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Abstract
Ovarian cancer has the sixth-largest fatality rate in the United States among all cancers. A non-surgical assay capable of

detecting ovarian cancer with acceptable sensitivity and specificity has yet to be developed. However, such a discovery

would profoundly impact the pace of the treatment and improvement to patients’ quality of life. Achieving such a solution

requires high-quality imaging, image processing, and machine learning to support an acceptably robust automated diag-

nosis. In this work, we propose an automated framework that learns to identify ovarian cancer in transgenic mice from

optical coherence tomography (OCT) recordings. Classification is accomplished using a neural network that perceives

spatially ordered sequences of tomograms. We present three neural network-based approaches, namely a VGG-supported

feed-forward network, a 3D convolutional neural network, and a convolutional LSTM (Long Short-Term Memory)

network. Our experimental results show that our models achieve a favorable performance with no manual tuning or feature

crafting, despite the challenging noise inherent in OCT images. Specifically, our best performing model, the convolutional

LSTM-based neural network, achieves a mean AUC (± standard error) of 0.81 ± 0.037. To the best of the authors’

knowledge, no application of machine learning to analyze depth-resolved OCT images of whole ovaries has been docu-

mented in the literature. A significant broader impact of this research is the potential transferability of the proposed

diagnostic system from transgenic mice to human organs, which would enable medical intervention from early detection of

an extremely deadly affliction.
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1 Introduction

Cancer is currently the second leading cause of death in the

United States, and the number and percentage of people

that get cancer in their lifetime have seen an increase in the

past 15 years. Ovarian cancer was found to be the 6th most

frequent cause of death due to cancer in the U.S [1].

Ovarian cancer is particularly devastating due to its non-

specific symptoms, many of which are considered idio-

pathically harmless when assessed in isolation. The impact

of cancer is compounded by the lack of a useful early

screening tool, leading to a late-diagnosis rate of 80% [2].

If ovarian cancer is found and can be treated before

metastasis, the five-year survival rate is 94% (compared to

a baseline of 28% for metastatic cases) [2]. This provides

clear evidence for the need for an effective early detection

technique.

A non-surgical and high-throughput ovarian cancer

screening method would provide a tremendous improve-

ment in quality of life and prognosis. Several imaging

techniques have been investigated toward this end. One

technique that has shown tremendous promise is optical

coherence tomography (OCT). OCT is an interferometric

imaging technique that yields depth-resolved, high-reso-

lution images that carry information about the imaged

tissue’s microstructure. Historically, OCT has been applied

with much success to biological imaging in the human eye

[3–5], the lung [6, 7], the esophagus [8], the coronary

artery [9, 10], and a number of other organs including the

ovaries [11–13]. The physical principle of OCT systems is

similar to that of ultrasound, except that OCT systems
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measure time-resolved backscattered light instead of sound

waves [14]. In particular, OCT images have a wealth of

microstructural features in the ovaries, including the

stroma, epithelium, and collagen, which show great

potential for disease diagnostics and tissue classification

[11, 12, 15–18]

One factor stymieing efforts to use OCT for ovarian

cancer screening is the optical noise produced by tomo-

graphic imaging of the ovaries [19]. Additionally, the data

are three-dimensional, subject to scaling challenges, and

yield depth-dependent imaging performance. In addition to

the characteristic speckle noise, these factors render

tomograms extremely challenging for human radiologists

and oncologists to diagnose reliably. As a result, advanced

computational techniques such as machine learning meth-

ods could provide the means to extract quantitative diag-

nostic information for cancer screening. This manuscript

presents our assessment of state-of-the-art neural network-

based classification algorithms that solve this task. The

results show tremendous promise in machine learning for

detecting early tissue changes near the onset of cancer. Our

experiments demonstrate that deep VGG-like 3D convo-

lutional neural networks, as well as convolutional LSTMs

(Long Short-Term Memory; similar in architecture to those

employed previously), achieve high diagnostic accuracy

when evaluated on a dataset collected by acquiring optical

coherence tomography (OCT) recordings of mouse ovaries

in a mouse model of the development of ovarian cancer,

introduced in Sect. 4.1 [20, 21].

