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Abstract 

Background:  Systems biology increasingly relies on deep sequencing with combina-
torial index tags to associate biological sequences with their sample, cell, or molecule 
of origin. Accurate data interpretation depends on the ability to classify sequences 
based on correct decoding of these combinatorial barcodes. The probability of correct 
decoding is influenced by both sequence quality and the number and arrangement of 
barcodes. The rising complexity of experimental designs calls for a probability model 
that accounts for both sequencing errors and random noise, generalizes to multiple 
combinatorial tags, and can handle any barcoding scheme. The needs for reproducibil-
ity and community benchmark standards demand a peer-reviewed tool that preserves 
decoding quality scores and provides tunable control over classification confidence 
that balances precision and recall. Moreover, continuous improvements in sequencing 
throughput require a fast, parallelized and scalable implementation.

Results and discussion:  We developed a flexible, robustly engineered software that 
performs probabilistic decoding and supports arbitrarily complex barcoding designs. 
Pheniqs computes the full posterior decoding error probability of observed barcodes 
by consulting basecalling quality scores and prior distributions, and reports sequences 
and confidence scores in Sequence Alignment/Map (SAM) fields. The product of 
posteriors for multiple independent barcodes provides an overall confidence score for 
each read. Pheniqs achieves greater accuracy than minimum edit distance or simple 
maximum likelihood estimation, and it scales linearly with core count to enable the 
classification of > 11 billion reads in 1 h 15 m using < 50 megabytes of memory. Phe-
niqs has been in production use for seven years in our genomics core facility.

Conclusion:  We introduce a computationally efficient software that implements 
both probabilistic and minimum distance decoders and show that decoding bar-
codes using posterior probabilities is more accurate than available methods. Pheniqs 
allows fine-tuning of decoding sensitivity using intuitive confidence thresholds and is 
extensible with alternative decoders and new error models. Any arbitrary arrangement 
of barcodes is easily configured, enabling computation of combinatorial confidence 
scores for any barcoding strategy. An optimized multithreaded implementation assures 
that Pheniqs is faster and scales better with complex barcode sets than existing tools. 
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Support for POSIX streams and multiple sequencing formats enables easy integration 
with automated analysis pipelines.

Keywords:  Sequence demultiplexing, Combinatorial indexing, Barcode decoding 
confidence, Single-cell split-pooling, Barcode noise filtering, Barcode simulation

Background
High-throughput next-gen bulk sequencing with multiplexed sample barcodes is now 
standard practice to increase throughput and reduce sequencing costs, and single-cell 
applications are rapidly proliferating and evolving [1]. The advent of barcodes to tag 
individual cells and molecules from which sequence reads originate both enhances reso-
lution and helps control for quantification biases. Yet indeterminate reads that are dis-
carded, and uneven barcode distributions that differ from expectation, are common and 
decrease both accuracy and sensitivity.

The fast pace of innovation in sequencing technologies and experimental designs 
continuously presents new challenges to the classification of sequence reads. Increas-
ingly complex barcoding schemes are being devised to accommodate novel experimen-
tal designs, and combinatorial cellular indexing protocols involving several successive 
rounds of barcoding expand the potential space exponentially [2, 3]. Just over the hori-
zon, multimodal profiling—the simultaneous measurement of gene expression, protein 
abundance, chromatin state, spatial transcriptomics, and/or CRISPR-based readouts 
(e.g. lineage tracing, genetic screens)—is poised to become a new industry standard [1]. 
Third-generation platforms overcome some of the limitations of short-read sequencing 
by providing very long reads, but current long-read sequencers operate with very high 
error rates of 15–40%. To compensate, these are often complemented with high-fidelity 
short-read sequences or self-corrected using many-fold coverage [4]. Multiplexing with 
barcoding is now emerging as a way to increase throughput and lower costs for these 
platforms as well.

Several tools are currently available for decoding and classifying barcodes, an essential 
task for demultiplexing pooled bulk sequence libraries and for assigning reads to indi-
vidual cells in single-cell workflows. However, existing tools for decoding index tags do 
not provide flexible support for the rising complexity of novel barcoding schemes. As 
a result, numerous custom solutions to handle different barcoding schemes are being 
implemented downstream of standard demultiplexing software, often geared to a spe-
cific application and implemented using convenient scripting languages such as R or 
Python. Various integrated workflows focusing on scRNA-seq analysis now bundle iden-
tification of cellular barcodes and molecular barcodes (UMIs) with transcript quantifica-
tion and other downstream analyses to identify and study different cell types, including 
CellRanger [5], Seurat [6], Salmon-Alevin [7], and BUStools [8]. Such workflows could 
benefit from preprocessing by an efficient and flexible decoder that natively supports 
any arbitrary experimental design and can be easily integrated into automated pipelines. 
As sequence applications diversify, decoupling barcode classification from downstream 
analysis tasks becomes increasingly desirable, both to simplify workflows and to encour-
age the development of community standards for benchmarking and best practices.

