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Abstract
When selection is acting on a large genetically diverse population, beneficial alleles increase in frequency. This fact can be
used to map quantitative trait loci by sequencing the pooled DNA from the population at consecutive time points and
observing allele frequency changes. Here, we present a population genetic method to analyze time series data of allele fre-
quencies from such an experiment. Beginning with a range of proposed evolutionary scenarios, the method measures the
consistency of each with the observed frequency changes. Evolutionary theory is utilized to formulate equations of motion
for the allele frequencies, following which likelihoods for having observed the sequencing data under each scenario are de-
rived. Comparison of these likelihoods gives an insight into the prevailing dynamics of the system under study. We illus-
trate the method by quantifying selective effects from an experiment, in which two phenotypically different yeast strains
were first crossed and then propagated under heat stress (Parts L, Cubillos FA, Warringer J, et al. [14 co-authors]. 2011. Re-
vealing the genetic structure of a trait by sequencing a population under selection. Genome Res). From these data, we dis-
cover that about 6% of polymorphic sites evolve nonneutrally under heat stress conditions, either because of their link-
age to beneficial (driver) alleles or because they are drivers themselves. We further identify 44 genomic regions contain-
ing one or more candidate driver alleles, quantify their apparent selective advantage, obtain estimates of recombination
rates within the regions, and show that the dynamics of the drivers display a strong signature of selection going be-
yond additive models. Our approach is applicable to study adaptation in a range of systems under different evolutionary
pressures.
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Introduction
Fitness differences between individuals enable natural selec-
tion to increase the frequency of beneficial variants within a
population over time. The specifics of this process, however,
are often complex, with the fitness difference conferred by
a variant potentially depending on time, space, the genetic
background of the individual, the genotypic composition of
the population, and other species in the vicinity (Hartl and
Clark 2007). Furthermore, other evolutionary forces such as
mutation and genetic drift contribute to allele frequency
changes, and their effects can mask those arising from dif-
ferences in fitness.

For these reasons, the importance of studying the fitness
effects of mutations and evolution in controlled laboratory
settings is well known. One of the most celebrated of these
experiments is the “E. coli long-term evolution experiment,”
which so far covers over 50,000 generations (Woods et al.
2011). Deep sequencing data from this and other experi-
ments have provided an unprecedented level of insight into
the processes of molecular evolution (Barrick et al. 2009;
Burke et al. 2010; Hietpas et al. 2011). However, despite this
progress in the quantitative study of evolution, fundamen-
tal challenges still remain.

A first challenge in studying fitness effects is the timescale
it can take for evolution to increase the frequency of a

mutation. Consider for instance, a hypothetical variant in
Escherichia coli with a fitness advantage of σ0 ≡ fmutant −
fwildtype = 10−5. Supposing the variant to have survived ge-
netic drift, and neglecting the effects of other mutations,
in a population of size N = 108, the variant would take
∼106 generations to fix, representing hundreds of years
of evolution. While in population genetic terms, such a
variant would be considered strongly beneficial (with the
ratio of timescales associated with genetic drift and se-
lection, σ0N � 1); in a laboratory setting, it would
be barely detectable within the lifetime of the researcher.
For this reason, knowledge of fitness effects of that size
is derived via analysis of intra- and interspecies variation
(Sawyer et al. 2003; Eyre-Walker 2006; Eyre-Walker and
Keightley 2007; Mustonen and Lässig 2007; Sella et al. 2009).

A second challenge is posed by the mutation rate, which is
often small, such that variance within a population is created
slowly. The low initial frequency of a new mutant renders
even strongly beneficial mutations susceptible to elimina-
tion through genetic drift, while, as noted above, mutants
escaping drift take time to grow to detectable frequencies.
Waiting for a well-adapted initial population to “find”
beneficial mutations, and for these to become visible, may
require long-term experiments. Use of mutagens (Weigand
and Sundin 2009) or increasing the overall number of
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individuals in the population can alter the number of
mutations entering the population (Perfeito et al. 2007).

One means of increasing the rate of adaptation is to ap-
ply artificial selection on a system by imposing environ-
mental stress (Kishimoto et al. 2010; Bell and Gonzalez
2011) or nutritional restriction (Kao and Sherlock 2008).
A recently described method, examining heat tolerance
in yeast, combines this approach with the addition of ar-
tificial variance generated by genetic crosses (Parts et al.
2011), crossing two strains of yeast, and propagating the re-
sulting population asexually under heat stress conditions.
Conceptually, this factorizes the evolutionary dynamics:
Mutations have accumulated over a long time period since
the last common ancestor of the parental strains; recombi-
nation during the two-way crossing protocol ensures that
variants not in close proximity are reasonably unlinked and
at substantial frequencies, and strong selective pressure can
be applied. As the population adapts to the selected condi-
tion, multiple changes in allele frequencies can be observed.
The process can be traced at a single nucleotide resolution
by deep sequencing the pooled DNA from the population
at consecutive time points.

This concept, of applying artificial selection to an arti-
ficially mixed population in order to identify quantitative
trait loci (QTLs), has previously been applied to the malaria
parasite (Culleton et al. 2005) and to yeast (Segrè et al.
2006; Ehrenreich et al. 2010). As performed in the instance
analyzed here (Parts et al. 2011), the method offers the
advantages of a high genomic resolution and, extra to pre-
vious studies, time-resolved sequencing data, with allele fre-
quencies measured at four distinct time points. In order to
fully exploit the time series aspect of these new data, further
methodological development is required.

