introduction of 
an N-linked glycosylation site: the clone coding for the myc-tagged 
Emp47p was used to introduce two overlapping N-linked glycosylation 
consensus sites at position 49 and 50 (numbering of wild-type Emp47p as 
in Fig. 1 A) by PCR mutagenesis (Ho et al., 1989). The final PCR product 
was digested with DraIII and NsiI, and the corresponding fragment 
cloned back into the plasmid coding for the myc-tagged Emp47p. Mutants 
of the COOH-terminal cytoplasmic tail of Emp47p were also created by 
PCR mutagenesis. The SalI(1218)/BamHl(1567) fragment (nucleotide 
numbers refer to Fig. 1 A) of the final PCR product was exchanged for the 
corresponding fragment of the wild-type sequence. All inserted sequences 
introduced from oligonucleotides or PCR-mutagenesis were verified by 
sequencing. The recombinant EMP47 genes were transplanted as EcoRI 
or EcoRl/BamHI fragments into either Ylplac128 for integration at leu2 
or into Ylplac204 for integration at trpI (Gietz and Sugino, 1988) after 
cutting the plasmids with BstXI. 

Generation of Ste2p with the Cytosolic Tail of Emp47p: 
Ste2p-Emp47ptail 
The plasmid pJR-320Bam-345Stop (Letourneur et al., 1994) was cut at the 
BamHI site corresponding to amino acid 320 of Ste2p. Annealed comple- 
mentary oligonucleotides corresponding to the last 12 COOH-terminal 
amino acids of Emp47p and the stop codon were ligated into the BamHI 
site. The relevant region of the construct was sequenced. The construct 
was linearized with StuI for integration at the ura3 locus. Recipient strains 
were MATa in which STE2 had been deleted by disruption using plasmid 
pUSTE203 (Nakayama et al., 1988). 

Antibodies 
Two antisera against Emp47p-specific sequences were raised in rabbits. 
The first, denoted AT (for anti-tail) was generated against a peptide 
(Neosystem Laboratoire, Strasbourg, France) comprising the 12 COOH- 
terminal amino acids of Emp47p with an extra NH2-terminal cysteine for 
coupling purposes. The peptide proved insoluble in aqueous solutions and 
was therefore injected into the rabbit as a PBS-suspension. IgGs of the re- 
sulting serum were purified on a protein A-Sepharose matrix (Pharmacia, 
Uppsala, Sweden). For further affinity purification of the IgGs a 6His- 
DHFR fusion protein with the last 39 amino acids of Emp47p (from the 
SalI site at 1218) was expressed in E. coil M15 from a construct made in 
pQE9 HDH (Kontron, ZUrich, Switzerland). This construct was soluble 
only under strongly denaturing conditions and was therefore purified on a 
Ni÷-chelating matrix in buffer containing 8 M urea. It was coupled to 
CNBr-activated Sepharose 4B (Pharmacia, Uppsala, Sweden) in the cou- 

piing buffer recommended by the manufacturer supplemented with 6 M 
guanidinium/HC1. A glycine/HCl pH 2.5 eluate from the affinity-column 
was used in all cases where AT was used in this study. The second antise- 
rum, called AL (for anti-lumenal) was raised against most of the lumenal 
domain of Emp47p. The gene fragment ranging from the XbaI(197) site to 
the SalI (1218) site (nucleotide numbering according to Fig. 1 A) was 
cloned behind a 5'-6His-tag in the vector p Q E l l  (Kontron, Ztirich, Swit- 
zerland). The recombinant protein was expressed in E. coli M15 and puri- 
fied on a Ni÷-matrix. The purified protein was used for immunization of a 
rabbit and later, after coupling the protein to CNBr-activated Sepharose 
4B, for affinity purification of the serum. On Western blots, this antiserum 
recognized all recombinant variants of Emp47p described in this study. A 
glycine/HCl, pH 2.5, eluate from the affinity-column was used. 

Antibodies against al,3-1inked mannose residues were generated ac- 
cording to Ballou (1970, 1976) using strain RSY918. The serum was ab- 
sorbed on extract from RSY919 coupled to CNBr-activated Sepharose 4B. 
The peptide antibody against Ste2p was described in Zanolari et al. 
(1992). 

The following antibodies were used at the recommended dilutions: (A) 
polyctonal: Kar2p (kindly provided by R. Schekman, University of Cali- 
fornia, Berkeley, CA), Ochlp (kindly provided by Y. Jigami, National 
Chemical Laboratory for Industry, Tsukuba, Japan), Wbplp (kindly pro- 
vided by S. te Heesen, Eidgen~ssische Technische Hochschule, Ziarich, 
Switzerland), alkaline phosphatase (kindly provided by D. Gallwitz, Max 
Planck Institute for Biophysical Chemistry, G/3ttingen, Germany); (B) 
monoclonal: 13Dll ,  directed against the 60-kD subunit of the vacuolar 
ATPase (kindly provided by T. Stevens, University of Oregon, Eugene, 
OR), 12CA5, directed against the HA-epitope (kindly provided by H. Ru- 
dolph, University of Stuttgart, Stuttgart, Germany), and 9El0, directed 
against the myc-epitope (kindly provided by R. Movva, Sandoz AG, 
Basel, Switzerland). 

Indirect Immunofluorescence 
Approximately 107 cells were sedimented for 1 h in a tabletop centrifuge 
and resuspended in fixative (PBS/3% paraformaldehyde/10% sorbitol). 
Prefixing the cells before spinning did not change the Emp47p pattern. 
After 1 h, cells were washed with PBS/10% sorbitol and the cell walls 
were digested for 1 h at 30°C (in 100 ~1 PBS/10% sorbitol with 0.14 t~1 
13-mercaptoethanol) with an empirically determined amount of lyticase 
(Shen et al., 1991). Cells were washed with PBS/10% sorbitol and ad- 
sorbed to multiwell slides treated with poly-L-lysine. Quenching solution 
(PBS/10%sorbitol/l% BSA/I% Triton X-100) was added for 10 min at 
ambient temperature and then replaced by quenching solution containing 
the appropriate primary antibodies. The incubation at room temperature 
lasted for 1 h. The cells were then quickly washed five times with PBS/ 
10% sorbitol. Fluorescently labeled secondary antibodies were added in 
quenching solution for 45 min at ambient temperature (Cy3-conjugated 
goat anti-rabbit IgG, Cy3-conjugated goat anti-mouse IgG; Jackson lm- 
munoResearch Laboratories, West Grove, PA; FITC-conjugated sheep 
anti-mouse IgG; Cappel Research Products, Durham, NC). Cells were 
then quickly rinsed five times, washed twice for 5 rain, and three more 
times quickly with PBS/10% sorbitol. Embedding medium (vectashield; 
Vector Laboratories, Burlingame, CA) supplemented with 0.1 ~tg/ml 
DAPI was added and slides covered with cover slips. Cells were viewed in 
a fluorescence microscope and documented by conventional photography 
or by storage of a digital image obtained with a video camera. 

Enzymatic Assays 
Kex2p was detected according to the method of Cunningham and Wick- 
ner (1989) with the modifications of Singer-Krtiger et al. (1993). GDPase 
was measured as described by Abeijon et al. (1989) and LeBel et al. (1978) 
with the modifications of Singer-KrUger et al. (1993). 

Subcellular Fractionation by Velocity Sedimentation on 
Sucrose Density Gradients 
The procedure was carried out with some modifications based on the pro- 
tocol developed by Antebi and Fink (1992). Cells were spheroplasted in a 
volume of 2 ml as described previously (SchimmSller and Riezman, 1993) 
and then directly lysed by at least 10 passages through a 25-gauge needle 
after adding protease inhibitors to the final indicated concentrations: phe- 
nylmethylsulfonylfluoride (1 mM), leupeptin, aprotinin and pepstatin (5 
ixg/ml each). The lysate was cleared twice for 5 min at 500 g in 2-ml reac- 
tion tubes. The supernatant (~1 ml) was confirmed by microscopy to be 
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devoid of unbroken cells and loaded onto an 11-ml sucrose gradient made 
up from 1-ml steps of 18, 22, 26, 30, 34, 38,42, 46, 50, 54, and 60% (wt/vol) 
sucrose in 10 mM Hepes, pH 7.5, 1 mM MgCI2. The gradients were spun 
for 2 h 20 min at 4°C in a TFT41.14 rotor (Kontron Instruments, Z0rich, 
Switzerland) at 37,000 rpm. The gradient was then fractionated from the 
top into 12 equal fractions, the pellet being resuspended in the last frac- 
tion. Aliquots of the fractions were removed for enzymatic assays (see 
above) or resolved by SDS-PAGE, transferred to nitrocellulose and 
probed with the antibodies described above. Immunoreactivity was de- 
tected using the ECL kit (Amersham Int., Amersham, UK) and the ECL 
signal was quantitated by scanning films with a scanning densitometer 
(Molecular Dynamics, Sunnyvale, CA). 

Radiolabeling 

Cells were grown in SDYE (0.67% yeast nitrogen base without amino ac- 
ids, 0.2% yeast extract, 2% glucose and the strain specific amino acid sup- 
plements). For the determination of Emp47p-turnover cells were grown in 
minimal medium supplemented with adenine and the amino acids His, 
Leu, Lys, Trp, Ura (Dulic et al., 1991). Radiolabeling with 35S protein la- 
beling mix EXPRE35S35S (Dupont, Germany) and subsequent chase was 
performed according to Horvath et al. (1994). 

