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Abstract

Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae,
are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell
compartments, including cytoplasm and silica deposition vesicle (SDV). Considering the low concentration of silicic acid in
oceans, cells have developed silicon transporter proteins (SIT). Moreover, cells change the level of active SITs during one cell
cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of
fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One
reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when
possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed
a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external
environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as
mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an
optimization technique (global and local search), together with enzyme related penalty terms, has been applied. We have
connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized
cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients
and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge,
externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with
previous classical kinetics. The model introduced can be generalized in order to analyze different biomineralizing organisms
and to test different chemical pathways only by switching the system of mass transport equations.
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Introduction

Every cell has at least one membrane to separate it from the

outside environment and to make it a living unit. The existence of a

membrane and the division of the cell space (compartments)

causes a discontinuity in the distribution of materials and energy

between the inside and the outside of the cell. This introduces an

effective control on cell preferences for material synthesis and

energy production/consumption. Moreover, the membrane bor-

ders have an effect on the geometry of structures inside them. One

of common means for this control is through the production of

specific proteins that act as transporters. The mass transport

through different cell compartments is a universal phenomenon

and, since it has a significant effect on all subsequent intercellular

processes, it attracts great interest for compartmental modeling

studies [1]–[3].

One interesting example of compartmental strategies by cells for

control of material synthesis can be found in biomineralizing

organisms that make specific pattered minerals with the assistance of

biomolecules [4]–[6]. Examples of this are iron oxides and sulfides

in bacteria, silicates in diatoms, carbonates in algae, and calcium

phosphates and carbonates in vertebrates [7], [8]. They uptake,

synthesize and consume minerals in favor of producing hard

skeletons in combination with an organic matrix (hybrid materials).

Diatoms
Diatoms are the eukaryotic unicellular organisms, living in

marine and fresh water environments. Diatoms are producers in

the food chain. They generate around 40% of all organic carbon

in the sea [9]. They contribute to the global carbon cycle, by

photosynthetic carbon fixation as much as all the terrestrial rain

forests do [10], [11] and therefore, it’s likely that they have

influenced the global climate over millions of years, by the inward

flux of carbon dioxide to the oceans [12]. Moreover, they are

major players in the silicon cycle of the oceans [13].

The distinctive feature of diatoms is that they synthesize a wall

around themselves, called frustule, made of amorphous silica

PLOS Computational Biology | www.ploscompbiol.org 1 June 2014 | Volume 10 | Issue 6 | e1003687

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003687&domain=pdf


SiO2ð Þn H2Oð Þ
� �

, which is delicately patterned down to the scale

of nanometers. The frustule structure varies between different

species of diatoms and also between different growth conditions.

[14]–[16]. The precision in controlled mineralization is one of the

reasons that they have been attracting increasing interest for a long

time, from a material science perspective [14], [17]–[21]. The oldest

diatom fossils have been dated back to 185 Mya [22]. It is suggested

that the abundance and ecological success of diatoms can be a result

of their silica walls - living in a ‘‘glass house’’ [23], [24]. Diatom

frustules are typically composed of two parts: the valve, which forms

the larger outer surface and girdle bands, which are rings of silica

being produced during cell growth (Figure 1A).

The necessity of silica formation for diatom cells imposes special

steps in their cell cycle. Figure 1A depicts the asexual cell cycle of a

typical diatom. Before a cell divides, new silica valves for the next

generation are formed inside a specialized vesicle, the Silica

Deposition Vesicle (SDV) [25], [26]. After this event, daughter

cells separate and start growing, which includes the growth in the

cell volume and also the silica girdle bands until the cell reaches its

largest size.

If the amount of silicon in the environment is depleted to almost

zero; most cells will be arrested in the G1-phase or G2-M phase,

with the G1 arrest point being generally predominant [27]–[29].

This property has been very useful in diatom studies because

under silicon starvation condition, cells become mostly synchro-

nized in their cell cycle and therefore, an individual cell can be

studied easier with the data from population-level quantities.

However, even in the best case usually up to 80% of the cells are

synchronized and, therefore, there will be an error in downscaling

to a single cell dynamics from macroscopic quantities.

Because of the specific cell division form, including one valve

growing inside another, in many species of diatoms, one of the

daughter cells becomes smaller after each generation. To

overcome this problem, after many generations, cells that are

smaller than a critical threshold will be regenerated to the original

size via sexual reproduction [30]. For some species of diatoms,

however, sexual reproduction has never been observed. [31],[32].

A study on the frustule formation based on fluorescence imaging of

the species Thalassiosira pseudonana, suggests that sometimes girdle

bands close to the cell center expand and are thus able to

accommodate a new valve, which is not smaller than parent’s

valves [29].

The silica wall architecture is a species-specific characteristic of

diatoms, which is an indication that the synthesis of silica is highly

genetically controlled, in addition to being chemically and

physically controlled. Since the entire genome of some species of

diatoms has been sequenced (Thalassiosira pseudonana: [33] and

Phaeodactylum tricornutum: [34]), there have recently been greater

insights into this genetic control [35],[36]. Figure 2 is a diagram

showing cell control mechanisms. It is believed that such control

takes place mainly through two processes. Firstly, via synthesizing

and providing special membranes like SDV and secondly, via

producing functional biomolecules. The first type of silicification-

related biomolecules regulate uptake and transport of silicon and

the second type are involved in deposition of silica including

proteins and polyamines, which play the role of catalyst or a

structure forming scaffold [4],[5],[37]–[39].

Our model organism is Thalassiosira pseudonana. Figure 1B and

1C shows a scanning electron microscope (SEM) image of this

species. In Figure 1B the silica structure of valves, which is specific

for this species, and girdle bands, which have a finer and more

regular structure, are presented. Figure 1C shows the image of a

diatom captured during the last step of cell division. It is clear in

this image that the daughter cells already have completed valves

before division takes place.

Silicon uptake
Diatoms uptake silicon mostly in the form of neutral orthosilicic

acid Si(OH)4 [40],[41]. The low concentration of silicic acid in

present oceans might be the reason for the development of active

Figure 1. Cell cycle and cell division of diatoms. (A) Schematic
picture of different stages of the asexual cell cycle of a typical diatom:
Silica wall is composed of valves and girdle bands. 1: a full-size diatom
cell, 2: Cell during the DNA replication (S-phase), 3; immediately after
this silica deposition in SDV starts, 4&5: the valve formation continues
until it is ready for the new sibling cells and then the cell divides (G2+M-
phase), 6: new cells grow accompanied with silica girdle bands
formation (G1) until it achieves the full size. (B)&(C) SEM images of
diatom Thalassiosira pseudonana. The image of silica frustules of one
diatom including valves and girdle bands (B) and a diatom during cell
division (C).
doi:10.1371/journal.pcbi.1003687.g001

Author Summary

Understanding complex biological systems, especially at
intracellular scales, has always been a big challenge, owing
to the difficulties in measuring and manipulating such
small quantities. Computational modeling brings promis-
ing possibilities to this area. The model organism we have
studied here is the diatom, a single cellular silicifying
organism. Diatoms live in most water habitats and they
use the very low concentrations of silicon in the oceans to
develop beautifully complex silica structures. The cell
control strategies acting on this process have been a long-
standing open question. In this work, we have modeled
the silicon uptake, transport and synthesis in diatoms in
different cell compartments. To find the best set of free
parameters of the model we solved the inverse problem
using parameter identifiability, global optimization, sensi-
tivity and perturbation techniques. The resulting model is
a framework for manipulating and testing different
properties of cells; for example, we have tested the cell
control on silicon uptake by changing the expression level
of the transporter proteins. Such modeling, described in
this work, is both a necessary and important tool for
understanding the cell strategies over control of material
transport and synthesis.