In this paper, we develop an approach, based on
population genetic theory, to investigate data from such
an experiment. Examining changes in the frequencies of
segregating alleles over time, we derive measurements
of the fitness effects that different alleles confer for
heat tolerance and identify the presence of nonaddi-
tive fitness effects. As the data we analyze are from the
asexual version of the experiment, the qualitative pic-
ture of the dynamics is simple. During the crossing, a
large pool of recombinant genotypes are created. Un-
der selective pressure, the genotypes acquire some un-
known haplotype fitness distribution, which leads to a
relative proliferation of the fitter, at the cost of the less fit,
genotypes. However, to obtain a quantitative picture of the
dynamics is challenging: Sequencing of the pool gives only
data of allele frequencies, not of genotypes. As will be shown,
success depends on several factors, the most important be-
ing the population size. Another key issue is whether the
initial pool contained enough variation in the high fitness
part of the population for no single clone to dominate the
population by the end of the experiment; if this were the
case, changes in allele frequency would not allow for dis-
crimination between selected and nonselected alleles in the
clone. Here, we perform our analysis from the perspective of
alleles but go on to use the allele picture to seek evidence of

more complex selective scenarios such as those acting on
genotypes. While in this case, the evolution is clearly driven
by haplotype selection (which we can, however, analyze
starting from an allelic viewpoint), for a sexually propa-
gated population, an important consideration is whether an
“allele selection” or a “genotype selection” mode of evolu-
tion dominates (Neher and Shraiman 2009).

In focusing on standing variation generated by the cross-
ing of strains, important questions concerning de novo
mutation processes are not addressed. Simultaneously, we
recognize that it is not clear how important such ex-
treme selection pressures are for organisms over macroevo-
lutionary timescales. However, experiments such as this
undoubtedly provide an exciting opportunity to study
strong fitness effects, both quantitatively and systematically,
at the molecular level. Here, we address this opportunity to
quantify the fitness effects acting on the heat tolerance trait
in yeast within a set of more than 30,000 segregating sites.

Materials and Methods
Trajectory Probabilities
Given observations of allele counts at a locus i, we can
write the corresponding trajectory probability under some
evolution model M:

P(ni|M) =
T∏

t=t0

P(ni(t)|Ng
i (t),M), (1)

where P is binomial probability distribution, Ng
i (t) denotes

number of draws, that is, sequence read depth at locus i
at time t, and the true underlying population frequency
of the allele qa

i (t) depends on the model M, which fixes
the time evolution of the system. The evolution of qa

i (t)
can be influenced by alleles at other loci depending on the
specifics ofM. We can then write the probability for the to-
tal observation given M, which we, to serve as an example,
take here to be the driver and passengers model defined in
equations (4–7):

logP(n|Mi) = logP(ni|M
dri.
i )

+
∑

j 6=i

logP(nj|M
pass.
j ,Mdri.

i ),

(2)

where Mi = {Mdri.
i ,Mpass.}, Mdri.

i = {σi, ρ, qa
i (t0)},

and Mpass.
j = {qb

j (t0)}. Thus, we can form a log-likelihood
score of the model Mi given the observation:

L(Mi|n) = logP(Mdri.
i |ni)

+
∑

j 6=i

logP(Mpass.
j ,Mdri.

i |nj).

(3)

This is the function underlying our maximum likelihood
inference. The structure of the log-likelihood is such that
the driver i (index i also to be learned) influences every pas-
senger trajectory j, but given the driver dynamics, we can
independently maximize likelihoods of the passenger
trajectories, which only have their initial conditions (and if
so desired their linkage to the driver, Dij) as free parameters.
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Overview of the Experiment
Two diverged strains of Saccharomyces cerevisiae, North
American (NA) and West African (WA), were crossed
for 12 generations to create a large pool of segregants (Parts
et al. 2011). After the crossing, the pool was put under
heat stress (40 ◦C) for a period of T = 288 h with re-
plating (after mixing) of 10% of the pool every 48 h, DNA
from the remainder of the pool being sequenced at time
points t0 = 0 h, t1 = 96 h, t2 = 192 h, t3 = 288 h.
Estimating the number of generations (gen) that T corre-
sponds to is difficult however, it should in any case be less
than 102 gen. In order to avoid the need to convert the unit
of time from hours to generations (which would be the
more natural choice in terms of population genetics), we
here measure rates in units of 1/(96h). During the selection
protocol, the population size N varied from ∼107 after
each replating to ∼108 before replating. In the following, we
denote the NA allele with index 0 and WA allele with index
1. Substantial allele frequency changes were observed over
the course of the experiment (Parts et al. 2011).