This manuscript is organized as follows: Section 2

defines our nomenclature. Section 3 summarizes related

work. In Sect. 4.1, data acquisition processes are outlined.

Section 4.3 exposes our data preprocessing routine. Sec-

tion 4.4 contains information on the neural network models

investigated in this work. In Sect. 5, we present an evalu-

ation of the diagnostic efficacy of these neural networks.

Results are interpreted in Sect. 6.

2 Nomenclature

In this section, we introduce variables, parameters and

general notation used throughout this work. First, we define

a sample, Xt, to be a sequence of OCT images as

Xt ¼ ½xt;1; . . .; xt;j; . . .; xt;N �, where t indexes the animal

sample, N is the number of slices in a sequence, and xt;j
represents the jth image corresponding to the animal

indexed by t. This sequence of images is formed by con-

catenating the subsequences of tomograms of the left and

right ovaries. For example, consider the case where

N ¼ 50. Then each Xt is represented as 50 sequential

images (i.e., 25 images selected from approximately the

same depth on each ovary), progressing from the most

superficial to the deepest slices. Each animal is assigned a

label, yt 2 f0; 1g, where yt ¼ 1 indicates animal t is pre-

disposed to developing ovarian cancer by 8 weeks of age

(i.e., transgenic), while yt ¼ 0 corresponds to wild type

(WT) mice. ŷt denotes predictions of these labels computed

by the neural network. In this work, a dataset is a collection

of tuples D :¼ f Xt; ytð ÞgTt¼1.

3 Related work

OCT provides an abundance of information about tissue

health. However, quantitatively analyzing three-dimen-

sional OCT data of the ovaries is challenging due to the

dimensionality of the data, the depth-dependence, the

presence of speckle noise, and the sizeable biological

variation inherent to the ovaries. To date, quantitative

analyses for OCT images of whole ovaries has been limited

to first and second-order statistical techniques such as

texture, shape, and frequency analysis [22–24]. These

approaches that use OCT imaging technology have shown

promise for quantification of tissue changes with the onset

of different types of cancer. Despite these quantitative

techniques’ success, disease detection’s sensitivity and

Table 1 Neural network

optimization parameters
Parameter VGG Conv. LSTM 3D CNN

Parameterization of Proposed Models

Number of learned parameters 23,121,729 36,076,359 1,140,477

Training time per sample (mean ± S.E.) 201 ± 0.96 ms 700 ± 2.62 ms 417 ± 2.55 ms

Mini-batch size 120 120 120

Dropout rate 0.5 N/A 0.5

Training epochs 50 50 50

Batch size 2 2 2

Input normalization True False True

Number of CV replications 10 10 10
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specificity could be greatly improved when coupled with

more sophisticated machine learning techniques.

Neural networks and related approaches have shown

remarkable promise in the context of biological OCT

imaging. For example, machine learning has demonstrated

utility in assessment for glaucoma [25, 26], retinal diseases

[27–30], pulmonary cancer [20], and neurodegenerative

and dermatological disease [31, 32]. Other applications of

machine learning that have demonstrated success include

the modality of intravascular OCT imaging, where neural

networks and random forests have been used for

atherosclerotic plaque identification [33–35]. Neural net-

works were also able to detect COVID-19 in pulmonary

x-ray imaging [36]. The success of machine learning in

cancer diagnosis suggests these techniques in the domain

of ovarian tissue imaging could greatly advance the tech-

nology toward clinical application. To the best of our

knowledge, deep neural networks have not been used to

analyze depth-resolved OCT images of whole ovaries.

Machine learning applied to cancer identification has

meaningfully benefited from transfer learning [37, 38]. In

transfer learning, a model (e.g., neural network) is trained

on a task that is not necessarily related to the task on which

the model will be evaluated. For example, training a neural

network to classify ImageNet data solves a problem quite

distinct from that of cancer detection [39]. However, the

neural network trained on ImageNet may have learned

some useful features from the real scenery that can transfer

to cancer classification from OCT imagery. Transfer

learning has been successfully used in many tasks and we

use transfer learning in this work to boost the performance

of our predictive model [38].