Sequencing platforms generally tie in demultiplexing as a preprocessing step that 
is not directly accessible to users. The most widely used first-generation tool for 
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sample demultiplexing is Illumina’s bcl2fastq, which combines basecalling with sam-
ple demultiplexing. bcl2fastq accepts input only in the proprietary Illumina BCL for-
mat and is specifically geared toward sequence data from Illumina platforms. It relies 
on a naïve decoding method based on exact string matching with up to one mismatch, 
in other words a simple minimum Hamming distance decoder, and quality assessment 
procedures that are not obviously accessible to end-users. bcl2fastq can also gener-
ate FASTQ files without demultiplexing, but most other tools that classify sequences 
using barcodes, such as Picard [9], also use simple minimum distance decoding.

Standalone, peer-reviewed, classifiers include deML [10], Bayexer [11], and Axe 
[12]. deML is capable of handling a single barcode set with either one or two seg-
ments. While it consults basecalling qualities and reports classification scores in 
Sequence Alignment/Map (SAM) [13] auxiliary tags, deML does not accurately 
reflect the probability of correct classification for two reasons: it estimates maximum 
likelihood only for the top candidates that are within a short Hamming distance, and 
it operates under restrictive assumptions that do not hold in most complex cellular 
indexing designs—i.e. that barcodes are uniformly distributed and that contaminat-
ing sequences are extremely rare. Bayexer attempts to train a naïve Bayes classifier by 
studying the error pattern when the insert sequence is shorter than the read length 
and thus provides a second observation of the barcode. Although this approach can 
potentially increase accuracy in those specific cases, it is not applicable to general 
barcode decoding and the tool fails to produce output when such redundancy is not 
present. Axe uses a set of pre-computed prefix trees to find a match within a given 
Hamming distance and can partially handle barcodes that differ in length. Although 
this method can be very fast, it ignores quality scores and is highly sensitive to 
upstream errors in the prefix, and so sacrifices accuracy.

None of the above tools account for the prior distribution of barcoded samples (which 
is often nonuniform) or explicitly account for noise (i.e. contaminating or indeterminate 
sequences), nor do they compute or report the posterior classification probability for 
individual reads. They also lack the ability to address arbitrary offsets within read seg-
ments, decode barcodes with more than two components, or handle multiple types or 
combinations of barcodes, and thus often require custom pre- or post-processing.

Pheniqs overcomes many of the limitations of other decoders by taking into account 
key aspects of current decoding requirements: scalability, assumptions about the 
number of tags and their location, integration of richer metadata, and the ability to 
explicitly account for basecalling quality scores, uneven barcode distributions, and 
presence of indeterminate sequences.

Implementation
Pheniqs (PHilology ENcoder wIth Quality Statistics, pronounced phoenix) combines 
a generic and extensible approach to barcode decoding with flexible configuration 
options that easily accommodate custom experimental designs. It implements both 
a standard minimum distance decoder (MDD) based on Hamming distance and a 
probabilistic decoder (PAMLD). PAMLD consults base-calling quality scores as well 
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as priors to compute the full posterior decoding probability for classification, rather 
than a simple maximum likelihood estimate.

Decoding with the posterior probability

Classification based on barcodes involves extracting a subsequence r from an 
observed read, along with the basecall quality scores associated with the individual 
nucleotides in r, and decoding the original sequence s. Let r ∈ {A,C ,G,T ,N }n be an 
observed sequence of length n extracted from the read and B ⊆ {A,C ,G,T }n a given 
set of distinct barcodes where each b ∈ B identifies an individual class. A decoder is 
denoted as a decision function φ : {A,C ,G,T ,N }n �→ B ∪ ε , where ε is a decoding 
failure for an indeterminate sequence s /∈ B.

A maximum likelihood decoder will identify the barcode b̂ ∈ B which maximizes 
the posterior probability that b̂ was sequenced given that r was observed.

Applying Bayes’ rule we can compute P(b|r) using

where Pε is the prior probability of encountering indeterminate sequences and 
P(r|b /∈ B) is the probability of observing a particular such sequence.