Modeling the Observed Time Evolution
Timescales of the Processes
A simple calculation suggests the likely role of genetic drift
and de novo mutations in the selection process to be neg-
ligible. We first note that the duration of the experiment,
T, is between five to six orders of magnitude smaller than
the population size, N. As such, genetic drift, which changes
allele frequencies at timescales of ∼N generations (Kimura
1964), most likely has very little effect across the course
of the selection experiment. Considering next the possi-
bility of de novo mutation, the mutation rate is known
to be small (Drake et al. 1998; Lang and Murray 2008;
Lynch et al. 2008). Estimating a worst-case scenario by mod-
eling the deterministic growth of a mutant at the out-
set of the experiment, we note that selection pressures of
∼1/T log (N/Ng) are required to reach frequency 1/Ng

within time T (as can be derived from eq. 8), where Ng

is the mean sequencing read depth. This means that the
variant would need to have ∼0.03 growth rate advantage
per hour to reach detection threshold during the experi-
ment (for this data, Ng ∼ 102). We contend that muta-
tions with so large an effect are likely to be extremely rare
and assume that changes in allele frequencies are driven by
population variation existing in the initial population (we
demonstrate later that de novo mutations do not play a
substantial role directly from the data). Data from a bio-
logical replica of the experiment supported this conclusion
(Parts et al. 2011).

In order to analyze the allele frequency changes observed
in the experiment, we considered a variety of scenarios
described by deterministic evolutionary dynamics in con-
junction with a stochastic sampling process resulting from
finite sequencing depth. For the reasons argued above, the
evolution of the system was taken to be driven by fit-
ness differences between segregating alleles in the initial
population.

Driver and Passengers
We consider first a system with a single driver at locus i with
two possible alleles a ∈ {0, 1}, influencing all passenger
mutations which are in linkage disequilibrium with it. We
recall from deterministic single locus theory that the driver
evolves according to the equation (Hartl and Clark 2007):

dq1
i /dt = σiq

1
i q0

i , (4)

where the frequency of the allele 1 is denoted with q1
i ,

(q0
i = 1 − q1

i ), and the selection coefficient σi equals the
Malthusian fitness difference f1

i − f0
i between the alleles.

The general mathematical framework to compute the
effect of a deterministic driver on linked neutral variation
has been introduced in classical work on genetic hitchhik-
ing (Smith and Haigh 1974; Barton 2000). Here, we use the
case with zero recombination because during the artificial
selection phase, the population evolves asexually and no fur-
ther recombination takes place. Therefore, given the time
evolution of the driver, we can write down equations of
motion for the passengers:

qb
j (t) =

∑

a∈{0,1}

qa
i (t)

qab
ij (t0)

qa
i (t0)

, j 6= i, (5)

where qab
ij denotes a two locus haplotype at loci i, j with al-

leles a, b ∈ {0, 1}. Equation (5) follows simply by noticing
that the passenger locus has by definition zero selection (its
alleles would stay at their initial frequency without linkage
to the driver), such that the passenger’s initial linkage to the
driver dictates its motion. We note that the two locus hap-
lotype frequencies at the initial pool can be written in terms
of allele frequencies and linkage disequilibrium:

qab
ij (t0) = qa

i (t0)qb
j (t0) + (−1)a+bDij. (6)

As such, the dynamics of the passengers given the driver are
fully fixed by Dij. Values of Dij can be inferred directly for
each locus or parametrized in terms of the recombination,
which took place during the crossing:

Dij(ρ, Δij) = D′
ij(1 − ρΔij)

Ncrossing , (7)

where D′
ij = min{q0

i (0)q1
j (0), q1

i (0)q0
j (0)} is the maxi-

mum linkage disequilibrium attainable, Δij denotes the dis-
tance between the loci in base pairs (bp), ρ measures the
recombination rate during the crossing process in units of
1/(bp × gen), and Ncrossing denotes the number of crossing
rounds (for ρΔij > 1, we set Dij = 0). Equation (7) as-
sumes an infinite population size but is nevertheless a good
description for the system due to the large number of indi-
viduals in the initial pool. (See supplementary text, Supple-
mentary Material online, for analysis of finite populations
by means of computer simulation. The population size re-
quired to correctly decide whether a marker moved due to
linkage to a nearby selective sweep or just due to drift has
been calculated; Logeswaran and Barton 2011.)

In a case where full sequences from the initial pool were
available, the initial linkage pattern could be included di-
rectly by measuring the linkage, circumventing equation (7),
which from the inference framework most critically relies on
a large population size.
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FIG. 1. Genome-wide view under unlinked analysis. (a) Ordered score differences ΔL (see Materials and Methods) between the unlinked additive
drivers and the neutral model. Blue dots show values for all trajectories, whereas sets of red dots correspond to individual chromosomes (the
uppermost is chromosome XV and the second highest II; see supplementary figs. S2 and S3, Supplementary Material online, for individual chro-
mosomes). (b) Global histogram of selection coefficient calling only loci for which AIC > 10. The negative mean selection σ = −0.36 reflects
that the NA allele is more often better adapted for the heat stress condition than the WA one.

Liberal-Driver and Passengers
We also consider models, in which drivers are allowed to
take any trajectory, that is, in which their dynamics are
not parametrized, and hence constrained, by the equation
of motion given in equation (4). For these “liberal-drivers”
the passenger dynamics again follow equation (5). We fur-
ther evaluate time-dependent selection coefficients for such
trajectories; from equation (4), we get for each time interval:

σi(tk) =
1

Δtk

{

log
q1(tk+1)
q0(tk+1)

− log
q1(tk)
q0(tk)

}

, (8)

where Δtk = tk+1 − tk. Such dynamics could result from
externally driven truly time-dependent selective pressures,
or as yet unidentified internal interactions. Internal inter-
actions could result from linkage to other drivers, epistatic
fitness interactions between the locus and other loci (e.g.,
genotype selection), frequency-dependent selection, or a
combination of all these factors. We return to the interpre-
tation of these drivers later.