4 Methodology

4.1 Data acquisition and imaging

OCT images were collected from a swept source OCT

system (OCS1050SS, Thorlabs). The system was set to

operate in non-contact mode with a central wavelength of

1040 nm and spectral bandwidth of 80 nm. The axial scan

rate was 16 kHz and the power on the sample was mea-

sured as 0.36 mW. The system was set to average 4 axial

scans, with 11lm transverse resolution and lm axial res-

olution in tissue. The total imaging volume was 4 mm � 4

mm lateral, and 2 mm deep. The digital images are 750�
752� 512 pixels (pixel size of approximately 5 lm � 5

lm). The image volume was exported as a series of 2D

images (or slices).

The OCT data in this work were initially curated for

automated segmentation algorithms [19], and 3D texture

analysis [15]. Ideally, the sequence of OCT images can be

concatenated in a third dimension to visualize the 3D

structure of an organ. Unfortunately, a major challenge

with OCT data is that the noise statistics associated with

optical backscattering vary with organ depth and presum-

ably tissue health. For example, common irregularities

attributed to variations in tissue density, optical absorption

characteristics, and concentration of scatterers impeded

early attempts at quantitative analysis of optical coherence

tomograms [19]. To ameliorate the impacts of these

inconsistencies, we propose a Gaussian blur during pre-

processing to smooth the images. All remaining computa-

tion to counteract any deleterious effects of optical noise

resides in the neural network classifiers described in

Sect. 4.4.

4.2 Mouse model

The image data were collected from a transgenic mouse

model (TgMISIIR-TAg) in which females spontaneously

develop bilateral epithelial ovarian cancer [40, 41]. All

TAg positive (TAg?) TgMISIIR-TAg female mice

develop bilateral epithelial ovarian cancer, with invasive

tumors in the ovaries evident in nearly all mice by eight

weeks of age. Sixteen mice were sacrificed at eight weeks

for imaging (eight TAg?, eight wild type) and explanted

organs were imaged using the OCT system. Details on

mouse breeding protocol, and surgical explantation can be

found in previous publications [15, 19, 42]. All imaged

tissue was analyzed via immunohistochemistry and evalu-

ated by a pathologist for the presence and extent of tumors,

which is determined via cell morphology and presence of

the TAg protein. This process provides a thorough vali-

dation that the TAg? mice exhibit ovarian cancer by eight

weeks of age. Further details on the histological analysis

can be found in a previous work by Sawyer et al. [43].

4.3 Data preprocessing

The tomography imagery consists of 750� 752 pixel

images (see Fig. 1a), with pixel intensities in [0, 255]. We

Fig. 1 An illustration of the sequence of preprocessing steps under

consideration: a depicts the raw image of slice 100 of the left ovary of

animal 3767, b shows the result of convolving this with a

2-dimensional Gaussian kernel
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perform a sequence of preprocessing transformations to

render these images useful to neural networks. Figure 1

highlights the pipeline of preprocessing operations. First,

we rescale pixel intensities linearly to the interval, ½�1; 1�.
A prior study of this OCT dataset revealed that speckle

noise inherent in the medium significantly confounds

automatic segmentation systems’ efforts to isolate ovarian

tissue [19]. In order to reduce this noise and improve

perceptibility of the images we pass each image through a

Gaussian filter (with a standard deviation of 1) to produce

Fig. 1b. The Gaussian filter was empirically shown to

mitigate the effects of the noise (e.g., compared to median,

low-pass, or anisotropic filters) for the segmentation task

studied in [19]. At the final stage of preprocessing, we

standardize each image (i.e., normalize by calculating the

pixel-wise mean and standard deviation of intensity from

selected training data, then subtracting this mean from each

pixel value and dividing by the empirical standard devia-

tion). After preprocessing each image, the next phase in our

cancer detection framework is to train a deep neural net-

work to perform the task of classification of sequences of

OCT images.