Modeling Silicon Transportation in Diatoms
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transportation. Cells synthesize special silicic acid transporter

proteins (SITs) to act on the membrane for making an inward

silicon flux in the cell. The role of SITs has been discussed in

several studies [e.g. 42, 43].

In T. pseudonana three distinct SIT genes have been analyzed for

their regulatory mechanisms. It has been shown that SIT protein

levels change during a synchronized cell cycle (up to 50% changes

around an average value) and that the peaks of their profile occur

during silica deposition periods of the cell cycle. Moreover, the

peaks in mRNA levels happen in S-phase, where the period prior

to valve formation shows the highest uptake rate [44]. This causes

non-classical enzyme kinetics, which is when the kinetic coeffi-

cients are time-dependent in contrast to classical enzyme kinetics

when the coefficients are assumed to be constant. In this case, the

maximum uptake rate is not constant, but it is a dynamic quantity

due to the flux of enzyme production and dynamic enzyme

activities [44]. This effect changes the chemical pathways [45].

More interestingly, the SIT3 mRNA level is much lower than

SIT1 and SIT2 and also SIT3 is not up-regulated in response to

silicon starvation or cell cycle as much [33],[44]. This suggests that

SIT3 might act as a sensor for external silicon concentration [46].

The sensor role of some proteins has been observed in other cells

like yeast (e.g. [47]). In that case when the nutrient concentration

is lower than a threshold a different type of transporter with a high

affinity is produced. This behavior is associated with a dual-

transport system, which has been shown in the case of yeast that it

prolongs the preparation for starvation and it facilitate the

subsequent recovery of cells [47].

Silicon storage and pre-synthesis in diatoms silicon pool
After cell uptakes silicon it stores it partly in a soluble silicon

pool and then transports it through cytoplasm to reach the SDV,

the location of the new synthesizing walls. Currently, the

intracellular location of the pool and the mechanisms by which

it transports to SDV is not completely understood. Interestingly, if

we consider all the intracellular silicon pool in the form of

monosilicic acid, considering the small volume of the cell, it should

have a concentration higher than the solubility of monosilicic acid,

which is around 2mM at pHs below 9 [48]. It has thus been an

open question as to how the cell can maintain this concentration

without deposition. There are different scenarios for explaining the

storage and transport of silicon in the pool. One of these scenarios

assumes that the silicic acid binds to some type of organic molecule

and thus makes a soluble silicon pool [49] and therefore it turns

the silicic acid into another chemical form. This explanation is in

agreement with the uptake behavior of diatoms after different

starvation conditions [50]. Another scenario assumes the existence

of special silicon transport vesicles (STVs), which transport silicic

acid from the cell membrane and release their content into SDV

by fusing to its membrane [51], however, the existence of silicon

inside such vesicles, to the best of our knowledge, has not been

proved. A third scenario shows that oligomerization indeed starts

inside the cell as soon as there is some monosilicic acid available in

cytoplasm, generating precursors for later deposition inside SDVs.

This explanation is based on NMR data from silicon pools (see the

following).

Recently, the NMR chemical shift technique has been a

powerful way for understanding the forms of silicic acid based on

their connections to other molecules. With this data it has been

shown that the majority of silicon in the entire cell is in a

polymerized form [52]. However, this data does not necessarily

exclude the possibility that the first explanation could have a role

(because this method cannot distinguish between free monosilicic

acid and its attachment to an organic molecule), but it shows

clearly that intracellular silicon is mostly in the form of oligomers.

Finally, after the nutrient (oligomers of silicic acid and pre-

synthesized silica) is provided for SDV, silica precipitation and

pattern formation occurs.

In this study, we model silicon uptake, transportation and

synthesis in diatoms. We use the nonlinear Michaelis-Menten

kinetics for protein activities as mass transport equations. The

model is composed of four compartments: external environment,

cytoplasm, SDV and deposited silica. In order to find the unknown

parameters of our compartmental model, scatter search, (a global

optimization technique), has been applied for fitting the model to

experimental data on silicon consumption and cell population

growth. To add constraints to the model, a penalty term is added

to the objective function. Additionally, the optimized solutions

have been tested with sensitivity and perturbation analysis. The

resulting robust optimized solutions predict silicon dynamics and

intracellular biosilicification rates which are in agreement with

experimental measurements. With the insight from SITs expres-

sion level data, we then impose a flux of proteins during the cell

cycle and investigate its effect on silicon uptake rates.

Materials and Methods

Compartmental modeling
In order to model the distribution and transportation of

materials in cells, two computational methods have been

commonly used. In the first method, spatial and temporal

quantities are both important and a system of PDEs should be

solved with some degree of accuracy. However, in many cases, cell

processes are not diffusion-limited, meaning that the rate of

another event that plays the role of a sink or a source, is slower

Figure 2. Biological control over biosilicification. Cell controls
mineralization through two types of mechanisms: By formation of
membranes in order to make specialized compartments like SDV and by
producing biomolecules such as silicon transporter proteins and
biomolecules involved in silica deposition. The latter includes molecules
with the role of scaffold or catalyzer.
doi:10.1371/journal.pcbi.1003687.g002

Modeling Silicon Transportation in Diatoms
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than diffusion rate and thus diffusion is fast enough to keep the

distribution of materials homogenous in the time-scale of interest.

To investigate the effect of diffusion on transport of silicon two

types of diffusion rates have been calculated. For the detailed

calculation see Text S1 from supplementary materials. The first

type is diffusion through membrane. Even though the membrane is

semi-permeable for monosilicic acid, which is a small, uncharged

molecule, the rate of diffusion is much smaller than the observed

uptake rate [53]–[56]. Therefore, it seems that active transporters

are the most important method for the transport. The second type

of diffusion is responsible for distribution of materials close to the

membrane in each of its sides. In text S1 we show that diffusion of

silicic acid in water is fast enough compared to the rate of uptake,

that it will not be a controlling factor (See Figure S2 in Text S1). The

diffusion-mediated Michaelis-Menten equation also shows that the

effect of diffusion on the total rate is negligible [45]. This allows us to

use compartmental modeling as a good approximation.