The Phred-adjusted maximum likelihood decoder (PAMLD) implemented by Phe-
niqs solves Eq.  2 by computing P(r|b) for each b ∈ B from the basecalling quality 
scores [14]. P(b), the expected fraction of reads identified by b, can be either pro-
vided a priori by the user or estimated directly from the data. In the absence of any 
prior information about potential sequence composition (base distribution or GC 
bias), we can only assume indeterminate sequences occur with maximum entropy 
so P(r|b /∈ B) = 1/4n . Such reads may arise from spiked in controls used for instru-
ment calibration, contamination during library preparation or other unknown fac-
tors such as defective sequencing kits. Realistically, however, not every sequence in 
{A,C ,G,T }n is equally likely to appear in sequencing, indeterminate entropy is lower, 
and P(r|b /∈ B) > 1/4n . Empirical studies can determine a more refined lower bound 
for P(r|b /∈ B) . Pheniqs accommodates such refinements to the noise model by allow-
ing advanced users to manually set this value.

When P(r|b̂) < P(r|b /∈ B) , the initial evidence supporting the classification pro-
vided by the conditional probability is inferior to that provided by a random sequence, 
indicating that the b̂ recovered in Eq. 1 cannot be distinguished from noise. The noise 
filter considers those a decoding failure without further consideration.

Reads that pass the noise filter are evaluated by the confidence filter, which com-
pares P(b̂|r) to a user-provided confidence threshold C for the minimum acceptable 
probability of a correct decoding and declares a failure if P(b̂|r) ≤ C . The probability 
of a decoding error is

(1)b̂ = argmax
b∈B

P(b|r)

(2)P(b|r) =
P(r|b)P(b)

P(r|b /∈ B)Pε +
∑

b′∈B P(r|b′)P(b′)
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Directly estimating P(b̂|r) allows Pheniqs to report intuitive classification confidence 
scores for every read. Deriving a confidence score for a combinatorial barcode, made up 
of several independent components, requires to simply multiply the confidence scores 
of the individual components. The governing threshold C allows researchers to choose 
between assignment confidence and yield of classified reads and defaults to 0.95. The 
PAMLD decoding workflow is summarized in Fig. 1B.

By contrast, deML [10] assumes that Pε is infinitesimally small and that samples are 
uniformly pooled (and thus equally likely), thereby suggesting that for every b ∈ B

Under such conditions P(b|r) ∝ P(r|b) and Eq. 1 can be simplified to

While such assumptions simplify maximum likelihood estimation of b̂ , they are often 
grossly imprecise. For example, the relatively low yield in (e.g. single-cell) experiments 
that rely on several layers of combinatorial indexing often results in an extremely uneven 
barcode distribution, with Pε representing a significant portion of the sequenced DNA. 
Furthermore, implementations that refrain from computing P(b̂|r) cannot report the 
posterior classification probability or a confidence score for combinatorial barcodes.

(3)Pdecoding_error(b̂, r) = 1− P(b̂|r)

(4)P(b) =
1− Pε

|B|
≈

1

|B|

(5)b̂ = arg max
b∈BP(r|b)

Fig. 1  Pheniqs decoding pipeline architecture. A Pheniqs requires as input sequence data files in any 
standard format and (if not using default parameters) a JSON configuration file. Python API tools (not shown) 
assist with IO management and can automatically generate an initial configuration using metadata from an 
Illumina run directory. Pheniqs evaluates each configuration component to determine how the data should 
be processed and to ensure that all required directives are present and properly specified. Any validation 
failures trigger clear, explicit error messages. Prior distributions of expected barcodes either derive from 
initial sample proportions as given (e.g. per a sample sheet), or are estimated directly from the data during 
a preliminary PAMLD decoding run. Barcode tokens are extracted from read segments using transform 
directives and then passed to a decoder (PAMLD or MDD). New decoding algorithms may be implemented 
as derived classes. Decoded barcodes and quality scores are written to specific SAM auxiliary field for each 
barcode type. Pheniqs can emit FASTQ files split by sample barcode, but SAM format is preferred since it 
preserves all associated metadata, and binary (BAM) and compressed (CRAM) versions produce considerably 
smaller files. POSIX integration allows direct piping to automated workflows, and support for real-time 
translation of file formats enables teeing to multiple outputs (thus avoiding the need to write temporary 
files). A JSON-encoded run report is also generated that provides summary statistics for the analysis. B PAMLD 
noise and confidence filters. Reads with a lower conditional probability than random sequences fail the noise 
filter and are classified as noise without further consideration. Reads with a posterior probability that does not 
meet the confidence threshold fail the confidence filter; these reads are classified, but they are marked as qc 
fail so the confidence threshold can be reconsidered at a later stage
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Estimating the prior distribution

Statistics from a preliminary PAMLD decoding run can be used to estimate the relative 
proportions of the individual barcodes P(b) for each b ∈ B and the noise Pε from the 
data. The high confidence estimator bundled with Pheniqs estimates the relative propor-
tions from the high confidence reads alone, assuming that low confidence reads (those 
that passed the noise filter but failed the confidence filter) and high confidence reads 
(those that passed both filters) come from the same distribution.