4.4 Classification model

Convolutional neural networks (CNNs) are a class of

artificial neural network consisting of banks of neurons

whose output states (which can be thought of as pixels in a

visual analogy) are computed as the convolution of an

input signal with the filter learned by the given bank of

neurons. CNNs were introduced as a solution to the prob-

lem of handwritten digit classification and have since been

applied nearly ubiquitously in computer vision tasks

[20, 44, 45]. VGG is a remarkably deep CNN that achieves

near state-of-the-art performance on challenging image

classification tasks, including medical image analysis

[45, 46]. As shown in Fig. 2, the VGG-based model con-

sists of sequential convolutional layers, represented as

yellow volumes, and pooling operations (i.e., down-sam-

pling via pixel aggregation), represented as orange vol-

umes. The primary convolutional block is composed of two

two-dimensional serially connected spatial convolution

layers outputting 64 channels into a max-pooling layer.

This pattern is repeated in subsequent blocks as illustrated,

successively doubling the number of channels in a con-

volutional layer’s output until the final two convolutional

blocks (each of which outputs 512 channels). Blocks 3-5 all

have three serially connected convolutional layers. Block 5

feeds into a fully connected neural network (i.e., the re-

encoding layer), which feeds into a second fully connected

layer (i.e., the decoding layer) with a single sigmoidally

activated neuron (as opposed to the rectified exponential

nonlinearity defined in Eq. 2), which ensures that the final

layer solves the classification problem by effectively per-

forming logistic regression on the penultimate layer’s

encoding of the OCT imagery. The output of the decoding

layer indicates an estimated likelihood of each class (WT

vs transgenic) for the given sample. Unlike the original

implementation of the VGG network, which uses ReLU

nonlinearities, all convolutional layers in our model signal

with rectified exponential activation functions.

We initialize the VGG sub-network with weights

learned on Imagenet, which contains photographic images,

to leverage transfer knowledge [47]. Transfer learning is

the approach taken in many computer vision applications

where a pre-trained deep neural network is first optimized

on an unrelated dataset, in which there is an abundance of

labeled data [38, 48, 49], before being fine-tuned on the

task-relevant dataset. The pre-trained network provides

feature maps (i.e., nonlinear feature extractors) that are

learned from Imagenet. Once the network is pre-trained,

we fine-tune the network on the OCT data described in the

previous section. Despite any suspected disparity between

the generation of imagery of natural scenes compared with

that of biological tissues (e.g., melanoma dermoscopy

compared with Imagenet), transfer learning has shown to

be beneficial in other neural network-based medical image

tasks [45] and applications [50–52]. VGG minimizes the

cross-entropy between the probability distribution under-

lying ground truth (fytgt : � py ) and the distribution of

decisions decoded from the output of the model, denoted as

pŷ (each implicitly conditioned on the data, fXtg):

Fig. 2 A graphical depiction of the VGG architecture investigated in

this work. The primary convolutional block is composed of two 2D

serially connected spatial convolution layers (represented in yellow)

outputting 64 channels. These feed into max-pooling layers repre-

sented in orange. This pattern is repeated in subsequent blocks as

illustrated, successively doubling the number of channels in a

convolutional layer’s output until the final two convolutional blocks

(each of which outputs 512 channels). Blocks 3-5 all have three

serially connected convolutional layers. Block 5 feeds into a fully

connected neural network (the re-encoding layer), which feeds into a

second fully connected layer (the decoding layer) with a single

sigmoid neuron (as opposed to the rectified exponential nonlinearity).

The output of the decoding layer indicates an estimated likelihood of

each class (WT vs transgenic) for the given sample (Color

figure online)
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L ¼ � 1

M

XM

t¼1

yt log ŷt þ ð1� ytÞ log ð1� ŷtÞ½ �; ð1Þ

where M is the number of images in the training dataset. L

is the cross-entropy loss function and can be thought of as

an empirically estimated KL divergence between the dis-

tributions of ground truth and predictions. Minimizing this

loss function tends to drive a model toward maximizing the

information it encodes about its training dataset [53, 54].