If cells have several compartments, the chemical and physio-

logical characteristics of inside and outside compartments can

differ significantly. This is an efficient mechanism for regulating

special events and as expected it requires energy for synthesizing

new biomaterials for membranes. In such a process that is not

diffusion-limited the second modeling approach, compartmental

modeling, is suitable. Compartmental modeling includes a system

of ODEs that describes the dynamics of materials inside and its

transportation between compartments.

There are several reasons that the uptake of silicon, in the form

of mono silicic acid, is mostly controlled by enzymatic reactions.

For instance, cells use the so-called SIT (silicon transporters) genes

to produce proteins with active uptake sites and subsequently

lower the energy barrier for silicon uptake through membranes.

Although in most studies of SITs, the focus is on the SITs on cell

membranes, but the expression level and other relevant data

usually is derived from the whole cell proteins analysis. Since in

diatom cells, there is a specialized compartment for silica synthesis

and deposition which is surrounded by a membrane, there is no

reason why this membrane shouldn’t be equipped with SITs;

either in the same form or a similar form. Moreover, the

permeability of intracellular membranes to silicic acid is low

enough that transporter proteins still are likely the major way of

transportation [53].

Our compartmental model includes four compartments (see

Figure 3) and we aim to model the temporal changes in amount of

silicon (mol), regardless of the form of the silicon compound, inside

those four parts. Once silicic acid is inside the cell, it will likely

undergo polymerization [52]. The silica polymerization chain of

reactions contains many reaction terms, giving rise to a high

degree of complexity. Moreover, there is not much known about

the oligomer form of silicic acid in diatoms. Therefore, a useful

and applicable approach is to consider the total amount of silicon

in each compartment and calculate the temporal changes of this

quantity.

In order to include the deposition of silica in the SDV, we

consider deposited amorphous silica as one compartment.

Biological molecules, which consist mainly of proteins and long

chain polyamines (LCPAs), have a major role in silica polymer-

ization and pattern formation [35]–[39]. The process by which

they guide biomineralization is studied to some extent but still not

completely understood. Moreover, there are a variety of complex

events happening in SDV, including self-aggregation of organic

molecules and organic matrix formation, polymerization of silicic

acid and formation of oligomers both from monosilicic acid and

also from precursors of oligomers, nucleation and phase separation

and formation of silica under a controlled condition of concen-

trations and pH values. Also those events have different time and

spatial scales [4]–[6]. It is apparent that the entire process is too

complex to study it in a single model. In our model, we present the

equilibrium condition of the SDV membrane to be described by a

catalytic process. Moreover, we introduce the phase separation

event, the transport between the soluble and deposited silica in

SDV, as the transport between compartments 3 and 4.

Figure 3 also shows the cell control over level of SITs, which is

regulated in response to changes in external concentrations of

silicic acid and internal consumption of silicon, as discussed earlier

Figure 3. Four compartments considered in the computational modeling and kinetics of their communication. Compartment 1 is the
environment from which diatom uptakes silicic acid by means of silicon transporter proteins (SIT) located on the cell membrane. Then silicon most likely
stored in compartment 2, the cytoplasm, and transported to SDV, the compartment 3, again by means of SITs. In SDV the soluble silicon finally deposits
and forms the silica frustule, which is compartment 4. Green arrows show the cell regulation over amount of SITs. Once the cell nucleus receives the
related signals based on information from inside and outside the cell, with some mechanisms which are mostly unknown, it changes the level of SITs to
control the inward flux of silicon to compartments. (This figure is a schematic graph. In reality the location of SITs is not completely clear.)
doi:10.1371/journal.pcbi.1003687.g003

Modeling Silicon Transportation in Diatoms
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in the introduction. We introduce this control in one of our

experiments by adding a flux term to the rate equation of the SITs.

In this model the focus is on uptake and transportation of silicic

acid through the cell membrane and cytoplasm. This step is vital

in providing the material for the silica depositing compartment

and, consequently, vital for the cell division.

Kinetics of mass-transportation – Forward problem
Relation between individual-cell-level and population-

level quantities: A multiscale problem. To model a biolog-

ical system containing a population of cells and a common

medium we need equations describing the dynamics of the

medium and the dynamics of individual cells. This could be

written as equations (1) and (2).

dYj

dt
~fj(Yj ,P,S,t); j~1, . . . ,N ð1Þ

dS

dt
~g(Y1, . . . ,YN ,S,N,t) ð2Þ

Y is a vector containing all dependent variables of intracellular

dynamics like concentrations, P is a vector containing all the

independent parameters of the intracellular model, S is the

external nutrient concentration, and N is the total number of cells.

Equation (1) describes the intracellular dynamics of cell j, which is

a function of internal and external quantities. On the other hand,

equation (2) describes the nutrient dynamics in the medium as a

function of intracellular variables and external variables like total

number of cells.

The difficulty with this system is the heterogeneity of cells; each

cell can have a slightly different behavior that the next one. Also

cells can be in different parts of their cell cycle. It is possible to

represent the different phases of cell cycle with a parameter, h, in

the range of ½0,2p�. At h~2p the cell divides and two new cells

with phases h~0 emerge. With this definition and assuming that

all cells in the same cell cycle phase behave similar, each cell with

index j can be known with its phase hj .

There are different types of computational modeling techniques

for solving such a problem. In some studies, different cells are

referred with only one parameter like biomass and then it is

connected to the population level dynamics with one equation,

population-balance equation. These types of modeling do not

consider the intracellular dynamics. Another class of models is cell

ensemble modeling, where equation (1) holds for dynamics of

intracellular quantities, but some randomness is added to the

parameters in order to represent the deviation of cells from an

average behavior. Therefore, there are ensembles of cells in

different states in addition to eq. (2) to connect them to the

common medium (for a review see: [57]). However, the number of

cells that can be simulated in this way is limited, because the

computational cost for these types of modeling is high and,

therefore, it also puts a limitation on the amount of complexity in

intracellular model.

In our model, we consider the intracellular dynamics for one

type of cells, the type that is in majority after the synchronization.

However, as we will show in this section, we make sure that the

effect of non-synchronized (a minority of cells) also has been

counted in the dynamics of the nutrient in the medium.

The experimental setup by which the data that we used was

measured [52] is a population of diatom cells and a medium

(artificial seawater). Moreover, prior to the measurements, there is

a period of silicon starvation, in which cells have been kept in a

silicon-free medium for 24 hours [52]. The reason for this

preparation period, as we explained in introduction, is to

synchronize cells as much as possible to create a framework for

using the macroscopic scale, population-level quantities to infer

cell-level dynamics. Therefore, the total amount of silicon

consumption, after the start of the experiment and adding silicon,

is due to consumption by all present diatoms in the population.