The evolutionary equations outlined in this section were
applied within a standard maximum likelihood framework
(see Materials and Methods) to explore the observed time
evolution of the allele frequencies.

Results
Prevalence of Nonneutral Trajectories
Close to 6% of the segregating sites across the genome
were identified as evolving in a significantly nonneu-
tral manner. To detect nonneutral behavior, we calcu-
lated likelihoods for each trajectory under two mod-
els; the first assuming that they evolved neutrally, with
any motion reflecting noise from the finite depth of
sampling, and the second assuming that they evolved
independently under selection as described by equa-
tion (4). For each locus, this gave maximum likelihood
predictions for the allele frequencies, corresponding like-
lihood scores, and for the second model, a trajectory-
specific selection coefficient. Global statistics for the
likelihood differences between models, and the identified
selection coefficients, are reported in figure 1. Applying
the Akaike information criterion (AIC) (Akaike 1974), the
fraction of loci identified by this comparison as being

not consistent with neutral evolution (AIC difference >
10; Burnham and Anderson 2002) was 0.058 (see supple-
mentary text and fig. S1, Supplementary Material online,
for analysis of trajectories from a control experiment in-
dicating false positive rate less than 1% and supplemen-
tary figs. S2, S3, and S5, Supplementary Material online, for
chromosome-specific breakdown). The average selection
coefficient was −0.36 (standard deviation [SD] 0.63) imply-
ing that the NA allele, rather than the WA one, is more of-
ten the beneficial allele under the imposed condition of heat
stress. The choice of which of the two alleles has frequency
q1 is arbitrary and sets the direction of selection (see eq. 4).

This simple protocol of assigning a selection coefficient
to each locus provided an instant genome-wide view of the
data set, allowing for the rapid identification of genomic re-
gions of interest. Using the log-likelihood scores generated
under each model, we identified 44 candidate driver foci for
further examination (see supplementary text, Supplemen-
tary Material online).

Including Linkage—Driver and Passengers
A driver–passenger model (eqs. 4–7), which takes the link-
age between nearby loci into account, gave a substantially
better representation of the evolution of the system in all
the 44 candidate driver foci than the unlinked driver model.

A particularly intuitive example is provided by the driver
in chromosome II reported in figure 2. Although the additive
unlinked drivers model explains the main part of the sweep
region well, it fails to account for the motion observed
around 475 kb (fig. 2a). This failure is easy to understand—
the observed allele frequencies move substantially during
Δt0 = t1 − t0 but stay at almost the same value during Δt1

and Δt2—a motion incompatible with the family of curves
parameterized by equation (4). While an unlinked driver
allele, at frequencies close to 0.5, moves at roughly con-
stant velocity towards fixation or death, an allele frequency
changing through linkage may fix at intermediate values.
Hence, taking model complexity into account, a model of
a single driver and passengers (fig. 2b), explains the changes
in this region of the genome better. Most frequencies in the
region move due to linkage, rather than through inherent
selection.
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FIG. 2. An example of unlinked additive drivers versus driver and pas-
sengers models. Allele frequencies in the depicted chromosome II
region moved substantially during the experiment. (a) Unlinked addi-
tive drivers model where every trajectory follows equation (4): Thick
dashed lines (t0-red, t1-green, t2-blue, and t3-black) show the data and
the corresponding solid lines the maximum likelihood predictions for
the motion. The blue vertical line denotes the location of the largest σ
(for the full selection profile, see supplementary fig. S5, Supplementary
Material online). The model explains the motion close to the sweep
focus well; however, it fails qualitatively in the region ∼475 kb. As ex-
plained in the text, the motion in that region is not compatible with
modes provided by equation (4). (b) Driver and passengers model as
parameterized by equations (4–7). The red vertical line denotes the in-
ferred driver location and as can be seen the region ∼475 kb is much
better explained than by the unlinked additive drivers model. The dif-
ference between the AIC scores was 466 in favor of the driver and
passenger model, the large difference indicating the importance of
including linkage between nearby loci in the model. Data shown are
averaged over a sliding window of 5; however, all inferences are done
with the raw data.

Distributions of Selection Coefficients and
Recombination Rates
We inferred estimates for driver selection coefficients for
each of the candidate driver foci using the driver and pas-
sengers model with linkage parametrized by recombination
rate (fig. 3a). Furthermore, inference in each case gave a
maximum likelihood estimate of the local recombination
rate (fig. 3b). The inferred selection coefficient was nega-
tive for 29 of the 44 regions (mean σ = −0.2, SD 0.6), re-
flecting the advantage conferred by the NA allele. A mean
magnitude of selection of |σ| = 0.44 indicated that the
drivers evolve under substantial selection. The maximum
likelihood estimates for recombination rates (mean ρ =
1.6×10−6(bp×gen)−1, SD 1.1×10−6) are consistent with

estimates from the literature (Ruderfer et al. 2006; Mancera
et al. 2008).