Long short-term memories (LSTMs) are a class of

recurrent neural networks that learn temporal dependencies

in data in recurrent connections gated by their constituent

LSTM cells [55]. Recently a new class of convolutional

neural network equipped with the feedback connections

and gates that distinguish LSTMs from earlier recurrent

architectures has demonstrated favorable performance in

precipitation forecasting [21] and anomaly detection in

video [56]. Inspired by these results, we also use a con-

volutional LSTM that learns spatial correlations inherent in

3D tomography data as temporal relationships in its train-

ing data [57]. A convolutional LSTM is depicted graphi-

cally in Fig. 3. The input and convolutional blocks consist

of 2-channel, 2-dimensional spatial convolutions that feed

into max-pooling layers. As with conventional CNNs, the

max-pooling layers downsample each channel in their

input to half resolution [45]. There are 16-channel convo-

lutional LSTMs that comprise the next layers (shown in

green), gt and ht, with feedback connections represented by

dashed arrows. The convolutional LSTM layers instantiate

architectures described by Xingjian et al. and initialize

intermediate states, g and h, as zeros [21]. The second

convolutional LSTM layer’s output, h, is relayed to a

sequence of fully connected feed-forward layers that re-

encode h for classification by the decoding layer. Other

than the model’s output, which uses sigmoid activation

functions, every other neuron in this model uses the rec-

tified version of the exponential linear activation [58]. For

completeness, the rectified exponential linear activation

function is explicitly defined as

W xð Þ ¼
exp xð Þ � 1; x\0;

x; x 2 ½0; 1�;
1; x[ 1

8
><

>:
ð2Þ

We also experiment with another neural network model,

namely 3D CNNs. The 3D CNNs are an extension of

convolutional layers and model a spatial dimension along

which imaging data are arranged. 3D CNNs have found

success in applications ranging from human pose estima-

tion [59] to medical image analysis [20, 60]. A 3D CNN is

implemented nearly identically to 2D CNNs, differing only

in the number of dimensions over which convolutions are

evaluated. A 2D CNN filter evaluates a single 2D convo-

lution of an image with a 2D kernel (i.e., an image). In

contrast, a 3D CNN filter convolves sequences of images

with 3D kernels (i.e., volumes). These 3D-CNN architec-

tures consist of three feed-forward subnetworks: (a) a

sequentially distributed (i.e., ‘‘TimeDistributed’’ in the

nomenclature of TensorFlow) 2D convolutional neural

network, (b) a 3D-CNN, in which the third dimension is

formed by ordering elements of each sequence, x 2 Xt, and

(c) a multilayer perceptron responsible for estimating the

likelihood that each xt;k 2 Xt belongs to a transgenic ani-

mal. As shown in Fig. 4, the primary convolutional block

contains feed-forward layers consisting of 2D spatial

Fig. 3 A graphical depiction of the convolutional LSTM architecture

investigated in this work. The input and convolutional blocks are

feed-forward layers consisting of a pair of 2-channel, 2-dimensional

spatial convolutions (yellow) which feed into max-pooling aggrega-

tion layers (orange). 16-channel convolutional LSTMs comprise the

central layers (green), g and h, with feedback connections represented

by dashed arrows connecting each iteration’s output (e.g., g) to the

subsequent iterations input (gt�1). For each slice, t, ht, is relayed to a

sequence of fully connected feed-forward layers (turquoise) that re-

encode it for classification in the decoding layer (purple) (Color

figure online)

Fig. 4 A graphical depiction of the 3D CNNs investigated in this

work. The primary convolutional block contains feed-forward layers

consisting of 2D spatial convolutions (yellow) which feed into max-

pooling aggregation layers (orange). These are organized with 2, 4,

and 8 channels (i.e., 2D filters) in the first, second, and third

convolutional layers, respectively. A 64 channel 3D CNN connected

to a 4 channel 3D CNN make up the central layers (green). For each

slice, t, ht, is relayed to a sequence of fully connected feed-forward

layers (turquoise) that re-encode it for classification in the decoding

layer (purple) (Color figure online)
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convolutions (yellow) which feed into max-pooling

aggregation layers (orange). These are organized with 2, 4,

and 8 channels (i.e., 2D filters) in the first, second, and third

convolutional layers, respectively. A 64 channel 3D CNN

connected to a four channel 3D CNN makes up the central

layers (green). For each slice, t, the outputs of the 3D

convolutional block are connected to a sequence of fully

connected feed-forward layers (turquoise) that re-encode

them for classification in the decoding layer (purple).