However, it is known that only up to 80% of cells are synchronized

in the best case [29]. In other words, not all the cells will stop their

cell cycle in the main arrest point. For this reason, if we look at the

cell population or cell density measurement during the observation

time, for about 2 hours cell density remains almost constant but

afterwards, it starts growing for the next 3 hours [52]. If the

synchronicity were perfect we would expect cell density to remain

constant until around the end and then a rapid growth to happen

to make the population double in size, due to cell division.

We define h~0 to be the phase where most of the cells after

synchronization are located, which is somewhere in G1 phase.

Consider Cu t,hj

� �
to be the total amount of silicon uptake by cell j

at time t with the unit of mol: cell{1, Cm(t) (equivalent to S in eq.

(2)) to be nutrient (silicic acid) concentration in the medium at time

t with the unit of mol:L{1and N(t) as cell density at time t with

the unit of cell:L{1and V to be the total volume of the cell culture

with the unit of L. Thus the mass conservation law for nutrient

amount is as follow,

VCm(t)z
XVN(t)

j~1
Cu(t,hj)~VCm(t~0)~constant; ð3Þ

Assuming all the cells to have the same function of Cu as the

synchronized cells, then,

Cm(t)zN(t)Cu(t,0)~Cm(t~0)~constant; ð4Þ

The time-derivative of eq. (4) results in,

dCm(t)

dt
~{N(t)

dCu(t)

dt
{Cu(t)

dN(t)

dt
; ð5Þ

The right-hand side of equation (5) contains two terms. The first

term is the summation of uptake rates of all cells in the culture,

assuming that they were all synchronized. The second term,

however, is representing the effect of non-synchronized cells; if

number of cells stays constant during the observation time, the

second term is equal to zero. Therefore, the nutrient in the

medium decreases not only because of nutrient uptake by cells but

also because of emerging new cells. Eq. (5) then will be connected

to the intracellular dynamics of a synchronized cell. We can say

that a typical synchronized cell gets information about other (non-

synchronized) cells being divided, only through the common

nutrient in the medium concentration. In the results section, we

will show the role of each term in the whole amount of silicon

consumption in our model and thus in the intracellular dynamics.

Single cell dynamics. There are different methods for

modeling transportation through biological membranes. Based

on the information derived from experiments, a specific kinetic

Modeling Silicon Transportation in Diatoms
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pathway is inferred. Usually, for the sake of simplicity, only the

chemical pathways representing the most important and relevant

physiological events in a single cell are considered. The uptake

rates of silicic acid in diatoms in most cases has been observed to

have a saturable curve, which can be described with a Michaelis-

Menten kinetics. In the case of exponentially growing diatom

cultures and in short incubation times, the kinetics is reported to

show a biphasic behavior [50]. However, in kinetics of uptake rates

for a synchronized culture of cells, which have been in silicon

starvation for a long period before the experiment, always has

shown a saturable behavior (For more discussion see Text S1 from

supplementary materials). Since we are using the data related to

the synchronized cells, in our model, we use Michaelis-Menten

enzyme kinetics for silicon transportation towards the cell and

towards the SDV. We also use the enzyme kinetics for silica

deposition as an event happening inside SDV.

Assuming that the uptake sites are located on the membrane

only and nutrient species can freely diffuse, then we describe

enzymatic processes by means of the following reactions:

CmzE1f

k1
E1Cm

k2
CpzE1f ; ð6Þ

CpzE2f

k3
E2Cp

k4
CszE2f ; ð7Þ

CszE3f

k5
E3Cs

k6
CdzE3f ; ð8Þ

where Cm, Cp, Cs, Cd are the concentration of silicon in the four

compartments medium, cytoplasm, SDV and deposited silica

respectively. E1f , E2f , E3f are concentration of free active sites of

proteins (the first two, transporters and the third deposition-

related) and E1Cm, E2Cp, E3Cs are the temporary occupied active

sites in each time step. k1, ::: , k6 are equilibrium constants of

transportation equations.

Based on immunoblots data, SIT protein levels change during

the cell cycle. A minimum occurs in the S phase of the cell cycle

when silica deposition is not taking place [44]. We assume that the

total amount of enzymes is constant during the time for the first

simulation. This is based on classical enzyme kinetics. For the

second simulation, we define relative changes of total SITs as a

function of time based on the relative level of protein changes

coming from experimental data [44].

Therefore, equations (9–11) describe the conservation of the

total number of proteins. In the second case, the right hand side of

equation (9–10) is multiplied by a dimensionless function of time.

E1f (t)zE1Cm(t)~
E1f (t0); simulation 1

E1f (t0)f (t); simulation 2

�
; ð9Þ

E2f (t)zE2Cp(t)~
E2f (t0); simulation 1

E2f (t0)f (t); simulation 2

�
; ð10Þ

E3f (t)zE3Cs(t)~E3f (t0); ð11Þ

In eqs. 6–8 there are ten state variables, variables in equations

which together determine state of the system, changing over time,

but, considering the above constraints, only seven of them are

independent from each other and thus seven variables are enough

to describe the state of the system. Nevertheless, we will still use all

of these equations in the model for the purpose of a better

representation of enzyme kinetics. Some initial values of quantities

involved in reactions are known, based on our choice of model

setup and experimental data (timing of the experiment and

starvation period) (See eq. (12) for details). However, there are

some quantities where their initial values have to be considered as

unknown parameters too. These are initial amount of free

enzymes, for which, to the best of our knowledge, there is no

quantitative measurement of the number of active proteins. There

are, however, some studies that use the immunoblot of cell

proteins to measure SIT proteins level during the cell cycle. This

kind of experiment shows protein level changes over time, so it is a

relative measure and not the absolute number [58], [44]. There is

only an estimation of these numbers in literature that we have used

them to choose the range of search space for these parameters in

optimization simulation (see table 1).

In enzyme kinetics, usually the kinetic parameters of chemical

reactions are introduced in terms of half-saturation and maximum

rates. For a better comparison with literature we changed the

kinetic parameters of the model (k1, ::: , k6) to this type of

Table 1. Parameters of the computational model.

Parameter Description Dimension Value Reference

p1 Half-saturation constant1 m mol:L{1 1{100 [50]

p2,p5 Maximum rate constant 1 and 2 f mol: cell{1: h{1 0:6{60 [50]

p3,p6,p9 Initial number of active sites 1,2 and 3 f mol: cell{1 10{6{1 [50], [45]

p4 Half-saturation constant 2 f mol: cell{1 10{5{1 [50]

p7 Half-saturation constant 3 f mol: cell{1 10{3{10 [45]

p8 Maximum rate constant 3 f mol: cell{1: h{1 6|10{2{6|102 [45]

vc Cell volume L: cell{1 (1{5)|10{14 Our data

d Cell diameter m 5|10{6 Our data

A Cell surface m2 3:5|10{11 Our data

D Diffusion coefficient of silicic acid in water m2: s{1 1:5|10{9 [41]

The values for the range of parameters for the optimization search are approximate values, based on experimental measurements.
doi:10.1371/journal.pcbi.1003687.t001
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parameters (vector P in eq. 12). These parameter changes come

from Michaelis-Menten calculations. Moreover, we added Cu,

uptake by one cell, to the list of states variable to connect equations

of individual and population level (vector Y in eq. 12). All of the

state variables are in the units of mol: cell{1except Cm, which has

the unit of mol:L{1. Finally, we define the parameters vector,

state variables vector and their initial values, immediately after

silicon starvation, for solving ODEs as shown in eq. (12).