Immunoprecipitations 

When performing immunoprecipitations from gradient fractions each 
fraction of ~ I  ml was mixed with 200 i~1 SDS-solution (5% SDS; 50 mM 
Tris-HCl, pH 8.0; 5 mM EDTA, pH 8.0) and samples were heated to 95°C 
for 10 min. The samples were centrifuged at 13,000 g for 10 min. 3 ml TET 
(100 mM Tris-HCl, pH 8.0; 5 mM EDTA, pH 8.0; 1% Triton X-100) and 
300/sl 20% Triton X-100 were added to the samples. Emp47p was then 
precipitated by AT-antibody (45 min, room temperature) followed by the 
addition of protein A-Sepharose (Pharmacia, Uppsala, Sweden) and incu- 
bation on a rocking platform for 1 h. Precipitates were washed five times 
with TNET (=TET plus 100 mM NaCI) and twice with 20 mM Tris-HCl, 
pH 7.5. The Sepharose beads were then heated to 95°C for 10 min in 400 
/xl 1% SDS, 1 mM EDTA, pH 8.0; 10 mM Tris-HC1, pH 8.0. The superna- 
tant was mixed with 1 ml TNET and 150 m120% Triton X-100, split in ali- 
quots and precipitated as above with either AT-antibody or al ,3 man- 
nose-specific antiserum. The second round precipitates were separated on 
8% SDS-PAGE and the dried gels were quantitated on a Phospholmager 
(Molecular Dynamics, Sunnyvale, CA). 

For immunoprecipitations from whole cell extracts, cells were con- 
verted into spheroplasts in 150 p~l and lysed by the addition of 15 I~1 10% 
SDS and heating to 95°C for 10 min. For the determination of Emp47p- 
turnover duplicate aliquots of the labeling reaction were withdrawn after 
each time point and directly heated to 95°C for 5 min in the presence of 
1% SDS, 50 mM Tris-HC1 pH 8.0, 5 mM EDTA, 150 mM NaC1 (final con- 
centrations). Cells were then further disrupted with glass beads by shaking 
on an Eppendorf Mixer 5432 (Eppendorf, Hamburg, Germany) for 15 
min. The samples were further processed for immunoprecipitation essen- 
tially as described above. 

Redistribution Assay on Sucrose Density Gradients 
Strain RH1491 was grown at 24°C to log phase. Cells were harvested and 
resuspended in fresh complete medium at ambient temperature at a den- 
sity of 0.6 x 109 cells/ml. Then 20 txg/ml cycloheximide was added. Within 
5 min cells were split into aliquots of 0.6 x 10~0 cells and transferred for 1 h 
to a shaking water bath set at either 24 or 35°C. After incubation, 10 mM 
NaN3 and 10 mM NaF (final) were added for the subsequent processing 
for sucrose gradient analysis as described above. For the time course of 
Emp47p redistribution, aliquots of 1 × 109 cells were taken per time point 
at the nonpermissive temperature of 37°C. To stop membrane traffic 10 
mM NaN 3 and 10 mM NaF were added to each aliquot. The energy poi- 
sons were present throughout all subsequent processing steps as well. 

Results 

EMP47 Is a Novel Gene Coding for a 
Transmembrane Protein 

In previous work, partially purified endosomal fractions 
were prepared from Saccharomyces cerevisiae cells and a 

major Triton X-114-soluble integral membrane protein in 
these fractions was named p44. NH2-terminal sequencing 
of p44 yielded the sequence of the first 12 amino acids 
(Singer-Kriiger et al., 1993). This sequence information was 
used to design degenerate oligonucleotides for the isola- 
tion of a genomic clone encoding p44. The clone was mapped 
and the sequence of a 2.3-kb EcoRI subfragment was de- 
termined (Fig. 1 A). An open reading frame of 1335 nucle- 
otides is present on this fragment. 84 nucleotides down- 
stream of the first ATG-initiation codon the open reading 
frame codes for the NH2-terminal peptide of p44 (Fig. 1 
A). Only a single amino acid difference at position 10 was 
noted between the NH2-terminal peptide sequence (Gly) 
and the sequence derived from the DNA (Ser). The pro- 
tein sequence upstream of the NH2 terminus of the mature 
polypeptide is hydrophobic in nature (Fig. 1 B) and con- 
forms with the rules for cleavable signal peptides (von 
Heijne, 1983). The mature polypeptide of 417 amino acids 
has one potential hydrophobic transmembrane domain 
(Fig. 1 B) ending only 12 amino acids before the COOH 
terminus. The presence of a cleaved signal peptide and the 
COOH-terminally located transmembrane domain imply 
that the protein adopts a type I-transmembrane orienta- 
tion. This was verified by protease protection experiments 
(data not shown). 

We named the gene EMP47 because the mature polypep- 
tide has a calculated molecular weight of 47 K. We deleted 
one copy of EMP47 in the diploid strain RH1201 by re- 
placing the internal HinclI fragment (nucleotides 469- 
1218) with a 1.1-kb URA3 fragment. The disruption was 
verified by Southern analysis. After sporulation and dis- 
section all spores within a tetrad grew equally well at tem- 
peratures from 15 to 37°C (data not shown). The disrup- 
tants still coded for a hypothetical truncated protein of 129 
amino acids. However, haploid strains in which EMP47 
was disrupted with LYS2 (see below) leaving only nine 
amino acids of the mature Emp47p were also viable from 
15 to 37°C (data not shown). 

Emp47p Is Homologous to the ERGIC-53\VIP36 Class 
of IntraceUular Lectins 

Database searches with the Emp47p sequence did not 
yield any obviously homologous proteins. We noticed, 
however, a significant homology between Emp47p and 
ERGIC-53 (Schindler et al., 1993) when directly compar- 
ing the two sequences. ERGIC-53 is a human type I trans- 
membrane protein that has been shown to cycle between 
the ER, ERGIC, and the cis-Golgi and was defined as a 
marker protein for the ER to Golgi intermediate compart- 
ment (Schweizer et al., 1988). Fiedler and Simons (1994) 
have found homology between ERGIC-53 and VIP36. 
VIP36 is a type I transmembrane protein described in epi- 
thelial ceils to be present in the Golgi, on the apical and 
basolateral surface and in transport vesicles directed to- 
wards them (Fiedler et al., 1994). Pairwise alignments be- 
tween all three proteins with the program BESTFIT yielded 
significant homology scores. The scores were always more 
than five standard deviations higher than the mean score 
for alignments of the randomized sequences (Table II). 
The pairwise alignment scores for ERGIC-53 versus VIP36 
are clearly better than those for the alignments with Emp- 
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47p, indicating that Emp47p is a more distant member of 
the family. Multiple alignment (Fig. 1, C and D) under- 
scores, however, the observation that all three proteins are 
related to each other. This is most notable in the first 250 
amino acids of the mature proteins (Fig. 1 C). The first 250 
amino acids of VIP36 and ERGIC-53 were previously re- 
ported to display some homology with leguminous lectins. 
It was suggested that VIP36 and ERGIC-53 may function 
as intracellular lectins (Fiedler et al., 1994; Fiedler and Si- 
mons, 1994). Indeed very recently Arar et al. (1995) have 
isolated a mannose binding protein from myelomonocytic 
cells that proved to be identical to ERGIC-53. 

The tertiary structures of both leguminous lectins and 
human galectins are mainly organized into antiparallel 
[3-sheets (Sharon, 1993; Lobsanov et al., 1993). Emp47p 
has the same structural feature predicted for its first 250 
amino acids (Fig. 1 B). The sequence homology with ER- 
GIC-53 and VIP36 and the similar secondary structure 
predictions both qualify Emp47p as a putative intracellu- 
lar lectin. The region of Emp47p from near amino acid 250 
to the start of the transmembrane domain is predicted to 
be mainly c~-helical (Fig. 1 B). In particular there is a prob- 
ability of 0.78 (PEPCOIL, Lupas et al., 1991) to form 
coiled coil structures in the region from amino acid 336 to 
364. This region may form a spacer separating the putative 
lectin domain from the membrane. 

The short cytoplasmic tails of ERGIC-53, VIP36, and 
Emp47p also seem to be related to each other both in 
length and sequence (Fig. 1 D). In particular we noted the 
presence of a consensus ER-localization sequence of the 
KXKXX type in Emp47p, corresponding to the KKXX- 
type motif in ERGIC-53 (Jackson et al., 1990, 1993; Schin- 
dler et al., 1993). Although the COOH-terminal KRXX in 
VIP36 does not fit the di-lysine consensus and VIP36 was 
not reported to be present in the ER, the cytoplasmic do- 
main of VIP36 is nevertheless overall remarkably similar 
to those of Emp47p and ERGIC-53. 

Emp47p Is Not an ER Protein but Colocalizes with a 
Golgi Marker 

Three yeast proteins with a di-lysine ER-localization con- 
sensus sequence have been identified so far. The first was 
the type I transmembrane protein Wbplp, a subunit of the 
N-oligosaccharyl-transferase complex in the ER (te Hee- 
sen et al., 1992, 1993). However, it neither depends on its 
KKXX sequence for proper function nor does it seem to 
escape from the ER if the di-lysine is mutated (Gaynor et 
al., 1994). The second is Vma21p, required for the assem- 

Table II. Quality Scores of Pairwise Alignments Performed 
with the Program BESTFIT 

Emp47p VIP36 

Complete aa 1-250 Complete aa 1-250 

ERGIC-53  166.5 (8.6) 98 . l  (7.4) 178.5 (21.7) 159.5 (25.6) 
VIP36 118.8 (5.5) 100.8 (7.8) 

For each sequence comparison a mean random quality score and its standard deviation 
was obtained by performing 10t3 alignments with one sequence randomized (using de- 
fault parameters). They were used to calculate the values given in parentheses: quality 
score of actual alignment minus mean score of random alignments divided by standard 
deviation of random alignments, aal-250, comparison of the first 250 amino acids of 
the respective sequences; complete, comparison with the whole sequences. 

bly of the vacuolar ATPase in the ER (Hill and Stevens, 
1994). This protein was predicted to span the membrane 
twice with both NH2 and COOH terminus in the ER- 
lumen. Vma21p depends on its di-lysine motif for reten- 
tion in the ER. The third protein is Gaalp,  a polytopic 
transmembrane protein that has a COOH-terminal se- 
quence KXKXX (Hamburger et al., 1995). Gaalp  is an es- 
sential protein that is required in the ER for the attach- 
ment of glycosylphosphatidylinositol onto proteins. Its 
localization to the ER was determined upon overproduc- 
tion. Mutating the COOH-terminal sequence in the over- 
produced Gaalp allowed partial escape of the mutant pro- 
tein from the ER (Hamburger, 1994). 