5 Results

In this section, we present an empirical analysis of the

VGG, Convolutional LSTM and 3D-CNN on the OCT

dataset described in Sect. 4.1. These comparisons also

allow us to determine each algorithm’s strengths and

weaknesses for the task of cancer detection. We begin our

discussion of the results and findings by describing the

experimental paradigm and model parameterizations

studied.

5.1 Model parameterizations

This subsection offers an in-depth description of model

parameterizations and configurations. We use dropout at

the connections from VGG to the re-encoding layer [61],

through which the outputs of VGG’s penultimate layer are

randomly and dynamically zeroed out during training.

Stochastically setting neurons’ outputs to zero during

training typically reduces training time while guiding

optimization away from deep local minima in the loss

function. Weights and biases in the first two layers (i.e.,

those belonging to the input block shown in Fig. 2) are held

constant throughout the learning routine. Fixing these

parameters to the values optimized on Imagenet reduces

training time (by decreasing the number of variable

parameters) and has no significant effect on average and

peak AUC. A marginal (but insignificant) enhancement in

mean (and peak) AUC can be seen by comparing the ROCs

summarized in Fig. 6a with those in Fig. 5, for which

parameters of all layers are variables learned in optimiza-

tion. Optimization is regularized by augmenting L (in

Eq. 1) with a penalization (weighted by a factor of 0.0005)

of the L2 norm of the weights learned in the re-encoding

layer. The weights and biases of this model are optimized

by the ‘‘Nadam’’ routine [62], an extension of the popular

Adam optimization algorithm that incorporates Nesterov

momentum to increase the rate of convergence of the

optimization process. The learning rate is initially set to

0.001, and is adapted as a function of gradients of L. In

contrast to the 3D CNNs and convolutional LSTMs, for

which Batch Normalization (BN) [63] (the process of

normalizing the outputs of intermediate layers of a neural

network) was necessary in order to stabilize learning,

incorporating BN between the intermediate layers of our

implementation of VGG did not seem to affect perfor-

mance metrics assessed here significantly.

Distinct from 3D CNN- and VGG-based models, the

convolutional LSTM model proposed perceives OCT

imagery that has not been normalized as described in

Sect. 4.3. Also, unlike the VGG- and 3D CNN-based

models, dropout is not used while training our LSTM-

based models. Cross-entropy loss is optimized and

(a) Primary parameters fixed (b) All parameters variable

Fig. 5 A comparison of summaries of ROCs achieved by training a an
instance of VGG in which the weights and biases of the two primary

layers, which were optimized on Imagenet, are fixed during learning

with b an instance of VGG in which weights and biases are initialized

randomly and remain variable throughout optimization. A marginal

but likely insignificant improvement due to transfer learning is

evident in the differences in geometries of the peak ROCs. However,

the improvement in area under ROC is a small fraction of the standard

error of the mean (i.e., the shaded region)
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regularized by the L2 norm of each layers’ weights. In

contrast to the VGG-based and 3D CNN models considered

in this work, convolutional LSTMs are optimized using the

Adadelta algorithm [64], which is empirically a more

stable (and computationally parsimonious) choice for this

architecture and dataset. Batch normalization was applied

to the inputs of the intermediate layers of the convolutional

LSTM block during training to stabilize the estimation of

gradients of L with respect to the parameters belonging to

these layers [63]. Batch normalization was found to

accelerate learning and improve generalization perfor-

mance. The learning rate is initially set to 0.001, and is

adapted as a function of gradients of L as proposed by

Zeiler [64].

The 3D CNN model proposed is the only model whose

performance was experimentally shown to benefit from the

normalization of OCT imagery described in Sect. 4.3. As

in our implementations of the VGG- and LSTM-based

models, we train 3D CNNs subject to dropout rate of 50%
while minimizing cross-entropy loss regularized with the

L2 norm of the weights. The weights of this architecture are

optimized using the Nadam algorithm [65]. Without BN

applied to the inputs of the intermediate layers of the 3D

convolutional block, the performance of the 3D CNN

models assessed here is critically impaired. Exactly as with

the VGG-based models, the learning rate is initially set to

0.001 and is adapted as a function of gradients of L.