Liberal-Driver and Passengers
In the majority of cases (38/44 regions), the liberal-driver
model gave a significantly improved fit to the observations
after allowing for the additional two degrees of freedom
(having three σi values compared with one, see supplemen-
tary table S1, Supplementary Material online). In the ex-
ample of chromosome II, discussed above, a single driver
with a constant recombination rate appeared to explain
the observed changes in frequencies very well. Nevertheless,
the liberal-driver model explained the motion much better
(gain of 166 units of log-likelihood, see supplementary fig.
S4, Supplementary Material online). However, in chromo-
some XIII, the second example in which the identified driver
(almost) fixed within the experimental time frame, a gain
of only 3 units of score was achieved, favoring the standard
driver and passengers model once degrees of freedom were
taken into account.

Apart from these events, other driver alleles were found
at intermediate frequencies by the end of the experiment.
This observation has two possible explanations. First, all can-
didate drivers could evolve according to trajectories de-
fined by equation (4) but with values of σi too low to
observe fixation during the length of the experiment. Sec-
ond, candidate drivers could evolve according to some
alternative equations of motion. Application of the liberal-
driver model suggested the latter explanation to be correct
for the majority of candidate drivers. While the liberal-driver
model introduces two additional degrees of freedom, use
of this model produced a mean score gain per region of 26
(see supplementary table S1, Supplementary Material on-
line), more than compensating for the gain in parameters.
Figure 4 shows an example within chromosome XV where
the liberal-driver model gave a substantial improvement.

Averaged across the duration of the experiment, the
selection coefficients inferred for the liberal-drivers, ex-
pressed as in equation (8), were very similar to those
shown in figure 3 from the driver and passengers model
(mean −0.19 SD 0.68). Estimates of local recombination
rates obtained using liberal-drivers were also very similar
(mean 1.5 × 10−6 SD 1.9 × 10−6). To gain an insight
to the underlying reason for the liberal drivers’ superior
log-likelihood scores, we studied the process at the level of
individual time intervals Δt.

Time-dependent selection coefficients were used to
obtain point estimates of fitness flux, φ, a measure of the
amount of ongoing adaptation in the system at a given time
point expressed as φ(tk) =

∑
i∈drivers σi(tk)Δq1

i (tk)/Δtk

(Mustonen and Lässig 2007; Mustonen and Lässig 2010).
The estimates of fitness flux over the three measured time
intervals differ noticeably between the two models (fig. 5a).
Whereas, under the standard-driver model, most adapta-
tion takes places in the first time interval, for liberal-drivers,
the second time interval dominates. Most interestingly,
under the liberal-driver model, the fitness flux almost
vanishes for the last time interval, suggesting that by the
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FIG. 3. Statistics of selection and recombination under the driver and passengers model. (a) Histogram of selection coefficients for the driver foci
(mean σ = −0.2 SD 0.6). (b) Histogram of inferred recombinations rates for these regions (mean ρ = 1.6 × 10−6, SD 1.1 × 10−6).

end of the experiment, the system had almost equilibrated.
This point is further demonstrated by the distribution of
the inferred motion of the drivers under both standard
and liberal scenarios during the last time interval, shown in
figure 5b.

We suggest that the apparent equilibration observed
here should be understood in the sense of separation of
timescales, in that it represents the completion, within
sequencing resolution, of the first phase of adaptation
(due to the finite sequencing depth, we would not
observe movement slower than . (read depth)−1/Δt).
Given further propagation of the system, deviation from
this equilibrium would be observed through the arrival of
new mutations; however, as discussed later, we do not find
evidence for these at substantial frequencies within the
time frame of the experiment.

The observation of candidate driver alleles reaching equi-
librium at intermediate frequencies suggests the presence
of interactions between drivers in different locations of the
genome. An alternative scenario exists, in which drivers
do not interact with one another but instead evolve with
genuinely time-dependent selection coefficients. However,
while behavior of this kind might be observed in response
to changes in the external environment, the consistency
of the experimental conditions suggests its occurrence
here to be unlikely, interactions between drivers being the
most likely source of the observed allele frequency changes.
Different effects leading to interactions between drivers are
discussed later.

New Beneficial Mutations
We contended earlier, based on a simple calculation, that de
novo mutations are unlikely to play a substantial role for the
allele frequency dynamics during the experiment because
they would need to carry fitness advantage&3%/ h to be de-
tectable during the experiment. However, in the measured
spectrum of fitness effects in figure 3, we observe selection
coefficients as large as to be ≈2.4%/ h, raising the possibil-
ity that novel mutations might have beneficial effects strong
enough to have a measurable effect. We thus took further
steps to rule out this possibility.