We wondered therefore whether the COOH-terminal 
KXKXX sequence of Emp47p would convey a steady- 
state ER localization to the protein. To localize the pro- 
tein an antibody against a peptide comprising the whole 
cytoplasmic tail (AT-antibody) was raised in rabbits. By 
immunofluorescence we showed that the Emp47p staining 
pattern was clearly distinct from that of the ER, visualized 
in the same strain by anti-Kar2p antibody. The ER-marker 
Kar2p (Normington et al., 1989; Rose et al., 1989) dis- 
played the typical ring-like staining around the nucleus 
and subplasmamembrane staining (Fig. 2 A, right). In con- 
trast the Emp47p AT-antibody produced a punctate stain- 
ing (Fig. 2 B, left). The fluorescent structures, typically be- 
tween 4 and 10 per mother cell, are often of elongated 
shape and vary in size and fluorescence intensity. We did 
not notice any accumulation in any particular region of ei- 
ther the mother or the daughter cell. Strains deleted for 
EMP47 did not stain with the anti tail antibody (data not 
shown). 

The steady-state Emp47p immunofluorescence pattern 
is most reminiscent of that reported for Golgi proteins in 
yeast, such as the peripheral protein Sec7p and the trans- 
membrane endoprotease Kex2p (Franzusoff et al., 1991; 
Redding et al., 1991). Another protein with a Golgi-like 
distribution in yeast is Pmrlp (Antebi and Fink, 1992). In 
a double immunofiuorescence experiment we demonstrated 
that Emp47p and HA-Pmrlp (tagged with the influenza 
hemagglutin-epitope, Antebi and Fink, 1992) exhibit 99 
and 89% colocalization, respectively (Fig. 2 B, legend). 

Emp47p Comigrates with Golgi Proteins during 
Subcellular Fractionation 

We used a second independent method to determine the 
steady-state localization of Emp47p in relation to other 
subcellular markers. Spheroplasts of ceils transformed 
with an episomal plasmid expressing HA-Pmrlp were bro- 
ken and the supernatant of a 500 g-spin was fractionated 
by sedimentation on a sucrose gradient (similar to Antebi 
and Fink, 1992). The gradient fractions were analyzed by 
the appropriate enzymatic assays or by immunoblotting. 
The results are shown in Fig. 3. In accordance with the im- 
munofluorescence data (Fig. 2 B) Emp47p cofractionated 
with HA-Pmrlp. Both migrated together in the middle of 
the gradient. Emp47p separated almost completely from 
the ER marker Wbplp (te Heesen et al., 1991), which oc- 
cupied the bottom fractions of the gradient. The vacuoles 
hardly entered the gradient and also separated from 
Emp47p (Vacuolar ATPase, 60-kD subunit; and alkaline 
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A 

-488 G~TTC~CCT~AGC~C~TC~AAA~TGT~ACCC~TT~GT~TTCATCTTC~TG~ACT~CTTCA~TTGTC~ATAC~GGCTT~TATACCA -399 

-398 ~C~CTGCCTCCCATGACTGACTTCAAATT~ATTCTTGAC~AAAT~TTG~TG~C~GTC~ATT~TCAC~CCATGGTAT~T -309 

-308 CTATCAAAAAGCACATCTAGACCTGAGAC~GGTCTTCAGACCAAAAATAGTCGCAAAATGATA~ATGCTCGCTTGCAGGTGTAC~CA -219 

-218 TCTATTAC~TTC~CGG~TATTATTCCTGTTTCAT~TATTTC~TTTCCATCTATT~TGTCATTACGTCTTCGTATCACTATACAC -129 

-128 GAGTAGAGAAACAGTATG~CTCTT~G~TGTTTTTGATCTTTT~TAG~GCCTT~TT~TATTG~T~TTAG~TTATACC~TA -39 

-38 AAATT~CAAATAGTTAGCATCAGGG~TCTGTATTTTATGATGATGTT~TTACTATGAAAAGTACAGTACTGTTGAGTGTTTTTACCG 51 
M M M L I T M K S T V L L S V F T V - I I  

52 TCTTAGCGACATG~CTGGATTGCTAG~G~TCATCCATTGGGTGACACTTCAGAT~ATCCAAATT~GCTCAGACTACTC~TCCCTG 141 
-I0 L A T W A G L L E A H P L G D T S D A S K L S S D Y S L P D 2 0  

142 ATCTCATT~TACACGTAAAGTGCCC~T~CT~CAAACTGGAG~C~TAGTCTAGAGG~G~AG~TTGTATTGACTTCT~TC 231 
21 L I N T R K V P N N W Q T G E Q A S L E E G R I V L T S N Q 5 0  

232 AAAATTCC~GTTCACTTTGGTTG~GC~GGATTCGATTTG~GGATTCTTTTACTATGGAGTGGACATTTAGGAGTGTT~TTATT 321 
51 N S K G S L W L K Q G F D L K D S F T M E W T F R S V G Y S 8 0  

322 CTGGCCAAACCGACGGTGGCATATCATTTT~TTTGTTC~GATTCT~CATACCACGCGAT~GCAGTTATAC~TGGGCCAGTG~CT 411 
81 G Q T D G G I S F W F V Q D S N I P R D K Q L Y N G P V N Y l 1 0  

412 ATGATGGTTTAC~TTATTAGTGGAT~C~TGGT~CATTG~CCC~CACTTCGTGGTC~CTAAATGATGGT~A.AAAGCCTGTAGATA 501 
iii D G L Q L L V D N N G P L G P T L R G Q L N D G Q K P V D K I 4 0  

502 AGACCAAAATcTATGATCAGAGTTTTGCATCTTGTTTGATG~TTATCAGGATTCCTCCGTTCCTTCcACGATCAGAGT~CTTATGATT 591 
141 TK Y D Q S F A S C L M G Y Q D S S V P S T I R V T Y D L I 7 0  

592 TGG~GACGAC~CTTATTAAAGGTTCAGGTGGAC~TAAAGTCTGTTTCCAAACTAGG~GGTTCGTTTTCCCTCTGGGTCTTACCGTA 681 
171 E D D N L L K V Q V D N K V C F Q T R K V R F P S G S Y R I 2 0 0  

682 TTGGTGTCACTGCTCAAAATGGAGCAGTG~T~T~T~AGAGTCTTTTGAAATATTCAAAATGC~TTTTTT~TGGAGTGATTG~G 771 
201 G V T A Q N G A V N N N A E S F E I F K M Q F F N G V I E D 2 3 0  

772 ATTCTTTGATCCCT~TGTG~TGC~T~GTCAGCCAAAACTGATcACcAAATACATTGACc~CA~CCGGCAAAGAAATTGATTG 861 
231 S L I P N V N A M G Q P K L I T K Y I D Q Q T G K E K L I E 2 6 0  

862 AAAAAACAGCATTTGACGcTGACAAAGACAAAATTACAAACTATG~TTATAT~GAAACT~ATAGAGTTG~GGTAAAATTCTTGCGA 951 
261 K T A F D A D K D K I T N Y E L Y K K L D R V E G K I L A N 2 9 0  

952 ACGATATC~T~TTTAGAAACAAAGCTAAATGATGTCATT~GGTCC~C~GAGCTATTATcATTCATGACTAcGAT~cTAAACAGC 1041 
291 D I N A L E T K L N D V I K V Q Q E L L S F M T T I T K Q L 3 2 0  

1042 TCTCTTCT~cACCA~T~T~TGAAAAG~CGTccACCGATGATGC~TCGcTGA~ATAAAGAAAATTTCAAAGAcTTCTTAT 1131 
321 S S K P P A N N E K G T  T D D A I A E D K E N F K D F L S  350 

1132 C~TC~TCAGAAATTGGAGAAAGTCCTGGTTG~C~GAAAAGTATAG~GcTACCAAACGTCAT~AC~GATGGTcCTcAGGTcG 1221 
351 I N Q K L E K V L V E Q E K Y R E A T K R H G Q D G P Q V D  380 

1222 ACGAAATT~CAGAAAAcT~TGATTTGGTTACTTCCATTGATTTTCATCATGTT~TTATGC-CATATTACACATTCAG~TCAGAC~G 1311 
381 E I A R K L M I W L L P L I F I M L V M A Y Y T F R I R Q E 4 1 0  

1312 AGATCATAAAGACCAAACTGCTATGATTTTGGATTATTCCTTCCACTCAAACC~TTGTGCACATGC~TCCCTATATATGTATATATAT 1401 
411 I I K T K L L *  

1402 GT~C~TACATATTTTATAAAAT~CG~CGATAGTTTATATTACTACTTC~TGGTTTATTTCTTATTGGAGTGTT~C~TAcATT 1491 

1492 ATGTTTTGCTTCTTTC~TTATTCATAGCTACTTCGTTGCTG~GTTAG~CAGGTTGTCCGGTTTAG~GGCGACCGGATCCGT~GC~C 1581 

1582 ACTGGATT~TTTGTGTTCTTTACTTCAGTGTCCAGCTT~CA~CGTTTTATCCCcAGCGACATTTTGT~TACTTTGTTCACATGA 1671 

1672 G~TAAATGTAT~AGGTTTAAAATCCTT~TGTTAC~TTTCCTAGG~GTTTGGGTTCGGTACCCTCTTTGTTGTTATTGTTTCATCC 1761 

1762 GTATTCGTTATTTCGTTA~ATTTGTAGT~CACTCGTTTGCGCC~CACATCTTTCAAATATTTATTTTTG~TTC 1838 

Figure 1. Structure of Emp47p. (A) Nucleotide sequence and derived amino acid sequence of EMP47. Numbering of nucleotides begins 
at the start of the open reading frame. Numbering of amino acids begins at the first amino acid of the mature protein as determined by 
direct NH2-terminal protein sequencing (dashed line). The putative transmembrane-domain is underlined. These sequence data are 
available from GenBank/EMBL/DDBJ under accession number X87622. (B) Biophysical parameters of Emp47p as determined with 
the program PEPTIDESTRUCTURE and PEPCOIL (GCG). Numbering starts with first amino acid translated from the open reading 
frame. Hydrophobicity calculated according to Kyte-Doolittle (1982), Turns (indicates t3-turns), a-helices and B-sheet predictions ac- 
cording to Garnier et al. (1978), coiled-coil probability according to Lupas et al. (1991). (C) Multiple alignment of the first 250 amino ac- 
ids of the mature polypeptides of ERGIC-53, VIP36 (putative NH2 terminus according to Fiedler et al., 1994) and Emp47p. The align- 
ment was produced with PILEUP (GCG) using a gap weight of 2.4 and a gap length weight of 0.1 and plotted with the program 
PRETTYPLOT (GCG) using the default parameters. Homologous residues according to PILEUP are boxed. (D) Multiple alignment of 

The Journal of Cell Biology, Volume 131, 1995 900 



I00 200 300 400 

5.0 

Hydrophilicity / ~  . V v " V ~" "" "-,u~ - • ~- " V " " ~/ 

-5.0 

Turns ~..L'~ A ~ ~  /~'] ~ A A-~ D 

Alpha Helices----~ ~ 0 [ . . . . . . . . . . . . . . . . . .  I ~ . . . . .  