P~

k2
k1

k2
:E1f (t0)

E1f (t0)
k4
k3

k4
:E2f (t0)

E2f (t0)
k6
k5

k6
:E3f (t0)

E3f (t0)

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; Y~

Cu

E1f

E1Cm

Cp

E2f

E2Cp

Cs

E3f

E3Cs

Cd

Cm

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

; Y0~

0

p3

0

0

p6

0

0

p9

0

0

Cm0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

ð12Þ

Using the law of the mass action and equation (5) derived from

mass conservation, model system of equations is complete. It is

provided in supplementary material Text S2, equations (S2–2)–

(S2–12).

Problem of parameter estimation– Inverse problem
Formulation of the optimization problem. To understand

sub-cellular processes, computational modeling, based on knowl-

edge of the cell cycle and experimental data mostly at the

population-level, is a strong and necessary tool. Using a

mathematical model to produce the results comparable with

those obtained from an experiment is called the forward problem.

Equations (S2–2 to S2–12), assuming availability of all param-

eters, describe a forward problem. However, when it comes to

real cases, most of the models for intracellular dynamics contain

several unknown parameters. This is usually unavoidable because

the measurement of transport rates during the observation time

and for all compartments in vivo is not feasible and any data that

can estimate them might contain a large error. Such a problem

often appears in biological systems. To overcome this we need to

design a parameter estimation or optimization problem i.e. to

find the best set of parameters that makes the model output fit to

available experimental data as closely as possible. This is called

the inverse problem. The inverse problem is not always solvable and

it critically depends on the mathematical model, significance and

accuracy of data [59]–[61]; A model that conveys too much

complexity compared to the available data, insufficient data or

noisy data can result in a failure in solving the optimization

problem. The entire method is an iterative process meaning that

the designed model and its optimized solutions can predict some

unavailable data and the result will shed light on our

understanding of how those mechanisms work, in order to

predict a more suitable model and to provide more realistic data

estimations.

The main task in optimization is to minimize a problem-

dependent objective function or cost function. In the general form,

the objective function is made of two terms as follows,

EObjective~
XN

i~1

hi ti,K,Yð Þ{xið Þ2

s2
i

zEPenatlty; ð13Þ

where xis are the observed experimental data and hi is a function

of model quantities used to calculate the equivalent measure. si is

the standard deviation of experimental errors in the data. The first

term is based on weighted least square method which is the most

common method for building objective function [62]. The second

term in equation (13) is the penalty term. When there is a constrained

problem, the penalty method helps to turn the constrained

problem to an unconstrained problem and in this way, we are able

to use the successful optimization algorithms for unconstrained

problem to solve the constrained problem [63].

The criterion for accepting the objective function (objective

tolerance) is defined based on the amount of error in the input

data, which is our benchmark for fitting. The range of parameters

that result in this range of the objective function is called the

acceptance interval. If any changes in parameters can produce a

value for (hi(ti,K,Y){xi)
2 that is smaller than si

2, those changes

are not meaningful anymore. Also any attempt to find a smaller

(hi(ti,K,Y){xi)
2, will results in overfitting to the data and will add

the experimental data noise to the numerical model; something

that should be avoided as much as possible.

Often, the input information is insufficient to solve the inverse

problem or, in other words, the parameters cannot be estimated.

The input information consists of the model structure, the data

used for fitting and the constraints on the model. We will show in

results section that considering the choice of data, placing some

constraints via a penalty function is necessary for our compart-

mental model. Equation 14 is the penalty function that we have

used in our model.

EPenalty~PK{boundzP1zP2zP3; ð14Þ

Some of the constrains we aim to impose on our model, limit

the search space of parameters (PK{bound ) and this is of great

importance. When we have some pre-knowledge about the range

of the parameters from literature, it is necessary to apply them in

order to reduce the computational time of the solution conver-

gence and also likely increase the quality of the solutions

themselves. Another group of constraints comes from our

knowledge of the state variables. We have imposed these types

of constraints through functions: P1, P2 and P3. One important

constraint in enzyme kinetics is that the amount of enzymes is

much lower than the total amount of substrate and product

(because enzymes are not consumed during the reactions). We

represent this constraint mathematically as equation 15.

P1(K,Y,t)~
el1(cp3{Y(tmax ,4)){1, cp3{Y(tmax,4)w0

0, Otherwise
;

(
ð15Þ

If the constraint in Eq. (15) is violated, then a penalty term is

added to the cost function and that set of parameters is pushed to

be far from the minimum cost and therefore less favorable as the

final solution. The penalty function is by definition, continuous, as

it is in eq. (15). c is a parameter that imposes the strength of

inequality. A bigger c brings a stronger constraint. l1 is called the

regulatory factor or penalty coefficient. It is a tuning parameter

used to make the ‘‘penalized unconstrained problem’’ as similar as
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possible to the original constrained problem. We have chosen this

value such that it adds a penalty value comparable to the first term

of the objective function, once the constraint is violated. The value

for c has been chosen to be relatively small (5 in most experiments)

in order avoid a very strong constraint and to allow a bigger range

of acceptance for parameters. For the second and the third

enzymes, similar expressions provide the definition of the last two

terms in the penalty function (P2 and P3 ).

Choosing experimental data. There have been several

experimental studies on T. pseudonana silicon uptake rates and

population growth. Table 2 shows a summary of some of the

studies, where each of them has slight or major differences in

setups and initial conditions. We presented these conditions

together with some of their measurements in table 2.

The data that we have used for parameter estimation is the

temporal changes in concentration of silicic acid in environment

( Cm) together with the population of diatoms (N) [52], from which

we then find the best parameters in our compartmental model to

fit for the measured values. Moreover, we include the one data

point from the deposited amount of silica (Cd ), coming from the

data on the average amount of silica in diatoms walls, which is

approximately 20 f mol in each daughter cell of T. pseudonana.

Therefore, this is the value that we consider, with a big error (at

least 5%), for the final amount of Cd or y10.

Solving the optimization problem. There are many

different numerical methods to find optimized parameters.

Generally speaking, the methods are considered to be local or

global. The first class of methods relies on local search algorithms.