Let Sε be the number of reads rejected by the noise filter, Sb the number of reads classi-
fied to b with confidence higher than C, and SB =

∑

b∈B Sb . A high confidence estimator 
for the noise prior is

and for an individual barcode is

The high confidence estimator is a general purpose estimator, but Pheniqs can be used 
with any prior estimates devised by the user.

Software architecture

Pheniqs is distributed as a compiled binary with a command-line interface that accepts 
a JSON encoded configuration file (Fig.  1A). Stable releases are also packaged in Bio-
Conda. To accommodate a rapidly changing landscape, Pheniqs is designed to be eas-
ily extensible with alternative error models and additional decoder implementations. An 
efficient codebase with robust input validation and comprehensive documentation sup-
ports individual installations and large-scale production facilities alike.

Using a familiar syntax that mimics Python array slicing, Pheniqs can decode multiple 
barcodes located anywhere in any sequence read. It extracts tokens from multiple read 
segments by addressing either the 5’ end, 3’ end, or both (and optionally reverse comple-
mented) to construct the output template segments and the sample, cellular and molec-
ular barcodes (Fig. 2). For convenience, Pheniqs provides reusable definitions for several 
standard sample barcode sets that can be imported into any configuration file. Addi-
tional types of barcodes can easily be defined by declaring them in the configuration 
file (e.g. barcodes for split-pooling, antibody tags, spatial sequencing, etc.). This generic 
approach allows for arbitrary manipulation of sequence tokens that accommodates any 
potential barcoding scheme and obviates the need for pre- and post-processing for most 
experimental designs.

By directly interfacing with the low level HTSlib [15] C API Pheniqs can read, write, 
and manipulate either uncompressed or gzip compressed FASTQ files as well as the 
SAM file format or its binary compressed variants BAM and CRAM. Unlike FASTQ, 
the SAM format can encode sequencing data in a single, smaller file that supports richer 
metadata annotations. To allow multithreaded performance to scale linearly with core 
count, Pheniqs carefully synchronizes the many threads that read, decode and write 
with a consumer/producer model [16]. This allows threads that compute the posterior 

(6)P̂ε =
Sε

Sε + SB

(7)P̂(b) =
Sb

Sε + SB
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probabilities to work without waiting for threads that read and write. Each input feed 
uses two independent memory buffers: one for accepting incoming reads from the input 
file and one for supplying reads to the barcode decoding threads. When the first is full 
and the second is empty, a special thread momentarily locks both buffers and switches 
between them so that all operations may proceed with no interruption. The same prin-
ciple is mirrored for output files. Since buffers may only be modified by one operation 
at a time to prevent data corruption, this design allows Pheniqs to concurrently receive 
input from multiple files, decode barcodes with multiple threads, and write output to 
multiple files, all with optimal efficiency. When integrated into a pipeline, Pheniqs can 
take advantage of POSIX standard streams to avoid the speed and storage bottlenecks 
associated with reading and writing temporary files.

Pheniqs reports the decoded sample, cellular, and molecular barcodes as well as their 
corresponding quality scores and the posterior decoding error probability in SAM aux-
iliary fields. It can associate standard SAM read groups with sample barcodes and can 
optionally perform an exhaustive quality assessment during processing that it includes 
in the final report.

Fig. 2  Tokenizing a standard Illumina read. Example of tokenization syntax for a 150-nt paired-end 
dual-indexed sequencing run. A Input files containing read segments emitted by the sequencer are indexed 
as an array, where 0 = Read1, 1 = Index1, 2 = Index2, 3 = Read2. Barcode tokens are defined for each type 
of barcode included in the experimental design and may appear at any position and orientation in any 
read segment. B This example contains a sample barcode composed of two 8nt elements (i5 and i7), a 12nt 
inline cellular barcode (Cell), and a 12nt inline molecular barcode (UMI). The biological sequences of interest 
(template) are located in Read 1 (31nt just downstream of the Cell and UMI) and all of Read 2 (here, 75nt). 
Each token comprises three colon separated components, “segment:start:end”. Per Python array slicing 
syntax, the start coordinate (offset) is inclusive and the end coordinate is exclusive. Start and end coordinates 
default to 0 and the end of the segment, respectively. C Template read segments, observed and most likely 
inferred barcode sequences, quality scores, and error probabilities are emitted to designated SAM fields. The 
reported error for each barcode is one minus its estimated confidence (the posterior decoding probability); 
for a combinatorial barcode, the reported error is one minus the product of the confidence scores for each 
component
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Results and discussion
We used a variety of performance metrics to evaluate the decoding accuracy and com-
putational efficiency of Phred-aware maximum likelihood decoding with Pheniqs 
(PAMLD), simple maximum likelihood estimation with deML, and minimum distance 
decoding (MDD, as implemented by Pheniqs). We used a semi-synthetic short-read 
dataset with a known true barcode set to measure accuracy across a range of error rates, 
and data from one lane of an Illumina NovaSeq run (containing >11 billion reads) to 
compare run time and memory usage.