Beta Sheets-~ ~ ~-~ ~ ~ ~ ~ 

Coiled Coil 

I00 200 300 400 

C 

Erap47p 
Ergic53 
VIP36 

G VIG GID P A V A L P H R E K Q S D G T V A 
I T D'DL~N[~ 'E ] . . . . . .  K I KIPIY O G V G S S S M D 

i 
f. 0 

0.0 

. 
F QIGIS TII LI O 44 

ErgicS3Er~p47p OL K I SL~ RI~ S V WIT ~L!LL x ~ a ~ G 97 
VTP36 E RIS KIEIG S I WIN HI01P ~ -- H GITGIK K N L H 93 

ErgicS3 A E N O G L E - [~ P v F G s AIDILIWINIG ~ ~ NKKN NG N -  p " G~qT_IPIAmVm z r '  R G Q la3~3s 
VIP36 T R~H L~-~ -- P V F G S KID N FIHIG LIA[I F L D T YIP E T T E R V FIPIY]IIS]V]M VIN N GIS 141 

~-.p47p ~ T[ZI_LI D - S L " G.q%9~ S T . . . . . .  
Ergic53 I QNJD GIA S A Q R K Y V R A Y N T I N N T 193 
vIP36 L SIK D SIR W T EIL AIGIClT A R D H D T F L S G R T[]L - - 188 

Emp47p ~ V ~ F  Q T R K ~ S [ ] S ~ R  I ~ Q  N ~ A  V N N~A~S~E I~K M ~ F  N G V I 228 
Ergic53 A 

riP36 I D T G V~PIT~Y~- F G ~ G I T  G]DILIS[D N H D IIIISIM K LIF Q LJ .... M 233 

 ,Tp  S  V__ AMGOP LITKYID 2S0 
Ergic53 ~ [TPDIK ~ p  p . . . . . . . . . . . . . .  250 
VIP36 H N I D W T[] I E P .... 250 

D 

~,Tp K~w LmP Lm~[]" ~[C~TP-~I~-~I i 417 
Ergic53 T V~FII IIFIV VIVIQ T VILIFII G ¥ IIMI¥ KIS Q]Q EIA A 480 
v~P~6 L ~U~_~c AWL GIIII[]c AVV--~V~K R~_~_~- R ~2 

the last 33 amino acids of ERGIC-53 and Emp47 and the last 32 amino acids of VIP36. The alignment was produced with PILEUP 
(GCG) using a gap weight of 2.5 and a gap length weight of 0.1 and plotted with the program PRETTYPLOT (GCG) using the default 
parameters. Homologous residues according to PILEUP are boxed. The arrow indicates the putative border between the transmem- 
brane domains and the COOH-terminal cytoplasmic tails. 

phosphatase, data not shown). Functionally the cis-most 
Golgi marker  identified thus far is Och lp  (Nakanishi- 
Shindo et al., 1994; Gaynor  et al., 1994). Och lp  consis- 
tently migrated in a very sharp peak displaced by at least 
one fraction from Emp47p. The overlap with other as- 

sayed Golgi markers was best for GDPase  (Abeijon et al., 
1989). The majority of GDPase  is located cis of the trans- 
most Golgi marker  Kex2p and may be in all Golgi sub- 
compartments that contain mannosyltransferases (Cun- 
ningham and Wickner, 1989; Bowser and Novick, 1991; 
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Emp47p HA-Pmrl p 
Figure 2. Emp47p localization. (A) Emp47p staining is different 
from Kar2p staining representing ER. Fixed and permeabilized 
RH732 cells were incubated with Emp47p anti-tail antibody (left) 
or anti-Kar2p antibody (right). Primary antibodies were visual- 
ized using Cy3-conjugated goat-anti rabbit IgG. (B) Emp47p and 
HA-Pmrl colocalize. RH448 cells transformed with pl161, coding 
for HA-Pmrlp (Antebi and Fink, 1992) were fixed, permeabi- 
lized, and then simultaneously incubated with 12CA5 (directed 
against the HA-Epitope of HA-Pmrl) and AT-antibody. 12CA5 
was visualized with FITC-conjugated rabbit anti-mouse IgG and 
the anti-tail antibody with Cy3-conjugated goat anti-rabbit IgG. 
Because pl161 is a multicopy-plasmid strong variance in HA- 
Pmrlp expression levels from cell to cell were seen. 57 cells with 
an HA-Pmrl-signal comparable to the one seen in the figure 
were used for quantitation of the colocalization. In these cells a 
total of 224 structures positive for both markers were counted. 
Two structures were positive for Emp47p only and 29 structures 
were positive for HA-Pmrlp only. This amounts to a colocaliza- 
tion of 99% between Emp47p and HA-Pmrlp and of 89% be- 
tween HA-Pmrlp and Emp47p. Bar, 6 p.m. 

Graham et al., 1994). Kex2p also migrated in the middle of 
the gradient, but its profile was different from that of 
Emp47p. 

Emp47p Has Access to the ~1,3 Mannosyltransferase 
Containing Golgi Subcornpartment 

Emp47p does not have any putative N-linked glycosyla- 
tion sites. We wanted however to use the analysis of outer 
chain glycosylation as a further tool for collecting evidence 
about the localization of Emp47p. Therefore, we intro- 
duced two overlapping N-linked glycosylation consensus 
sites (NXT/S) at position 49 and 50 of the mature protein. 
This was achieved by mutating amino acids Qs0 to N and 
N51 to T, creating the sequence NNTS. The mutant Emp47p 
was also tagged with a c-myc epitope immediately after 
the signal-peptidase cleavage site at amino acid 9. We inte- 
grated myc-glyco-EMP47 into the genome of a haploid 
strain in which EMP47 was deleted (nucleotides 106-1375 
replaced with LYS2, see Materials and Methods). In a 

pulse-chase experiment, we radiolabeled cells with 
[3SS]methionine and cysteine for 5 min at 30°C and then 
chased for 0 rain or 30 min at the same temperature. Cell 
extracts were prepared, first precipitated with the AT- 
antibody and reprecipitated with either the same antibody 
or a polyclonal antibody against cd,3-1inked mannose. The 
precipitates of the second round of precipitation were then 
analyzed by SDS-PAGE followed by autoradiography 
(Fig. 4 A). An isogenic strain expressing myc-tagged 
Emp47p was treated the same way in a parallel experi- 
ment. After the 5-min pulse the AT-antibody precipitated 
one sharp band ,'~49 K corresponding to myc-Emp47p (the 
weak extra band at ,-o62 K is not related to Emp47p as it is 
also present in a delete strain, data not shown). Myc- 
Emp47p was stable during the chase period. 76% of the 
signal precipitated by the AT-antibody immediately after 
the pulse was recovered after the 30-rain chase (quantifi- 
cation by PhosphoImager). In the case of the myc-glyco- 
Emp47p a prominent band of slightly higher molecular 
mass was precipitated, probably corresponding to the core 
glycosylated protein. In addition the autoradiogram re- 
vealed a broad smear of radioactivity ranging in apparent 
molecular mass up to > 100 kD. This is typical of glycopro- 
teins with extensive cd,6-, cxl,2-, and al,3-1inked mannose 
outer chain modifications. 54% of the total myc-glyco- 
Emp47p had received outer chain modifications after the 
pulse and 89% after the chase. The core-glycosylated myc- 
glyco-Emp47p had largely disappeared after the chase 
(only 16% remained) while the high molecular smear 
slightly increased in intensity (106% of the 0 min chase 
value). After the chase we further noted the appearance of 
a new band at slightly lower mobility than that of the core- 
glycosylated myc-glyco-Emp47p. 

In yeast outer chain modifications of N-linked glycans 
have been allocated to functionally successive steps corre- 
sponding to different Golgi cisternae. Only recently it was 
found that the first al,6-1inked mannose is added to the 
core oligosaccharide by Ochlp (Nakanishi-Shindo et al., 
1994). Ochlp also operationally defines a new cis-Golgi 
compartment (Gaynor et al., 1994). It is separated from 
the elongating cd,6 mannosyltransferase and the ~xl,3 
mannosyltransferase that had previously been defined as 
cis and medial-Golgi markers, respectively (Graham and 
Emr, 1991). To study whether Emp47p can be modified by 
the al,3 mannosyltransferase we precipitated the newly 
synthesized myc-glyco-Emp47p with the anti-cxl,3 serum. 
As can be seen in Fig. 4, immediately after the pulse, 63 % 
of the high molecular mass smear that was precipitated 
with the AT-antibody could be precipitated by the anti 
cd,3 serum as well. After 30 rain of chase the intensity of 
the anti cd,3 mannose precipitate reached 95% of the in- 
tensity of the total smear. Thus almost complete al ,3 man- 
nose modification of the N-linked carbohydrates was ob- 
served within 30 rain. As expected myc-Emp47p was not 
precipitated by the anti c~1,3 serum. This also provided 
an internal control for the complete inactivation of the 
AT-antibody from the first round of precipitation. The ex- 
periment supports the view that Emp47p rapidly reaches a 
medial-Golgi compartment as defined by the al ,3 manno- 
syltransferase. 