They are usually fast, but as the name suggests, they find local

optima and they do not have a mechanism to escape that optima

in order to find the lowest objective function over the entire search

space of parameters. Usually the landscape of the objective

function is unknown; therefore, there is often an essential need for

a second class of optimization methods, which use global search

algorithms. These types of algorithms are usually computationally

expensive. There are a number of different global optimization

methods, many of which have been applied to problems with

biochemical pathways [64],[65]. For example, one method uses

the so-called kinetic theory for active particles, where it can also

reduce the number of parameters and therefore make the solution

of the inverse problem more accurate [66],[67]. We have used

scatter search, which is a population-based metaheuristic algo-

rithm for global search. It shares many features with evolutionary

algorithms, such as like genetic algorithms in principle [68],[69].

We combined the scatter search with a local search algorithm and

a penalty function to achieve a good rate of convergence and a

good set of solutions.

Parameter identifiability, sensitivity and perturbation

analysis. Designing a model and some experimental data to use

as fitting criteria is only one part of the procedure for finding the

valid unknown parameters and building a meaningful model. In

fact, it usually does not happen that the optimized parameters

found from the simulation are immediately the only and the

correct solutions. For instance, the inverse problem often does not

have a unique set of solutions [59]. Therefore, one should

perform some pre and post analysis on the model and optimized

solutions. Figure 4 shows a flowchart of the procedure towards

finding best solutions. After defining the optimization setup, a

priori or structural parameter identifiability should be tested. This

type of identifiability analysis answers the question that consid-

ering error-free and continuous (observable in any desired time

point) experimental data, whether it is possible to identify

unknown parameters or, in the other words, whether or not

parameters are locally or globally identifiable. In practice,

sometimes, especially for large nonlinear system of equations, it

is not easy or sometimes not possible to perform structural

identifiability. But if it is a possibility it can save a large amount of

time and effort because it is performed before solving the

Table 2. The relevant experimental measurements on diatom T. pseudonana measurements.

Growth Condition Measurements Reference

S0~100 m mol:L{1 Population growth = 7|105{14|105cells : ml{1

SD = 24 h Si decrease in environment during one cell cycle = 70 m mol:L{1 [52]

T = 200C

Light-Dark: 14 h–10 h

S0 ~ 100 m mol:L{1 Uptake rates at:

SD = 5–10 min T = 2 min –33 f mol: cell{1: h{1 T = 10 min –17 f mol: cell{1: h{1 [50]

T = 18{200C T = 30 min – 4 f mol: cell{1: h{1 T = 1 h – 6 f mol: cell{1: h{1

Continuous light T = 2 h – 4 f mol: cell{1: h{1 T = 3 h – 4 f mol: cell{1: h{1

S0 ~ 200 m mol:L{1 SIT protein level changes during cell cycle: +50%

SD = 24 h Uptake amount = 0–40 f mol: cell{1 [44]

T = 18{200C

Continuous light

S0 ~ 200 m mol:L{1 Synchronized percentage = 60–80%

SD = 24 h Uptake amount = 0–80 f mol: cell{1 [29]

T = 16{180C Approximate amount of silicon in each valve: 20 f mol

Continuous light Final silicon pool = 15 f mol: cell{1

The condition of the experiment: SD: starvation duration, T: temperature, S0 : initial concentration of silicic acid after the starvation. The measurement values in this table
are approximate.
doi:10.1371/journal.pcbi.1003687.t002
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optimization problem and it can help to modify the model or the

choice of data sets.

There have been many mathematical studies which address the

question of structural identifiability [70],[71]. We tested our

model’s identifiability with GenSSI, which is a software system

available for structural identifiability and is based on the

generating series approach [72],[73]. The result of this analysis

was that applying it to our model and having data on Cm and Cd

only, the model parameters are not globally identifiable. To

handle this problem, we add extra information that we know from

enzyme kinetics as constraints of the model. We used the penalty

function approach to impose these constraints.

The results of our optimization problem support the analysis

came from GenSSI on the idea that without a penalty function,

our model parameters are not globally identifiable. We did a test

for two cases: The objective function; (1) without any penalty term,

and (2) with penalty terms presented in eq. 14 and then compared

the scatter plots of parameters and all state variables in acceptable

objective function range (acceptance interval). We show this

comparison in the Results section. This comparison shows that in

case 1, parameters are more scattered and the state variables are

less determined compared to case 2, where we have applied

penalty terms to the objective function.

In second step, optimization problem should be solved using an

appropriate algorithm in order to find the unknown model

parameters. The last step, which is usually as important as the

second step, is practical or posteriori identifiability. It is common

in practice that given the amount of noise in experimental data,

there are several solutions for an optimization problem, or the

model is not robust around some of optimized parameter values.

Posteriori identifiability concerns this type of question [59]. The

existence of noise in data leads to uncertainty in fitting criteria

(cost function) and therefore to uncertainty in parameter values.

To quantify posteriori identifiability we use sensitivity and

perturbation analysis. Sensitivity is a measure of how big the

changes are in one variable when a certain amount of change in

parameters is imposed. The preferred situation would be that this

measure is reasonably small.

Mathematically, the sensitivity of state variables to the change in

parameter values is described by the sensitivity matrix, defined as,

Sij(t)~
Lyi(t)

Lpj

; ð16Þ

We will only calculate sensitivity of states that are observables of

the model.

The normalized sensitivity, which is a better measure for

comparing parameters, is as follow,

S0ij(t)~
Lyi(t)

Lpj

pj

yi

; ð17Þ

To calculate normalized sensitivity, either we can use the

discrete differentiation of eq. (17) or we can use its derivative as an

addition to the ODE system of the model.

_yyi(t,P)~fi; ð18Þ

_SSij~
Lfi

Lyi

Sijz
Lfi

Lpi

; Sij(t0)~
Lyi(t0,P)

Lpj

; ð19Þ

Together they make a new set of ODEs, which should be solved

again.

Figure 4. A flowchart for finding solutions to the inverse
(optimization) problem. After designing an optimization problem,
the first step is to check structural identifiability of parameters: to test if
the inverse problem is solvable assuming that data are accurate and
significant. After that the optimization problem should be solved
(globally or locally) and at the last step posteriori analysis should be
applied to ensure the results are meaningful and the model is robust. In
the end, if the model can be validated, it can predict the mechanisms in
the system, which, in turn, can provide a better model and, therefore, a
better understanding of the system.
doi:10.1371/journal.pcbi.1003687.g004
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Another important evaluation for the solutions is perturbation

analysis. By adding some perturbation to the parameters around

their optimum value, one can analyze how much it perturbs the

system; both the cost function and all the variables of the system.

To conclude that a model is stable and robust, we need a model

that does not amplify small perturbations, which is also the case in

any real stable biosystem.

Results

Using scatter search simulation in the search space of parameter

values, the minimum for the objective function has been achieved.

The search space that we have used here is listed in table 1. The

approximate values for proteins came from literature, which are

mostly based on macroscopic properties of enzyme kinetics.