As there is no recombination during the selection pro-
tocol, any de novo mutation would lead to a global

perturbation of the allele frequency dynamics, one of the
two alleles at each segregating site being fully linked to
the new mutation. This would lead to a large effect,

FIG. 4. An example of standard-driver versus liberal-driver models. Al-
lele frequencies in the depicted chromosome XV region moved sub-
stantially during the experiment. Thick dashed lines (t0-red, t1-green,
t2-blue, and t3-black) show the data and the corresponding solid lines
the maximum likelihood predictions for the motion; vertical lines de-
note the inferred driver location. (a) Driver and passengers model: The
model explains the motion overall quite well; however, it fails qualita-
tively near the sweep focus at 172 kb. The motion, which, as is evident
by the visible overlap between the blue and black dashed lines, seems
to reach equilibrium at an intermediate frequency, is not compatible
with models provided by equation (4). (b) Liberal-driver and passen-
gers model: The trajectories near the focus are much better explained
than by the standard-driver model. The liberal-driver interpretation
gives a gain of 79 units in log-likelihood at a cost of two extra degrees
of freedom and is thus strongly supported statistically. Data shown are
averaged over a sliding window of 5; however, all inferences are done
with the raw data.
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FIG. 5. Adaptation under drivers versus liberal-drivers interpretation. (a) Estimates of fitness flux: In the standard-driver interpretation (eqs. 4–7),
most adaptation took place during the first time interval, Δt0, whereas liberal-drivers adapt most during Δt1 and have a higher total fitness flux.
It is also apparent that while standard-drivers continue to sustain a fitness flux during the last interval Δt2, the flux generated by liberal-drivers
has all but vanished. (b) Inferred motion of the drivers (red) and liberal-drivers (green) during the last time interval supports the observation that
under the liberal-driver interpretation the system has almost reached equilibrium (in the sense discussed in the text).

increasing as a function of time, on the movement of
the allele frequencies. We thus calculated genome-wide
statistics of absolute changes in allele frequency at the
three time intervals (i.e., |q(tk) − q(tk−1)|) from the
trajectories inferred under the unlinked driver model.
The statistics showed that the absolute movement of al-
lele frequencies slightly decreased throughout the course
of the experiment, with mean values of 0.032, 0.032,
0.030, respectively, reflecting our inference that 94% of
allele frequencies evolved in a manner compatible with
neutral (no motion) evolution with the remaining 6%
evolving as discussed. This decrease suggests that de
novo mutations did not significantly affect the allele
frequency dynamics during the time interval reported.

Spatial Uncertainty of Identified Drivers
Likelihood calculations suggested that, using the (liberal)
driver passenger models, the precise location of a driver
could be identified on average to within an accuracy of 12
kb. Due to linkage, alleles at nearby loci are likely to move in a
similar manner, leading to uncertainty in the precise choice
of location of a driver locus. This uncertainty was quantified
by taking the maximum likelihood drivers inferred under
the standard- and liberal-driver models and checking

the next 20 segregating sites both up- and downstream,
assigning each in turn to be the driver, reoptimizing the
remaining degrees of freedom, and calculating the resulting
likelihoods. Figure 6a shows for standard-drivers that,
using a log-likelihood cutoff of three units (95% confidence
interval), the driver allele can on average be located within a
window of 12 kb centered on the maximum likelihood loca-
tion. This means that on average 38 segregating sites remain
to be further studied for each driver focus (see supplemen-
tary text, Supplementary Material online, for details how
this number of segregating sites was calculated). However,
region-specific uncertainty strongly depends on the selec-
tive strength of the driver, local recombination rate, and
on the allele read numbers from sequencing—variability of
these factors leads to substantial variance in the accuracy
of the inferred driver location (fig. 6a). Nevertheless, for
regions with strong drivers, the small number of segre-
gating sites to be further studied reflects the efficiency of
recombination breaking linkage when advanced intercross
lines are used in the experimental design (Darvasi and Soller
1995). Comparison of driver locations under each of the two
models, shown in figure 6b, revealed differences that were
mostly within the uncertainty range, with mean absolute
distance ∼2 kb.

FIG. 6. Driver location uncertainty. (a) Inferred sizes of the regions containing loci that when fixed to be the driver are within a distance of 3 units
of score (95% confidence interval) from the maximum likelihood value (with reoptimization of the remaining degrees of freedom). Data shown
are for standard-drivers. Variability in the magnitude of selection and local recombination rates leads to substantial variation in the uncertainty of
the driver locations. (b) Distances between the maximum likelihood driver locations inferred under the standard-driver and liberal-driver models.
For most foci, the two models gave predictions agreeing within variability identified in panel (a).

1193

http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr289/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr289/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr289/-/DC1


Illingworth et al. ∙ doi:10.1093/molbev/msr289 MBE

Analysis of a Biological Replicate Experiment and
Estimates of False Positive Rates
One great advantage of artificial selection protocols is
the opportunity to analyze biological replicates to gauge
robustness of inferences made. We analyzed data from
a biological replicate experiment and show that inferred
statistics of selection replicate well (see supplementary text,
Supplementary Material online, for details). However, as the
replicate data set had fewer time-points, and was thus not
fully comparable to the one discussed so far, we performed
computer simulations to estimate false positive rates for
the analyzed 44 driver set. This resulted in an estimated
false positive rate for our driver region detection to be less
than ∼2% for populations of size 107. In these simulations,
we chose the number of segregating sites, number of drivers
and their estimated selection strengths, and recombination
rates to mimic the ones found from the experimental data
(see supplementary text, Supplementary Material online,
for details).

The 44 regions called in our analysis as containing driver
loci are significantly larger than the more conservative 21 (all
these regions are in our list) obtained by Parts et al. (2011),
who, for example, only call QTLs observed in both the pri-
mary and the replica data sets. The existence of a higher
number of regions under selection than previously re-
ported is supported by the false positive rate identified from
simulated data.