Visualization of myc-glyco-Emp47p by immunofluores- 
cence (Fig. 4 B, top) revealed a pattern similar to that of 
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Figure 3. Migration of or- 
ganelle-specific markers in 
sucrose density gradients. 
RH448 cells t ransformed 
with pl161 were grown over- 
night at 30°C in minimal glu- 
cose medium supplemented 
with leucine, histidine, and 
lysine (20 txg/ml each) to 0•5 
x 107 cells/ml. Cells were 
harvested and resuspended 
in complete medium for 2 h 
at 30°C. Cells (2 x 109) were 
converted to spheroplasts 
and lysed. The lysate, cleared 
by two 500 g spins, was 
loaded on top of the sucrose 
gradient and centrifuged as 
described in Materials and 
Methods. The arrow indi- 
cates the direction of sedi- 
mentation. Emp47p, HA-  
Pmrlp ,  Wbplp ,  Ochlp ,  and 
the 60-kD subunit  of the vac- 
uolar ATPase were Western 
blotted and detected with 
ECL and quantified on a 
densi tometer  (arbitrary 
units). Kex2p and GDPase  
were detected with enzy- 
matic assays (see Materials 
and Methods, arbitrary 
units)• 

Emp47p (compare Figs. 2 A and 5, top), indicating that in- 
troducing the tags did not cause a mislocalization of the 
protein. This was confirmed by coexpressing HA-Pmr lp  
and performing double-immunofluorescence (Fig• 4 B, 
middle and bottom)• Quantification (see Fig. 4 B, legend) 
yielded a colocalization between myc-glyco-Emp47p and 
HA-Pmr lp  of 98%. 

Steady-state Golgi Localization Depends on COOH- 
terminal KXKXX Sequence 

We next determined whether the COOH-terminal KTKLL 
sequence plays a role in the steady-state localization of 
Emp47p. For that purpose we created a set of site-directed 
mutations affecting the consensus features of di-lysine- 

based signals. All constructs were tagged with a myc- 
epitope at amino acid 9 of the mature protein because our 
AT-antibody was not expected to recognize the mutated 
tails. As it is possible that Emp47p forms higher order 
complexes, we integrated the mutant genes into the ge- 
nome of a haploid pep4 strain in which EMP47 was de- 
leted (nucleotides 106--1375 replaced with LYS2, see Ma- 
terials and Methods). The pep4 mutation, which alleviates 
the problem of vacuolar proteolysis, was used because we 
had preliminary indications that some tail-mutant proteins 
were rapidly degraded. 

The immunofluorescence analysis of some key con- 
structs is shown in Fig. 5, while the results with the other 
constructs are summarized in Table III. The c-myc tagged 
but otherwise unchanged Emp47p yielded the wild-type 
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Figure 4. Glycosylation and localization of an Emp47p variant. 
(A) Cultures of strains RH3046 (myc-glyco-Emp47p) and RH- 
3047 (myc-Emp47p) were grown at 24°C, radiolabeled for 5 min 
at 30°C, and then chased at the same temperature for 0 min or 30 
min as indicated. Cell extracts were prepared and precipitated 
first with AT-antibody. Precipitates were reprecipitated with ei- 
ther AT-antibody or with antiserum against al ,3 linked mannose 
as denoted. The final precipitates were separated by 8% SDS- 
PAGE (migration of molecular weight standards of 45, 66, and 
97 K is indicated) and the gels were analyzed by exposure to film 
and Phospholmager-plates. (B) (Top) Immunofluorescence la- 
beling of myc-glyco-Emp47p in RH3046 using 9El0 anti-myc an- 
tibody; (middle and bottom) double-immunofluorescence on 
RH3046 transformed with pl161, stained for myc-glyco-Emp47p 
with AT-antibody (middle) and HA-Pmrlp with HA-antibody 
(bottom). The images of these cells were recorded with a video 
equipment, adjusted to similar background and brightness with 
the shadow/highlight tool of the image editor PSP (JASC Inc., 
Minnetonka, MN) and printed on a 600 dpi printer. 20 cells with 
an HA-Pmrl-signal comparable to the one seen the figure were 
used for quantitation of the colocalization. In these cells a total of 
81 structures positive for both markers were counted. Two struc- 
tures were positive for Emp47p only and one structure was posi- 
tive for HA-Pmrlp only, yielding a colocalization of 98% be- 
tween Emp47p and HA-Pmrlp and of 99% between HA-Pmrlp 
and Emp47p. Bar, 6 Ixm. 

punctate  pa t te rn  (Fig. 5, top). Moving the lysine at posi- 
tion - 5  to posi t ion - 4  did not  change the pat tern,  demon-  
strating the equivalence of K X K X X  and K K X X  in this 
case (Fig. 5, TKKLL). Changing lysine - 3  to glutamine 

Figure 5. Influence of the COOH-terminal KXKXX motif of 
Emp47p on its intracellular steady-state localization. Constructs 
encoding myc-tagged Emp47p with a wild-type or mutated di- 
lysine motif were expressed in RH2825 (deleted for EMP47). 
Each construct is denoted by its last five COOH-terminal amino 
acids. KTKLLS4 indicates the construct in which the wild-type se- 
quence was tailed with four serines. The left panels show the 
immunofluorescence patterns detected with the 9El0 antibody 
directed against the myc-epitope. The right panels show the cor- 
responding Nomarski image with the vacuoles appearing as in- 
dentations. Bar, 6 Ixm. 

however  led to a complete  redis t r ibut ion of the mutant  
prote in  to the vacuolar  membrane .  This is obvious from 
comparing the immunofluorescence with the correspond-  
ing Nomarsk i  image (Fig. 5, KTQLL). As summarized in 
Table III, changing lysine - 5  or both  lysines also resulted 
in vacuolar  staining. The same was true for the dele t ion of 
the K T K L L  sequence. Like for o ther  di-lysine motifs, 
arginines replacing the lysines resulted in loss of function 
and the mutant  Emp47p was found in the vacuole (Fig. 5, 
RTRLL). Fur thermore ,  the sequence K T K L L  displayed a 
posi t ion dependence.  Add ing  four serines at the C O O H -  
terminus of Emp47p also resulted in a vacuolar  staining 
pa t te rn  (Fig. 5, KTKLLS4). Thus the K T K L L  sequence in 
Emp47 displays all the hal lmarks  of a di-lysine ER-local-  
ization motif. The Emp47p-ta i l  is also sufficient to confer 
ER-local izat ion to the p lasma membrane  protein  Ste2p 
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Table III. Summary of the Qualitative Immunofluorescence 
Pattern of  myc-tagged Emp47p Tail Mutants Expressed in an 
emp47A Strain (RH2825) 

IF pattern 

COOH-terminal sequence Punctate Vacuolar 

wt: ..RIRQEIIKTKLL + 
• .RIRQEIIQTKLL + 
• .RIRQEIIQTQLL + 
• .RIRQEII + 
..RIRQEIIKTKAA + 
• .RIRLAIIKTKLL + 

Site-directed mutations are indicated in bold type. For comparison the wild-type se- 
quence of the cytoplasmic tail of Emp47p (wt) is given as well. 

upon t ransplanta t ion (see below).  Therefore  Emp47p is 
the first known prote in  in which a functional di-lysine mo- 
tif  is essential  for a Golgi  localization. 

Mutat ing two o ther  features that  are conserved in the 
cytoplasmic tails of Emp47p,  ERGIC-53,  and VIP36 (Fig. 

1 C) did not  change the wild-type distr ibution.  Those 
mutat ions  (Table III)  are the exchange of the two C O O H -  
terminal  leucines (consensus: large hydrophobic)  with ala- 
nine and the exchange of the strictly conserved hydro-  
phil ic/charged amino acids Q E  for L A  (hydrophobic/neu-  
tral). 

Emp47p Can Recycle to the ER 

Di-lysine ER-local iza t ion motifs can bring about  a s teady- 
state ER-local izat ion by recycling (see In t roduct ion and 
Discussion). To test whether  Emp47p could also follow a 
recycling pathway to the E R  we made  use of  the secl2 mu- 
tant. In secl2 secret ion is b locked before  the budding of  
t ranspor t  vesicles from the E R  at nonpermissive tempera-  
ture (Nakano  et al., 1988; Barlowe and Schekman,  1993). 
If recycling still occurs under  these condit ions and if 
Emp47p follows this pa thway it should be possible to re- 
distr ibute Emp47p to the ER,  thus deplet ing the Golgi  
pool  at the same time. 

24oc 35oc 

wt Emp47p 

sec12 

sec12 

myc-Emp47p 

DAPI 

HA-Pmrl p 

Figure 6. Indirect immuno- 
fluorescence analysis of the 
dynamics of intracellular dis- 
tribution of Emp47p and 
Pmrlp in sec12 cells, sec12 
cells expressing either myc- 
EMP47 integrated at the leu2 
locus (sec12, middle) or HA- 
PMR1 from the 21x-plasmid 
pl161 (bottom) were incu- 
bated for 1 h in the presence 
of 20 I~g/ml cycloheximide at 
either permissive (24°C) or 
nonpermissive temperature 
(35°C). The wild-type strain 
RH448 (wt, top) was treated 
the same way in parallel. 
Emp47p in RH448 was de- 
tected with AT-antibody. 
The images of the latter cells 
were recorded with a video 
equipment and printed on a 
600 dpi printer, myc-Emp47p 
was detected with 9El0 anti- 
body. HA-Pmrlp was de- 
tected with 12CA5. Bar, 6 ixm. 
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Wild type or secl2 cells (in some cases transformed to A 
express a particular marker-protein) were grown at the 
permissive temperature (24°C). Cycloheximide was added 
to avoid a contribution of newly synthesized Emp47p. 
Then aliquots were put at either 24 or 35°C (nonpermis- .-- 
sive) for 1 h. Cells were then fixed and processed for im- 

w 

munofluorescence. Fig. 6 shows that wild-type cells still -~ 
displayed a punctate pattern after incubation at both tem- 
peratures (top). secl2 cells expressing myc-Emp47p in ad- 
dition to the endogenous Emp47p also retained a punctate 
pattern after incubation at permissive temperature (Fig. 6, o 
secl2, 24°C). At restrictive temperature, however, the im- .~ 
munofluorescence pattern in secl2 cells changed qualita- 
tively. The punctate structures disappeared and a ring 
around the nucleus (compare corresponding DAPI  stain) 
and some staining in the periphery of the cell became visi- 
ble. This pattern is equivalent to ER-staining in yeast as 
exemplified by the Kar2p-immunofiuorescence in Fig. 2 A. 
The comparatively low intensity of the Emp47p immuno- 
fluorescence signal after recycling was most likely due to 
the distribution of the antigen over a much larger surface 
area. 