Figure 5 shows the best values for the objective function. The

algorithm stops searching when the acceptance criteria is achieved,

which is when the algorithm has not found any better solution for

a long time and the objective function is close to the optimum

value. Since we have considered a weighted objective function for

10 data points (eq. 13) the best meaningful value for objective

function is 10 and if the search algorithm arrives at values less than

10, all of those solutions are acceptable and there is no preference

among them, in order to avoid overfitting problem. In the

simulation shown here, the objective function is around 15. So,

with the considered search space for parameters, this model is able

to closely reproduce the experimental data with a relatively small

fitting violation. The solution does not change by repeating the

scatter search or by changing the initial point (results are not

shown).

We also make sure that the model equations hold the

conservation law for nutrients and enzymes. Figure 6A shows

that the relative error in conservation of silicon is of the order of

10{7 and Figure 6B shows the relative error of total protein

conservation is 10{15, both of which show a very good accuracy of

the numerical solvers.

The problem has several solutions all in the same range of the

minimum cost function value. These accepted parameters are

shown in a scatter plot of parameters in Figure 7. To clarify the

role of penalty terms, two cases of simulation have been

performed, as discussed in previous section. In the first case, no

penalty function imposed to the model (Figure 7A) and in the

second one penalty terms are added to cost function (Figure 7B).

From the results it is clear that with no penalty, parameter values

are mostly scattered, but applying the penalty, besides p6 and p9,

they mostly form one cluster and are not significantly scattered.

This means that in the second case, most parameters are very well

identified. Moreover, with the optimized parameters, we return to

the forward problem and calculate temporal dynamics of

intercellular quantities. Applying an accepted set of parameters,

we test the variations in the model variables to make sure there is

not a different behavior when changing from one solution to

another. Figure 8 shows the concentration dynamics of silicon and

enzymes in all cell compartments with and without the penalty

term. With no penalty, the dynamics of most variables changes for

different set of parameters, however, after applying penalty,

although there are some variations in few of the variables, still

there is the same dynamics for concentrations, especially

concentration of silicon in different compartments.

In Figure 9, experimental values for silicon concentration in the

medium together with the model output is shown. The fitting to

data, considering experimental error is appropriate. This figure

also shows the two curves illustrating the effect of the two terms in

eq. (5), which was discussed in earlier. We calculated the integral

of each term, with a trapezoidal method, to calculate their

contribution in silicon consumption. It appears that term 2 in the

beginning does not have a significant effect and term 1 has the

major role. However, the absolute value of term 2 starts to grow

through time and reaches a considerable value. This effect is

consistent with the behavior of the diatom cell cycle in a bulk.

First, cells are not dividing, but instead up-taking silica with the

highest rate in order to build the silica valves for daughter cells.

Even though, some cells divide earlier than others, they are only in

the beginning of girdle band growth and the uptake rate is not very

Figure 5. Objective function value. Best objective function during
searching for optimized solution until the algorithm cannot find a
better value for a long time. The simulation time was around 12 hours.
doi:10.1371/journal.pcbi.1003687.g005

Figure 6. Relative error in conservation rules. (A) Conservation of nutrient (eq. 2), (B) Conservation of enzymes (eqs. 9–11)
doi:10.1371/journal.pcbi.1003687.g006
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Figure 7. Scatter plot of accepted parameters. (A) Parameter values in the acceptance range of objective function for case 1, when there is no
penalty term in the model. Most of parameters are scattered in this case, which means that there are many solutions to the optimization problem. (B)
Parameter values in acceptance range of objective function for case 2, when penalty terms added to the objective function. In this case, besides p6

and p9 , most of the parameter values are not scattered much.
doi:10.1371/journal.pcbi.1003687.g007

Figure 8. Model output of forward problem resulted from different solutions of the inverse problem. The temporal dynamics of 11
variables of the model in (A) case 1 with no penalty term and (B) case 2 with penalty terms. Even though there are different curves for variables of
both cases, using penalty term made the silicon dynamics (1,4,7,10,11) much more unique and identified.
doi:10.1371/journal.pcbi.1003687.g008
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high and therefore, the first term becomes dominant. By the end of

the experiment’s duration, the second term has a considerable

role, which shows that it has to be included in the calculations of

synchronized cell cultures.

To this point we concluded to the solution of compartmental

dynamics based on our mathematical model. The fact that

parameters are mostly not scattered is a good sign. However, if a

model is very sensitive to certain parameters, even a small change

can possibly affect the dynamics significantly. Therefore, in order

to check the robustness of our model, we first performed sensitivity

analysis on solutions and then measured the effect more clearly by

means of perturbation analysis.

Figure 10 shows the normalized sensitivity of observables by

changing parameters. Since we have only used the data from

medium concentration and deposited silica, we investigate their

sensitivity. Cm is most sensitive to parameters p1 and p2, especially at

the end of the experiment where Cmdecrease has a smaller slope. Cd

shows greatest sensitivity to p5. To bring an understanding of the

amount of change that can be produced by these important

parameters, we have again performed perturbation analysis. In

Figure 11 the results of parameter perturbation are shown in terms

of objective function and temporal dynamics of concentrations. We

can see that with a relatively large change in the parameters (10%

perturbation), the behavior of solutions remains the same. For a

nonlinear system, this is a reasonable amount of change and it

means that our model is robust and stable.

Figure 12A shows the silicon content dynamics in different

compartments. From the total amount of silicon uptake by cell, the

Figure 9. Silicon concentration in the medium – fitting to experimental data. Data from the experiment and model output of silicon
concentration in the culture medium is shown in points and a blue curve. This curve depicts the total silicon consumption by all cells. The red curve is
the integration of uptake rate coming from term 1 in equation 5. After 150 minutes, the difference between this value and the total silicon
consumption becomes big as a result of non-synchronized cell culture. Adding the black curve, integral of term 2, compensates for this difference.
doi:10.1371/journal.pcbi.1003687.g009

Figure 10. Sensitivity analysis. Parameter sensitivity matrix around the solution, for variables that have been used in fitting procedure. (A)
Normalized sensitivity of silicon in the environment, Cm, shows it is most sensitive to changes in p1 and p2 . (B) Normalized sensitivity of deposited
silica, Cd , shows it is most sensitive to the changes of p5.
doi:10.1371/journal.pcbi.1003687.g010

Modeling Silicon Transportation in Diatoms

PLOS Computational Biology | www.ploscompbiol.org 12 June 2014 | Volume 10 | Issue 6 | e1003687



biggest amount becomes in the form of deposited silica, as we

desired. However, there is some silicon in cytoplasm or, as it’s

called, the silicon pool. The concentration of non-deposited

(dissolved) silicon in SDV (Cs) is very low. This makes sense

considering very small volume of SDV and also the fact that SDV

grows together with silica valves and thus leaving only a small

portion of the compartment for non-deposited silicon. As we

discussed previously, cells control the uptake and transport of

Figure 11. Perturbation analysis. Changes in, (A) objective function and (B) intracellular dynamics of nutrients, due to perturbation of system by
10% change in parameters p1 , p2 and p5 (solid line: original quantities - dotted lines: perturbed quantities).
doi:10.1371/journal.pcbi.1003687.g011

Figure 12. Dynamics of silicon concentrations in different compartments. (A) Silicon transport with the assumption of a constant amount
of enzymes in all compartments. (B) Silicon transport considering a flux of proteins for SITs during the cell cycle.
doi:10.1371/journal.pcbi.1003687.g012

Figure 13. Protein flux used in the model. The relative changes in SIT protein expression level during the cell cycle of diatoms that has been
applied to the model. This curve is inferred using the data from the experiment [44 - Figure 3]. SITs are least expressed during S-phase when silicon
deposition is almost stopped.
doi:10.1371/journal.pcbi.1003687.g013
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silicon through changing the expression level of SITs. To test the

effect of these changes on uptake rates by the cell, we have added a

flux term to equations S2–3 and S2–6 for the amount of free

enzymes (SITs) during time and again solved the inverse problem.