Discussion
Quantifying Selection from Time-Resolved Allele
Frequencies
We performed the first, single nucleotide resolution,
genome-wide population genetic analysis of time series
allele frequency data from an evolving outbred popula-
tion under selection. The analysis revealed several insights
into the dynamics of the population at the molecular level.
First, we estimated that close to 6% of the over 30,000
segregating sites are affected by the selection pressure as
identified via deviation from a neutral null model. Sec-
ond, we demonstrated the main force causing this motion
to be genetic linkage, which causes passenger alleles to
hitchhike with driver alleles. Third, using a driver and
passenger model, we quantified the selective advantage
of the found drivers, the amount of linkage disequilib-
rium within the regions that they reside, and the uncer-
tainty in their locations. The method we describe offers
a first-order approach to examining selection in such an
experiment.

Extending the above, by allowing driver alleles to evolve
arbitrarily, we found substantial statistical evidence of
fitness effects going beyond those compatible with stan-
dard additive models of selection, such that many of the
driver alleles evolve under an effectively time-dependent fit-
ness seascape (Mustonen and Lässig 2009). We next discuss
possible scenarios underlying the observed liberal-driver
dynamics.

Linkage Pattern in the Initial Pool
One explanation for the inferred liberal-drivers (or in-
deed the standard drivers) signal would be the existence
of linkage disequilibrium between candidate drivers. Such
linkage could result from stochastic effects during the
crossing, arising due to the finite population size, a sce-
nario which equation (7) would not capture. Numeri-
cal simulations (reported in supplementary text, Supple-
mentary Material online) showed that population sizes
from ∼106 upwards are sufficient to rule out distortion
to the global selection statistics arising from such noise,
on the assumption that the numbers of segregating sites
and drivers, driver selection strengths, and recombina-
tion rates are close to those inferred from the real data.
Furthermore, analysis of data from a biological replicate
gave overall statistics of selection consistent with those
inferred, supporting the conclusion that drift-generated
linkage disequilibrium is not causing the signal (see sup-
plementary text, Supplementary Material online, for more
details).

From our simulations, we do note, however, that a large
number of false positives would be generated due to drift-
generated linkage in population of size 105. Therefore, in
smaller populations, our method should be applied only
for identifying the largest fitness effects to avoid being
swamped by false positives (which would reflect mistaken
measurements of selection rather than any underlying fit-
ness land- or seascape) or in combination with full sequence
data from the initial pool to fix the linkage. The population
size required to correctly decide whether a marker moved
due to linkage to a nearby selective sweep or just due to drift
has been calculated (Logeswaran and Barton 2011).

Another possible reason for a nontrivial linkage pattern
in the initial pool could come from unknown selection pres-
sures during the crossing protocol. Given that such selection
could in principle be arbitrarily complex, our analyses of the
data here remain to some extend vulnerable to this. How-
ever, there is no statistical evidence for interchromosomal
pairwise linkages between genotype data of 19 QTL loci (all
part of our candidate driver foci list) from 960 individuals
at time point (t2 + t3)/2 as reported in Parts et al. (2011).
Therefore, worst-case scenarios where all but one of the
candidate drivers were linked to, and thus would merely
hitchhike with, one of the two nearly fixing drivers are not
supported by the data. Similarly to nonlocal linkage dise-
quilibrium generated by small populations, possible effects
of selection during the crossing to allele dynamics under
the artificial selection phase could be easily included to the
present method given suitable data. Extending the method
to cover simultaneous recombination and selection is pos-
sible but remains a topic for further investigation.

Clonal Interference
In asexually evolving populations, recombination cannot
combine beneficial mutations that are on different haplo-
types. This leads to so-called clonal interference where some
beneficial mutations will be removed from the population
due to them being interfered with stronger ones in different
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backgrounds (Fisher 1930; Muller 1932). The dynamics of
clonal interference are complex and both its experimental
and its theoretical study has long been an active research
topic (for recent reviews see Park et al. 2010; Sniegowski and
Gerrish 2010).

For the results presented here, the large number of
drivers make it unlikely to have a large number (or indeed
any) individuals with all the beneficial alleles in a population
of size∼107–108, so that such interference seems inevitable.
However, simulation and sequencing data both suggest that
clonal interference does not account for the liberal-driver
signal observed here.

Analyzing simulated data with the number of drivers (ad-
ditive in fitness) and their strengths comparable to those
inferred from the real experiment, we concluded that the
observed liberal-driver dynamics does not reflect effects
primarily caused by clonal interference. We reached this
conclusion by analyzing the simulated data under both
standard and liberal-driver models (see supplementary text,
Supplementary Material online). With both models, we
were able to discover the “true” driver set and reproduce the
correct selection strengths for the drivers. However, using
a liberal-driver model to infer selection from the simulated
data, we did not see the decrease in fitness flux observed
for the real system (contrast fig. 5 and supplementary fig.
S14, Supplementary Material online). For this reason, we be-
lieve that clonal interference is not the primary explanation
for the stronger performance of the liberal-driver model for
most candidate driver regions in the real data. Supporting
this conclusion, genotyping data of 24 loci from 960 indi-
viduals from time point (t2 + t3)/2 showed that no sin-
gle genotype (clone) dominated the population at that time
(maximum count observed was 6), a considerable diversity
of 787 unique haplotypes being detected and the data be-
ing consistent with the expectation under a hypothesis of
independent sites (Parts et al. 2011).