The change in the immunofluorescence pattern of Emp- 
47p is consistent with the interpretation that Emp47p re- 
distributed from the Golgi to the ER upon imposing the 
secl2 block. Importantly, Pmrlp,  with which Emp47p colo- 
calizes under normal growth conditions, does not qualita- 
tively change its punctate appearance in immunofluores- 
cence when the secl2 block is imposed (Fig. 6, bottom). 
Therefore, the redistribution seen for Emp47p was not 
simply due to a change of morphology of the Emp47p com- 
partment nor to a general merging of the Golgi with the ER. 

We also applied the sucrose gradient analysis to monitor 
the changes in intracellular distribution of Emp47p after a 
secl2 block, secl2 cells were incubated in the presence of 
cycloheximide at permissive or nonpermissive tempera- 
ture. They were then spheroplasted and lysed. The cleared 
lysates were fractionated on sucrose-gradients as described B 
in Materials and Methods. The immunoblot-quantification 
of the gradient fractions is shown in Fig. 7 A. It provides 
quantitative evidence for the recycling of Emp47p that is 
complementary to the immunofluorescence analysis. 1 h 
after imposing the sec12 block, Emp47p was redistributed 100 
from its steady-state position in the middle of the gradient 
to the bottom of the gradient (Fig. 7 A, top), where the ER 80 
marker Wbplp  migrated under both secl2 permissive and 
nonpermissive conditions (Fig. 7 A, middle). The cis-most ~ 60 
Golgi marker, Ochlp, did not change its migration proper- 

m 

ties after the sec12 block (Fig. 7 A, bottom). This is similar ~ 40 
to what we had observed for the HA-Pmr lp  localization in ,~ 
the immunofluorescence experiment (Fig. 6, bottom) and 20 
provides additional evidence that the Golgi apparatus is 
still present. A quantification of the kinetics of the redistri- 0 
bution process is shown in Fig. 7 B. We added NaF and 
NaN3 at various times after shift to the secl2 nonpermis- 
sive temperature (37°C). One cell aliquot was kept at the 
permissive temperature (24°C) throughout the duration of 
the experiment. Golgi and ER fractions were then sepa- 
rated on sucrose gradients as above. Significant redistribu- 
tion of Emp47p took place only at 37°C and it was time 
and energy dependent with a half time of retrograde trans- 
port of ~30 min. 

Emp47p 
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Figure 7. Dynamic intracellular redistribution of Emp47p in 
sec12 cells observed by velocity sedimentat ion on sucrose gradi- 
ents. RH1491 (sec12) cells were incubated for the indicated times 
at ei ther permissive (24°C) or nonpermissive (35 or 37°C) tem- 
perature in the presence of 20 ixg/ml cycloheximide before 
spheroplasting and homogenization. Lysates cleared by a spin at 
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~1,3 Mannose-modified Emp47p Can Recycle to the E R  

The myc-glyco-Emp47p provided a tool to address the 
question from which Golgi subcompartment  recycling can 
occur. We radiolabeled secl2 cells stably expressing the 
myc-glyco-Emp47p. Labeling was performed at 24°C for 
15 rain followed by a 10-min chase at the same tempera- 
ture. We then added cycloheximide and incubated aliquots 
at either 24 or 35°C. Cells were spheroplasted, broken, and 
then the lysate was spun at 500 g. Supernatants of that spin 
were separated on sucrose gradients as described in Mate- 
rials and Methods. The gradient fractions were first immu- 
noprecipitated with AT-antibody.  The precipitates were 
then split into aliquots and reprecipitated with either AT-  
antibody or with antiserum against al,3-1inked rnannose. 
Fig. 8 shows the PhosphoImager  quantification of the en- 
dogenous Emp47p and the high molecular weight "smear" 
precipitated by the antiserum against c~1,3 linked man- 
nose. It can be seen that both the nonglycosylated Emp47p 
and the cd,3 mannose modified Emp47p variant qualita- 
tively behaved in the same way. At  the permissive temper- 
ature for secl2 the majority of the radioactivity was found 
in the middle of  the gradient. After  shift to 35°C for 1 h 
the Golgi-signal decreased in size and the signal from the 
E R  fractions increased. Therefore we conclude that myc- 
glyco-Emp47 can recycle from an e~-1,3 mannosyltransferase 
containing Golgi compartment  to the ER. 

Steady-state Localization o f  Emp47p Is Unchanged in a 
ret 1-1 Mutant  Cell 

Letourneur et al. (1994) isolated a mutant in c~-COP (retl-1) 
that was deficient in the intracellular retention of an ct-fac- 
tor receptor (Ste2p) chimera bearing the cytosolic, C O O H -  
terminal di-lysine motif of Wbplp .  To determine whether 
the di-lysine motif of Emp47p would also be recognized by 
~x-COP and whether Emp47p would depend on cx-COP for 
its steady-state Golgi-localization, we fused the 12-amino 
acid tail of Emp47p to Ste2p and expressed the construct 
together with myc-Emp47p in MA Ta_ cells that were de- 
leted for the endogenous STE2 and were either wild type 
or retl-1. The cells were grown at 30°C, conditions under 
which retl-1 is deficient for the retention of Ste2p- 
Wbplpta i l  (Letourneur et al., 1994). We then examined 
the intracellular distribution of myc-Emp47p and Ste2p- 
Emp47ptail  by immunofluorescence. The results are 

500 g were loaded onto the sucrose gradients and spun as de- 
scribed in Materials and Methods. The sucrose gradient fractions 
were separated by SDS-PAGE and immune blotted with AL- 
antibody, anti-Wbplp, and anti-Ochlp. Immunoreactivity was 
detected with ECL and the signals quantified by densitometry. 
(A) Gradient profiles after 1 h incubation at permissive and non- 
permissive temperatures. The arrow indicates the direction of 
sedimentation. (Top) Emp47p (open circles, 24°C; filled circles, 
35°C), (middle) Wbplp (open triangles, 24°C; filled triangles, 
35°C), (bottom) Ochlp (open squares, 24°C; filled squares, 35°C). 
(B) Time-course of Emp47p redistribution. Gradient profiles of 
incubations at 24°C for 75 min and 37°C for 15, 45, and 75 min 
were immune blotted for Emp47p using the AL-antibody. The 
ECL-signals from fractions 1-8 were summed up as Golgi reactiv- 
ity (filled bars) and the cumulated signals from fractions 9-12 are 
referred to as ER reactivity (hatched bars). 
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Figure 8. Dynamic intracellular redistribution of Emp47p and 
cxl,3 mannose modified myc-glyco-Emp47p in secl2 cells. 
RH3049 (secl2, myc-glyco-EMP47) were radiolabeled at 24°C 
for 15 rain and chased for 10 min. Cells were transferred into me- 
dium containing 20 ~g/ml cycloheximide and aliquots incubated 
for 1 h at either 24°C (permissive) or 35°C (nonpermissive). Cells 
were then converted into spheroplasts and lysed. After clearing 
the lysates at 500 g the supernatants were loaded onto sucrose 
gradients and spun as described in Materials and Methods. Gra- 
dient fractions were precipitated with AT-antibody. Precipitates 
were then reprecipitated either with AT-antibody or with a se- 
rum specific for al,3-1inked mannose. Second round precipitates 
were separated on SDS-PAGE and exposed to phosphoimager 
plates. The radioactive signals from each fraction were quantified 
and plotted (arrow indicates direction of sedimentation). (Top) 
Gradient distribution of Emp47p (open circles) and txl,3 linked 
mannose modified myc-glyco-Emp47p (closed circles) after incu- 
bation at 24°C; (bottom) distribution of same after incubation at 
35°C. 

shown in Fig. 9 A. Clearly Ste2p-Emp47ptail was retained 
in the E R  in RET1 cells (compare D A P I  staining of the 
nucleus). In retl-1 mutant  cells, however, the staining 
around the nucleus was abolished, and staining at the pe- 
rimeter of the cells was observed. This is the pattern also 
observed for the wild type plasma membrane protein 
Ste2p in the parental strains (Fig. 9 B). Thus the cytoplas- 
mic tail of  Emp47p controlled the intracellular distribution 
of the Ste2p fusion protein in very much the same way as 
the Wbplp-tai l  (Letourneur et al., 1994). Surprisingly, 
Emp47p distribution was apparently unaffected by the 
retl-1 mutation (Fig. 9 A, top). This held true when we vi- 
sualized Emp47p by immunofluorescence in retl-1 pep4A 
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myc- 
Emp47p 

Ste2- 
Emp47ptail 

Table IV. The Influence o f  RET1, PEP4 and the Di-lysine 
Signal on the Turnover of  Emp47p 

Half-time for 
Strain Relevant genotype degradation (hrs) 

RH3193 
RH3187 
RH3274 
RH3275 
RH2830 

RET1, PEP4, EMP47 5.1 
retl-1, PEP4, EMP47 5.0 
retl-1, pep4A, EMP47 5.0 
RET1, PEP4, emp47A, myc-EMP47-QTQLL 0.8 
RETI, pep4zl, emp47A, myc-EMP47-QTQLL 5.0 

After a 15-min pulse with 35S protein-labeling mix at 30°C at least five chase time 
points were taken in duplecate for each strain, covering 60 min for RH3275 and 4.5-6 h 
for the other strains. Cell extracts were prepared (see Materials and Methods) and pre- 
cipitated with AT-serum, which also recognises the QTQLL mutant tail. Average val- 
ues of each timepoint were obtained by Phospholmager-analysis. The values were fit- 
ted with a linear equation from which the half-time was determined (rounded to the 
nearest tenth of an hour). Correlation coefficients of the optimal curve-fits were in the 
range ofR = 0~928 to R = 0.995. 