We have chosen this flux as a function of time based on changes in

protein level from the experiments [44].

The relative change of SITs that we applied to our model is

shown in Figure 13. This function is chosen based on experimental

data, but it only shows the behavior of the SITs expression level.

The main idea is that during the S-phase, while silicon deposition

is minimum, the amount of proteins is also at its minimum.

Figure 12B is the result of imposing the protein flux on the silicon

amount in different compartments. It shows that even though the

total dynamics are more or less the same, but there are some

differences. For example, in experimental measurements it seems

that silicon deposition happens in a low rate immediately after

adding silicon to the starved cells. This might be because of silicon

storage in cytoplasm in the beginning [29]. The Cddynamics in

Figure 12B is closer to this behavior than Cd in Figure 12A.

An important measure in nutrient uptake is the uptake rate. In

Figure 14A we have shown uptake rates versus medium

concentration, measured by imposing different initial values for

silicic acid concentration in the medium or cell culture (Cm) and

then the calculating the uptake rates at different time points. The

uptake rate-silicic acid concentration curve is a saturated curve as

expected. Uptake rates in the first time step, after 2 minutes, are

much higher than later uptake rates. This can be a result of the

initial condition of the model, zero value of silicon inside the cell,

which we assumed based on the fact that cells have been kept in

silicon starvation for a long time (24 hours) prior to the

measurement. Also this big drop shows the nonlinear nature of

the system. This sudden decrease has been seen in experiments

on diatoms. It is called surge-uptake. Also experiments suggest

that in low concentrations of silicic acid, uptake is almost linear

and thus it is referred to as externally controlled (cells uptake as

fast as the diffusion of external nutrient allows them). However, in

high concentrations of silicic acid, the uptake rate reached its

maximum value and, therefore, it is called internally controlled

uptake. Interestingly, this model is able to produce all three

phases of uptake: (surge uptake, internally controlled and

externally controlled), with only the enzyme kinetics and

considering cell compartments and without any other assump-

tions on the presence of different phases of uptake in diatom cells.

Figure 14B is the same measure for the case when we applied

changes to the total amount of SITs. Compared to 14A, the

decrease in uptake rates accrues slower, which is closer to some

experimental data of uptake rates in different incubation times

[50]. Moreover, the uptake rate increases again at the time of

starting valve formation, when the cell needs a high amount of

silicon.

Discussion

Studying intracellular processes is a difficult task, largely

because of the difficulties of in-vivo measurements at such small

scales. As a consequence of this, the modeling approach is a good

candidate for understanding the different mechanisms and

temporal behavior, such as nutrient uptake and transportation of

materials. We have introduced a multi-compartmental model for

silicon transport and synthesis in diatoms. This is the first

nonlinear compartmental model designed for this purpose. The

model uses experimental population-level (macroscopic) data and

therefore an accurate equation for the connection of macroscopic

data to sub-cellular data has been derived. This equation accounts

for the effect of a portion of cells that are not synchronized in the

cell culture. To estimate the free parameters of the model, we have

solved the inverse problem of parameter estimation, which

includes the constraints related to enzyme kinetics via the penalty

method. The use of constraints together with sensitivity and

perturbation analysis makes it possible to infer the sub-cellular

dynamics even with sparse and noisy data. Taking into account the

amount of silicon (mol) in the model in order to simplify different

polymerization and other reactions in cells, the model is still able

to produce the transport and the dynamics of nutrients with a

good agreement to experimentally obtained evidence. For

example, the equations of the model can generate different

regimes of uptake, namely: surge, externally-controlled and

internally-controlled.

This model constitutes a framework by which to study cell

compartments and to infer dynamics based on the known facts and

data. More importantly, it brings with it the ability to manipulate

cell processes such as uptake rates and protein regulation, which

are normally difficult to manipulate experimentally. As an

example, we have imposed changes in the total amount of SITs

through time; a mechanism for cells to control the uptake and

transport of materials. We have observed that applying a protein

flux results in more realistic silicon dynamics and uptake rates, and

can postpone the start of silica deposition in favor of silicon storage

in the silicon pool.

Figure 14. Silicon uptake rates of diatoms versus silicic acid concentration in medium in different time steps. (A) Constant amount of
total enzyme. (B) Considering changes in total amount of SIT enzymes. The uptake rates have saturated forms in high concentrations of dissolved
silicon in water. 2 minutes after adding silicon to the starved cells, the uptake rate is very high (surge uptake). By passing time the uptake rate has a
big drop in value. In (B) this drop accrues slower and the rate increases again during valve formation.
doi:10.1371/journal.pcbi.1003687.g014
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The model presented here can be generalized to other chemical

pathways by changing only the system of ODEs, which lie at the

core of the model, and then applying the same procedure. One

interesting area in this framework would be to introduce changes

in the expression level of enzymes during time as a function of the

internal and external changes, and try to connect the cell cycle and

silicon cycle of diatoms together. Another interesting addition to

this type of model would be to consider the statistical distribution

of individual cells’ dynamics in the culture, which will introduce

more complexities. This can be achieved by applying individual-

based modeling, or with an ensemble based modeling to fulfill the

role of cells in different phases.

Supporting Information

Figure S1 Two types of diffusion flux in nutrients
dynamics. WD1 is the flux of diffusion through membrane.

WD2is the diffusion flux that controls concentrations of substrate

and product near the membrane, where enzymatic reaction

occurs.

(TIF)

Figure S2 Comparison of the rates of diffusion-mediat-
ed uptake with no-diffusion uptake. (A) and (B) uptake rates

for two observed values of MM coefficients. The curves are almost

the same. (C) The same as B with diffusion constant one order of

magnitude smaller. The effect of diffusion is still negligible.

(TIF)

Text S1 The effect of pre-starvation and diffusion on
uptake rates dynamics.
(DOCX)

Text S2 Intracellular dynamics system of equations.
(DOCX)
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37. Richthammer P, Börmel M, Brunner E, van Pée KH (2011) Biomineralization

in diatoms: The role of silacidins. Chembiochem 12.9: 1362–1366.
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