5.2 Cross-validation experiment

Generalization performance is the most important set of

statistics that we are interested in understanding. The

experiments seek to measure the performance on data

never observed in the past during training time. We devised

a leave-one-out cross-validation (CV) experiment to test

our models’ ability to generalize to unseen data. Newly

initialized models are trained and validated on a subset of

the complete set of tomography sequences before evalu-

ating the hold-out animal’s sequence. Specifically, for each

animal in our dataset, we perform one fold of CV. Within

each fold, the remaining 15 animals are divided among a

singleton containing an animal whose label equals the test

animal and seven disjoint sets containing two animals (one

transgenic and one WT). Our models are trained on

sequential mini-batches corresponding to these seven

stratified subsets. Validation subsets are selected as the

next mini-batch that the model will train on to cope with

physical memory constraints and maximize the number of

mini-batches whose training is validated by an as-yet-un-

seen subset of samples. In the final mini-batch, which must

be validated on already-seen data, the validation set is

chosen to be the training data exposed in the first mini-

batch. Validating models on unseen data during training

serves an additional role in mitigating catastrophic for-

getting. Catastrophic forgetting is a phenomenon observed

in learning, where a neural network forgets previously

learned knowledge as it is exposed to new information

[66]. We also use early stopping during training to reduce

the risk of over-training. Early stopping is implemented by

halting training on batches for which further training does

not improve the loss on the validation subset. Our training

routine ensures that each model learns from at most a

single positive and negative sample in each mini-batch.

After training is complete, the model in question is eval-

uated on the held-out test sample.

5.3 Performance results

Figure 6 compares our models’ diagnostic efficacies (i.e.,

their ability to predict the occurrence of ovarian cancer

from OCT images in the transgenic mouse model described

in 4.1). Efficacy is assessed by the Receiver Operating

Characteristic (ROC) curve, which plots true positive rate

(i.e., Pr by ¼ 1jy ¼ 1ð Þ ¼ sensitivity) against false positive

rate (i.e., Pr by ¼ 1jy ¼ 0ð Þ ¼ 1� specificity) [67]. The red

dashed line shows the result of random prediction (i.e.,

uniformly random guessing), which is the worst perfor-

mance that a classifier can achieve. We also report the area

under the ROC, which approximates the probability that a

given model will rank the likelihood of a positive sample

higher than that of a randomly chosen negative sample.

These statistics are summarized in Table 2. The mean ROC

curves shown are interpolated from the CV experiment

described in Sect. 5.2. The convolutional LSTM achieved

maximum AUC, showing a marginal improvement of only

0.06 over the 3D CNN (see Table 2 for the peak AUC and

average AUCs with the standard error). In contrast, the

VGG-based model is significantly underperformed, only

achieving a maximum AUC of 0.86. Interestingly, the

VGG model achieved the worst AUC despite requiring the

greatest amount of time to train. The 3D CNN and con-

volutional LSTM incur similar time costs, but complete a

single training epoch in less than half the time required for

the VGG-based model to do the same. The empirically

most powerful classifiers evaluated in this work, the con-

volutional LSTMs that achieved a peak AUC of 0.98,

committed only a single false positive (and no other

errors). Based on these results, the convolutional LSTM

shows a tremendous amount of promise for ovarian cancer

detection from OCT imagery.
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6 Discussion

6.1 Conclusions

This work’s contributions form a critical first step toward

an automatic OCT-based human ovarian cancer diagnostic

system. The proposed classifiers learn and adapt abstract

representations of tomograms conducive to detecting

radiographic signatures of ovarian cancer in OCT imagery

without manual feature selection. Results presented here

show that (to the extent of the limits imposed by the

dataset), highly discriminatory classifiers that can be

expected to generalize to unseen data can be evolved.

Moreover, their incurrence of very few misclassifications is

replicable across multiple runs of the leave-one-out cross-

validation program.