DAPI 

Ste2p 

Emp47p 

Nomam~ 

Figure 9. In f luence  of  RET1 on  the  local izat ion of  E m p 4 7 p  and  
S te2pEmp47pta i l .  RET1 (RH3193)  and  retl-1 (RH3187)  cells 
were  de le ted  for STE2 and  t hen  STE2EMP47TAIL and  MYC- 
EMP47 were  in t eg ra t ed  into the  g e n o m e  resu l t ing  in RH3199  
and  RH3196  respect ive ly  (see Mater ia l s  and  M e t hods ) .  T h e s e  re- 
c o m b i n a n t  s t rains,  the  co r r e spond i ng  pa ren ta l  s t rains,  as well as a 
retl-1 pep4A s t ra in  (RH3274)  were  g rown  at 30°C and  t hen  pro-  
cessed  for i m m u n o f l u o r e s c e n c e .  (A)  Cells  of  the  s t ra ins  R H 3 1 9 9  
and  RH3169  were  doub le  labeled  with 9 E l 0  recogniz ing  myc-  
E m p 4 7 p  (top), and  with a Ste2p pep t ide -an t ibody ,  recogniz ing  
S te2p-Emp47pta i l  (middle). Seconda ry  an t ibodies  were  F I T C -  
con juga t ed  a n t i - m o u s e  and  Cy3-con juga ted  an t i - rabb i t .  T h e  bot-  
t o m  pane l s  show c o r r e s p o n d i n g  D N A - s t a i n i n g  with D A P I .  (B) 
Cells  of  the  the  pa ren ta l  RET1 and  retl-1 s t ra ins  (RH3193  and  

(RH3274) cells (Fig. 9 C). There was no apparent accumu- 
lation of wild-type Emp47p in the vacuole of retl-1 pep4zl 
cells, while mutant Emp47p with an impaired di-lysine mo- 
tif could be visualized in the vacuole ofpep4A cells (Fig. 5, 
Table III). In addition, the turnover rates of Emp47p were 
equally low (tl/2 = 5 h) in RET1 and retl-1 strains (RH3193 
and RH3187; Table IV). In contrast, mutant Emp47p with 
a QTQLL-tail, which escapes to the vacuole (table III), 
was degraded much more rapidly (tl/2 = 0.8 h; RH 3275; 
Table IV). Therefore we should have detected even a 
modest increase in leakage of wild-type Emp47p to the 
vacuole due to the retl-1 mutation. This conclusion is sup- 
ported by the finding that the rate-limiting step in turnover 
of wild-type Emp47p seems to be its slow access to the vac- 
uole, because the turnover-rate of wild-type Emp47p in 
PEP4 strains was the same as that for both wild-type and 
mutant Emp47p in pep4A strains (tl/2 = 5 h; RH3193, 
RH3187, RH3274, RH2830; Table IV). 

Discussion 

The Steady-state Localization of Emp47p 

We have cloned and sequenced a gene coding for a novel 
type I transmembrane protein, Emp47p. This protein has 
sequence homology to ERGIC-53 and to VIP36, a newly 
defined class of putative intracellular lectins (Fiedler and 
Simons, 1994; Arar  et al., 1995). Emp47p carries a COOH- 
terminal di-lysine motif typically found on resident ER- 
membrane proteins, but is nevertheless found in the Golgi 
under steady-state conditions. Golgi localization was dem- 
onstrated by a combination of subcellular fractionation on 
sucrose gradients and immunofluorescence that showed 
that Emp47p is not localized to the ER, to the plasma 
membrane, nor the vacuole. On the other hand, Emp47p 
colocalized with Pmrlp  and overlapped with GDPase, two 
presumed Golgi markers. 

RH3187)  were  labeled  with c~ Ste2p p e p t i d e - a n t i b o d y  fol lowed 
by Cy3-con juga ted  s econda ry  an t ibody  to visualize Ste2p. (C) 
Cells of  the  retl-1 and  retl-1 pep4A strains (RH3187 and  RH3274)  
were  labe led  with A T - a n t i b o d y  fol lowed by Cy3-con juga ted  sec- 
onda ry  an t ibody  to visualize Emp47p .  B o t t o m  pane l s  s h o w corre-  
spond ing  N o m a r s k i  images  visual izing the  vacuoles .  
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Although recent progress has been made in the ultra- 
structural characterization of the Golgi in Saccharomyces 
(Preuss et al., 1992), analysis of the subcompartmentaliza- 
tion of this organelle still rests on the biochemical analysis 
of Golgi-specific processing events and the character- 
ization of some proteins involved in these events. The 
framework was established by looking at the successive 
glycosylation and proteolytic processing of proteins on the 
biosynthetic route (Graham and Emr, 1991; Gaynor et al., 
1994) and can be summarized as follows. The first and per- 
haps cis-most Golgi-specific modification is the addition of 
an ct-1,6 mannose by Ochlp (Nakanishi-Shindo et al., 
1994), followed by elongation with additional et-l,6 man- 
nose residues, followed by addition of ct-l,3 mannose resi- 
dues, followed by the proteolytic cleavage by Kex2p in 
perhaps the trans-most Golgi compartment. This would 
define four Golgi subcompartments. One would predict 
that GDPase, which is required for import of GDP man- 
nose into the Golgi lumen, would be present in the first 
three Golgi subcompartments. This is consistent with its 
fractionation pattern and overlap with Ochlp. Other 
Golgi markers have been placed partially within this frame- 
work by means of subcellular fractionation and/or immu- 
nofluorescence (Abeijon et al., 1989; Bowser and Novick, 
1991; Cleves et al., 1991; Cunningham and Wickner, 1989; 
Franzusoff et al., 1991; Segev et al., 1988; Stearns et al., 
1990). 

A more precise Golgi localization of Emp47p can be in- 
ferred from the virtually complete colocalization with the 
Ca > ATPase, Pmrlp,  both in sucrose density gradient 
fractionation and in immunofluorescence, and from the 
glycosylation pattern of the Emp47p variant. In a pmrlA 
strain Golgi-specific sugar modifications of invertase are 
abolished (Abeijon et al., 1993) and heterologous proteins 
are secreted in a core-glycosylated form. The growth le- 
sion of yptl-1 is alleviated. Yptlp is a peripheral Golgi 
GTPase that was shown to be required for ER to Golgi 
and early intra-Golgi transport steps (reviewed by Segev, 
1994). Furthermore pmrlA interacts with several sec al- 
leles (Rudolph et al., 1989; Antebi and Fink, 1992). It will 
be interesting to see if one of the functions of Pmrlp is to 
provide Ca 2+ for the putative lectin-activity of Emp47p 
(see below). 

Antebi and Fink (1992) found that on sucrose density 
gradients Pmrlp migrated in a profile widely overlapping 
though not congruent with the trans-most Golgi-marker 
Kex2p, a result we confirmed in the present study. In im- 
munofluorescence studies on Pmrlp only a modest colo- 
calization with Kex2p (27%) was observed. An even lower 
degree of colocalization was found with Sec7p (17%), a 
peripheral Golgi-membrane protein which itself colocal- 
izes to a large extent with Kex2p (reviewed by Franzusoff, 
1994). Thus Pmrlp and Emp47p are at least not extensively 
associated with the trans-most Golgi subcompartment. 

Additional information as to which Golgi subcompart- 
ments Emp47p is accessible, comes from studies of an 
N-glycosylated version of the protein. We could show that 
its glycans are largely modified by ~1,3 linked mannose 
within 5 min. This rapid acquisition of et-l,3 mannose link- 
ages corresponds to the time required for similar modifica- 
tions on carboxypeptidase Y and ~x-factor, suggesting that 
Emp47p is not retained for any significant amount of time 

in the ER (Graham and Emr, 1991; Klionsky et al., 1988). 
The access of tagged Emp47p to the ed,3 mannosyltrans- 
ferase compartment did not reflect aberrant targeting due 
to N-glycosylation by three criteria. First, the steady-state 
localization of the tagged Emp47p was not changed com- 
pared to the WT-protein as judged by colocalization with 
HA-Pmrlp. Second, we noted a similar stability of Emp- 
47p and its glycosylated version. This argues against the 
possibility that we visualized the glycosylated Emp47p in 
transit to the vacuole, where mutant Emp47p with an im- 
paired localization signal is targeted (see below). Third, 
we obtained evidence for a similar recycling to the ER of 
wild type Emp47p and its glycosylated version (see be- 
low). In conclusion, from the subcellular fractionation 
and the glycan-analysis the steady-state localization of 
Emp47p must be after the Ochlp subcompartment (cis- 
most Golgi) and before the Kex2p (trans-most Golgi) sub- 
compartment. 

The Di-lysine Signal Is Required for the Steady-state 
Localization of Emp47p 

As mentioned before, functional di-lysine signals have 
been demonstrated for proteins located at the ER at steady- 
state. ERGIC-53 is the only nonchimeric protein with a di- 
lysine motif that is known to reside partially downstream 
of the ER at steady-state, in the ER-Golgi intermediate 
compartment, and to a minor extent in the cis-Golgi 
(Schweizer et al., 1988). Emp47p is the first protein that is 
dependent on a di-lysine signal for its steady-state distri- 
bution in the Golgi. This adds the di-lysine motif to signals 
involved in Golgi protein localization (Machamer, 1993; 
Nilsson and Warren, 1994; Wilsbach and Payne, 1993). 