Given the absence of recombination, it is inevitable that
clonal interference would, after sufficient time had passed,
have a significant influence on the evolution of driver al-
lele frequencies. However, given additive drivers of the
size and number that we find from the real system, that
point would not have been reached by the end of the
experiment.

Clonal interference between (possible) multiple benefi-
cial alleles within a driver focus remains a possibility but
would not stop the dominant combination of these mu-
tations from fixing and as such is not consistent with
the liberal-driver signal. Extension of the method to cover
multiple drivers will be required to study such effects and is
beyond the scope of this manuscript.

Epistasis and Other More Complex Selective Scenarios
Given that linkage or clonal interference between driver
foci do not satisfactorily explain the observed dynamics, we
believe that the liberal-driver signal is likely to be caused
by fitness effects going beyond additive models of selec-
tion. For instance, one such complex selection scenario
could be that of epistatic interactions between drivers

(Weinreich et al. 2005), encompassing combinations of pairs
or potentially multiple drivers, while the possibility of gen-
uinely time-dependent or frequency-dependent selection
cannot be definitively ruled out. Models could be developed
to examine the likelihood of each of these potential scenar-
ios. However, inference of a correct model based on the data
available presents a substantial challenge, such that the pre-
cise nature of the observed time dependency remains to be
shown.

Comparable Events at Macroevolutionary Timescales
The adaptive dynamics studied here consisted of driver al-
leles at loci under strong selection for heat resistance and
neutral passengers alleles linked to the drivers. As can be
seen in the frequency profiles in figures 2 and 4 and sup-
plementary fig. S5, Supplementary Material online, genomic
regions around the drivers have substantially reduced al-
lelic variance. The experiment and the observed dynamics
took place over timescale of days. Nevertheless, a similar
pattern of the hitchhiking effect has been described theo-
retically (Kim and Stephan 2002) and found, among others,
in the case of Drosophila, where individual selective sweeps
in the recent past leave remnant genomic valleys of reduced
variability (Svetec et al. 2009; Macpherson et al. 2007). How-
ever, while in the case of selective sweeps, variability is re-
moved completely from the genomic locality, in many of the
cases studied here, a substantial degree of variance remains
in the immediate vicinity of the sweep locus after the adap-
tive event: The genomic signature resembles that of a soft
sweep (Hermisson and Pennings 2005), where the beneficial
driver allele is initially linked to many different background
genotypes.

From Driver Locations to Biology
In the data considered here, the average spatial resolution
which can be attained in identifying driver locations is about
12 kb (see fig. 6). As such, identification of individual variants
responsible for the inferred fitness advantages would re-
quire further experimental or bioinformatic analysis, such
downstream analysis being very important in terms of the
biological insight that can be collected from this data. Anal-
ysis of some of the large events observed in the data has been
carried out in earlier work (Parts et al. 2011), showing them
to be biologically interesting with respect to heat tolerance.
While mapping the precise locations of the drivers are im-
portant for the biology of the trait in question, we note that
inference of selection as was done here is not sensitive in
this respect and thus, the resulting estimates for selection
are robust.

Conclusions
Our analysis here has been of time-resolved allele frequency
data from a yeast population under heat stress. However,
the method presented has potential application to a range
of organisms under a variety of selection pressures. Sev-
eral conditions were necessary for our analysis to be sensi-
ble: efficient recombination during the crossing to break up
linkage and create variation, a large population size and high
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initial allele frequencies to reduce the effect of genetic drift
and clonal interference, the duration of the experiment,
which does not allow de novo mutations to start interfering,
and finally, the application of strong selection. The method
can be extended to sexually propagated populations by con-
sidering selection and recombination simultaneously, and in
such a setting, the key conditions enumerated above will be-
come somewhat more lenient.

The focus on quantifying selection and utilizing multi-
ple consecutive time points distinguishes our method from
a standard QTL mapping design, although such a mapping
would be a natural biological application. We see the com-
bination of the experiment with multiple time points and
the approach presented here as a model for the quantita-
tive study of the fitness effects of mutations and their pos-
sible interactions. Time resolution is key to our analyses; if
data had been collected only from the initial and final pool,
we would not have been able to show that majority of the
drivers are not compatible with a standard model of addi-
tive selection. Under the framework of experiment and data
analysis described here, alterations to study other variables
would be possible; for example, the effect of drift could be
examined through modulating the population size.

With the imminent arrival of deep population samples of
time-resolved full genome sequences from evolution exper-
iments, the possibility emerges of scaling up our measure-
ments of the fitness effects of mutations to include complex
multilocus interactions. Application of population genetic
theory will be central to making the best possible use of such
data.

Supplementary Material
Supplementary text, figs. S1–S14, and table S1 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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Mustonen V, Lässig M. 2009. From fitness landscapes to seascapes:

non-equilibrium dynamics of selection and adaptation. Trends
Genet. 25:111–119.

1196

http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr289/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr289/-/DC1


Quantifying Selection Acting on a Complex Trait Using Allele Frequency Time Series Data ∙ doi:10.1093/molbev/msr289 MBE
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