To the best of the authors’ knowledge, this is the first

demonstration of a proof-of-concept model for cancer

detection using depth-resolved OCT recordings of ovaries,

which has been shown to be a challenging medium on

which to base inferences of genotype in both OCT and

widefield fluorescence [19, 68–70]. A recent approach to

OCT-based ovarian cancer detection using a generalized

linear model classifier showed promising results for

detecting malignant (vs. normal) ovarian tissue [71].

However, that effort is distinct from ours in that they

imaged biopsies of ovarian tissue using full field OCT and

performed classification on hand-crafted features devel-

oped by human analysis of ovarian OCT data. In contrast,

our methodology learns features maps from the training

data, and our proposed neural networks are benchmarked

on depth-resolved OCT recordings of intact ovaries.

6.2 Future work

With an admittedly small dataset, consisting of only 16

total animals, future experimentation with the proposed

classifiers must involve validation on a larger dataset,

which would enable larger cross-validation experiments

where many animals are held out for testing on each fold.

We emphasize that to the extent of the limits imposed by

the dataset analyzed in this work, the cross-validation

results presented are exclusively the results of generaliza-

tion performance (i.e., all testing is performed on samples

that do not appear in the training subset). However, this

procedure suffers from the limitation of only assessing a

single test animal in the test phase. A larger dataset

enabling a larger cross-validation experiment would allow

us to draw stronger conclusions on diagnostic efficacy with

reduced uncertainty. Additionally, a larger collection of

mouse OCT imagery may provide valuable information to

be leveraged in a transfer learning experiment when

eventually adapting the models for human subjects. An

incredibly useful extension of the models presented here is

a quantitative method to identify features and regions in the

OCT imagery that leads to a neural network’s decision

(i.e., the specific region in the OCT image where the tumor

(a) VGG (b) Convolutional LSTM (c) 3D-CNN

Fig. 6 Receiver operating characteristic (ROC) curves computed by

interpolating the functional mean ROC from recordings of replica-

tions of the aforementioned CV experiment for a VGG, b a

convolutional LSTM, and c a 3D-CNN corresponding to the

parameterizations outlined Sect. 5.1. The shaded error region shown

is within one standard error of the mean ROC curve. The dashed red

curve (for which true positive rate is equal to false positive rate) is an

idealized ROC corresponding to classifying by random chance (i.e.,

uniformly random guessing). The dashed black curve is the ROC that

achieved the maximum area enclosed below among all replications of

the CV experiment

Table 2 Peak and average AUCs achieved over ten replications of the

leave-one-out cross-validation experiment described in Sect. 5.2,

summarized from the results shown in Fig. 6

Model Peak AUC Mean AUC ± SE

Areas under ROC

VGG 0.86 0.59 ± 0.068

Conv. LSTM 0.98 0.81 ± 0.037

3D-CNN 0.92 0.69 ± 0.029

The standard error is measured on a 90% confidence interval
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is present). These regions could provide medical practi-

tioners insight into the uncertainty of a neural network’s

prediction. For example, consider the case in which an

artificial occlusion (e.g., an implanted medical device) or

an interferometric artifact partially obscures (or mimics) a

radiographic signature of cancer. Unless such occlusions

are sufficiently common throughout the classifier’s training

dataset, it is unlikely that the neural network has learned to

accurately identify the signatures of ovarian cancer in the

presence of the occlusion. Therefore, health care providers

may decide that the result warrants further consideration,

perhaps in conjunction with other assays (e.g., collecting

serum to identify or exclude the possible presence of

biomarkers that indicate the progression of ovarian cancer

[72]).

6.3 Broader impacts

Perhaps this work’s most profound broader impact lies in

potentially dramatically improving the likelihood of

detecting ovarian cancer in patients before metastasis

throughout the peritoneal cavity, which would radically

improve treatment outcomes. That our models were trained

and evaluated on a transgenic mouse model of ovarian

cancer development begs a central question: to what extent

does a neural network from our work transfer to OCT data

collected from humans Given the difficulty of collecting

such data, developing an even larger dataset of mouse

ovary tomograms may prove advantageous if the knowl-

edge learned from the mouse model is relevant for ana-

lyzing human ovarian OCT data.
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