The change of any conserved feature within the di-lysine 
motif abolished the normal Golgi localization of Emp47p. 
Mutant Emp47p accumulated in the vacuole of pep4 strains 
and was rapidly degraded in strains not deficient in vacu- 
olar proteolysis (data not shown). We have not investi- 
gated the itinerary of the mutant Emp47p to the vacuole, 
but it is likely to occur by the proposed default pathway 
(Roberts et al., 1992; Gaynor et al., 1994). The di-lysine 
motif of Emp47p complied with all the tests developed so 
far for the identification of functional ER-localization sig- 
nals (Jackson et al., 1990; Nilsson et al., 1989). The lysine 
at position - 5  can be moved to - 4  without apparent ef- 
fect, the lysines can not be replaced by arginine, and the 
lysines have to be in the right position with respect to the 
COOH-terminus of the protein. Furthermore the cyto- 
plasmic tail of Emp47p is sufficient to confer ER-localiza- 
tion to Ste2p, which normally resides at the plasma mem- 
brane. What features of Emp47p could then determine a 
post-ER localization? 

The transmembrane domain of Emp47p has one pecu- 
liarity in that it contains a proline at position 392 (Fig. 1 
A). Proline residues have been implicated in structural and 
dynamic aspects of transmembrane domains and their in- 
teractions (Williams and Deber, 1991). Mutating proline 
392 to leucine in Emp47p did not change the apparent 
steady-state distribution of the protein (data not shown). 
The lumenal domain could also contribute to the steady- 
state distribution of Emp47p in a post-ER compartment. If 
the lumenal domain has lectin function it is conceivable 
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that the putative interaction with glycans would provide a 
targeting signal (see below). 

Recycling of Emp47p 

To date, di-lysine motifs have been found to function in 
ER localization of proteins. The underlying mechanism, 
retrieval from a post-ER compartment, was indirectly de- 
duced from the presence of Golgi-modified forms of these 
proteins in the ER (Gaynor et al., 1994; Jackson et al., 
1993; Townsley and Pelham, 1994). For the first time we 
were able to directly investigate retrograde transport of a 
di-lysine protein from the Golgi complex to the ER. Fur- 
thermore, we examined a protein that was not overex- 
pressed nor chimeric. To study the kinetics and quantity of 
recycling we developed an assay making use of the secl2 
mutation. Sec12p is required for the formation of E R -  
derived, COP II-coated transport vesicles (Barlowe et al., 
1994). Thus, in the absence of Secl2p, transport out of the 
ER was abolished and material that recycled to the ER ac- 
cumulated there. We found recycling to be almost quanti- 
tative within 1 h. This is a long time compared to the rate 
of secretion, transport to the vacuole (see above) and the 
forward transport of Emp47p itself. However, it should be 
noted that the cells were incubated in the presence of a 
protein synthesis inhibitor and forward transport was 
blocked during the recycling assay. We were surprised that 
the redistribution of Emp47p to the ER was almost com- 
plete. This indicates that either there are no factors that 
have to be reexported to the Golgi to sustain multiple 
rounds of retrograde transport or that a SEC12-indepen- 
dent forward transport pathway exists that enables the re- 
export of these hypothetical components. In any event, it 
is clear from our results that the retrograde pathway is in- 
dependent of SEC12, suggesting that COP-II-coated vesi- 
cles are not required for this step. This novel transport as- 
say should allow us to investigate the in vivo role of other 
gene products in retrograde traffic. 

The appearance of Golgi-modified di-lysine proteins in 
the ER has been well documented (Gaynor et al., 1994; 
Jackson et al., 1993; Townsley and Pelham, 1994). There is 
less information however about the Golgi subcompart- 
ment(s) from which recycling of di-lysine proteins can 
occur. Gaynor et al. (1994) demonstrated for an invertase- 
Wbplp  fusion protein that it did not receive sugar modifi- 
cations beyond the addition of the first etl,6 mannose by 
Ochlp. Therefore, the cis-most Golgi subcompartment 
seems to be the salvage compartment for this particular 
hybrid protein. We present evidence that Emp47p with 
al ,3 mannose-modified glycans redistributed on gradients 
from a Golgi-position to an ER-position. The redistribu- 
tion was as extensive as that of the wild-type Emp47p un- 
der the same conditions. This suggests that Emp47p can 
recycle to the ER from the cd,3 mannosyltransferase com- 
partment or beyond. It remains to be shown whether this 
recycling is a one step process or occurs step by step back- 
wards through the secretory pathway. 

We have no evidence that Emp47p which returned to 
the ER can be reexported to the Golgi. Yet our data about 
the trafficking of Emp47p and the knowledge about the 
transport of other di-lysine proteins suggest that their dis- 
tribution in the cell reflects a steady-state equilibrium be- 

tween forward and retrograde transport. The steady-state 
position of different di-lysine proteins must therefore de- 
pend upon additional targeting information. For some 
proteins such targeting information can exist in the fine- 
tuning of the di-lysine signal by flanking amino acids 
(Jackson et al., 1990, 1993; Gaynor et al., 1994). In the case 
of Emp47p forward transport information is likely to re- 
side in the lumenal domain, as we could not find any other 
determinants in the tail, and the tail itself was sufficient to 
confer ER-localization to Ste2p. 

The Role of COP I 

Di-lysines signals have been shown to bind coatomer in 
vitro (Cosson and Letourneur, 1994). Even more impor- 
tantly, several subunits of yeast coatomer are required for 
the intracellular retention of a di-lysine-tagged Ste2p (Le- 
tourneur et al., 1994). Letourneur et al. therefore dis- 
cussed the possibility that coatomer may function in retro- 
grade transport of di-lysine proteins. Emp47p could be an 
important tool to test the potential involvement of coatomer 
in recycling. Our results showed that retl-1 cells, mutated 
in a-COP, were not able to correctly localize the Ste2p- 
Emp47ptail to the ER. However, the Golgi localization of 
Emp47p itself was unaffected in the mutant. It could be 
that other alleles of retl would affect Emp47p localization, 
but we consider this unlikely. First, the di-lysine motif of 
Emp47p is definitely required for its Golgi localization. 
Second, coatomer in the retl-1 cells has lost the ability to 
bind di-lysine motifs in vitro (Letourneur et al., 1994). It 
could be that retrograde transport from cis-Golgi to the 
ER is blocked in retl-1 cells, but that this transport step is 
not required for Emp47p localization. Alternatively, it 
could be that retrograde transport from Golgi compart- 
ments distal to the cis-Golgi does not require RETI, but a 
different coat. By analogy to the clathrin adaptor com- 
plexes (Keen, 1993) perhaps different, compartment-spe- 
cific coatomers exist that recognize similar signals, retl-1 
could affect a cis-Golgi/ER coatomer. Emp47p would reach 
later Golgi subcompartments due to forward targeting 
and therefore only interact with a medial-Golgi-specific 
coatomer. We attempted to clarify this issue using our ret- 
rograde transport assay in a secl2/retl-1 double mutant. 
Unfortunately the double mutants did not yield reproduc- 
ible results (data not shown) perhaps due to indirect ef- 
fects of the simultaneous presence of the two mutations in 
the cells. 

The Lectin-like Domain 

Emp47p shows significant homology in its lumenal domain 
to two mammalian proteins located in the secretory path- 
way, ERGIC-53 and VIP36, the former of which has been 
shown to have lectin activity (Arar et al., 1995). There is 
another sugar-binding, membrane protein of the secretory 
pathway that does not display any sequence homology 
with the aforementioned lectins, the ER protein calnexin. 
It retains incompletely folded glycoproteins by recognition 
of GlclMan9GlcNAc,2-oligosaccharides (Ou et al., 1993; 
Ware et al., 1995). In the case of ERGIC-53, VIP36 and 
Emp47p it is impossible to predict substrate specificity 
from the sequence homologies. Sugar-specificities would 
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probably be different, given the divergent intracellular dis- 
tributions and sources of the proteins. 

Although Emp47p is not essential, a putative function in 
glycoprotein-processing and/or sorting could manifest it- 
self in differences in glycosylation-patterns or kinetics of 
transport of glycoproteins. We have looked at the biosyn- 
thesis of three glycoproteins: invertase, carboxypeptidase 
Y, and the glycosylphosphatidylinositol-anchored protein 
Gaslp. All three were apparently processed normally and 
transported with wild-type kinetics in the emp47 mutant 
cells (data not shown). The effect of Emp47p could how- 
ever be restricted to particular glycoproteins or involve 
nonprotein substrates. Therefore, based on the steady- 
state and dynamic localization of Emp47p and the glycosy- 
lation events that occur in yeast we propose three principal 
scenarios for a lectin-function of Emp47p. First, Emp47p 
could function in the Golgi as a membrane bound, com- 
partment-specific cofactor for glycosylation. Due to the 
Emp47p steady-state distribution beyond the Ochlp-com- 
partment it would be involved in late Golgi-specific glyco- 
sylation events. These could be al ,6  mannose elongation, 
a1,2/a1,3 mannose addition, phosphomannose addition, 
or mannosylsphingolipid biosynthesis (Herscovics and Or- 
lean, 1993; Puoti et al., 1991). Second, Emp47p could be a 
receptor for the retrieval of certain glycoproteins, similar 
to the HDEL/KDEL-receptor, which retrieves HDEL/ 
KDEL proteins from the Golgi to the ER (Lewis and Pel- 
ham, 1992). This model is compatible with both the ob- 
served steady-state and dynamic localization of Emp47p. 
Third, Emp47p could be a true chaperon. It would help to 
sort and concentrate newly synthesized glycoproteins with 
ER-modifications and accompany them on their way to 
and through the Golgi, until modifications are complete. 
After that, it would release the substrate and return to the 
ER to bind a new one. Evidence for sorting and concentra- 
tion of glycoproteins at the ER has been obtained (Balch 
et al., 1994; Mizuno and Singer, 1993) and one protein pos- 
sibly involved in this process, Emp24p (SchimmOller et al., 
1995), has been identified. It will be interesting to test 
these three models for Emp47p function. 
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