Accuracy

Decoding accuracy was analyzed using semi-synthetic barcoded sequence reads gener-
ated from the run published with deML [10]. To establish a ground truth for testing pur-
poses, we simulated barcoded sequence reads by replacing the barcode nucleotides in 
each read with a perfect barcode sequence sampled from a known prior distribution. 
To simulate noise, we replaced a barcode with a sequence from a random offset in the 
genome of PhiX174, a 5386nt DNA bacteriophage with  45% GC content [17]). We used 
PhiX174 sequences because Illumina sequencers require balanced and random nucleo-
tide composition for instrument calibration and quality control, and PhiX174 DNA is 
often spiked in as a control for this purpose at concentrations of 1–5% or up to 40% for 
low-complexity libraries. PhiX174 reads do not carry barcodes and should not be clas-
sified but instead labeled as Undetermined during demultiplexing. However, PhiX174 
sequences can sometimes contribute to noise contamination because they resemble 
an expected barcode by chance and must be removed in a downstream step by read 
sequence alignment. Notably, a recent study has found that 1000 genomes in the Inte-
grated Microbial Genomes Database are contaminated with PhiX174 sequences [18], 
suggesting that these are a common source of noise in Illumina sequence data.

We simulated sequencing errors by introducing a substitution at a nucleotide accord-
ing to the basecall quality score and substitution frequencies made available with LRSim 
[19]. For this analysis we simulated substitution errors only since current short read plat-
forms generate indel errors at a much lower rate than substitutions [20]. Finally, to simu-
late reads with different overall error rates, we recalibrated the quality scores produced 
in the first step and then simulated substitution errors on the recalibrated data. Addi-
tional file 1: Figure S1 shows the calibrated quality score distributions of each simulated 
dataset. The modular architecture of Pheniqs allows for the addition of alternative error 
models that may be better suited for sequencing platforms with different error charac-
teristics and could be tested similarly.

We used the above datasets to evaluate classification accuracy across a range of error 
rates for Pheniqs MDD with default settings (MDD); deML with default settings (deML); 
and Pheniqs PAMLD with default settings (PAMLD uniform), true priors (PAMLD 
true), and high confidence estimated priors (PAMLD estimated). Pheniqs can compute 
estimated priors in a preliminary run by updating an initial set of priors using observed 
barcode frequencies (Fig. 3A shows the true sample barcode distribution in the dataset). 
High confidence estimated priors were computed here using statistics from a preliminary 
PAMLD run with the default 0.95 confidence threshold, 0.05 noise, and uniform barcode 
priors as input. We evaluated each barcode and the noise class as a binary classifier, so 
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a correct assignment was counted as a true positive (TP), while an incorrect assignment 
was counted as a false negative (FN) for the correct class and as a false positive (FP) 
for the incorrectly assigned class. Reads marked as failing quality control (Fig. 1B) were 
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classified to the noise class for this analysis. We then summed up the values from all 
classes and computed the false discovery rate (FDR), miss rate (MR) and F-score (har-
monic mean of the precision and recall).

The resulting analysis showed that the probabilistic decoders consistently outper-
form MDD, which has very little resilience to errors and noise (Fig. 3B). Differences in 
accuracy become more pronounced as the substitution rate increases: at a rate of 0.05, 
the F-score for MDD is nearly 10% lower than other decoders. PAMLD with uniform 
priors is more accurate than deML, and high confidence prior estimation provides fur-
ther gains that closely approximate performance with the true prior (Fig. 3C). Thus, 
computing the full posterior probability outperforms simple maximum likelihood 
estimation, even under the same assumption of a uniform prior, and estimating the 
true prior distribution approaches near-optimal decoding.

The effect of the noise filter is illustrated in Fig. 4, which shows the error in high con-
fidence prior estimation for true barcode classes binned by their relative abundance 
across a range of substitution error rates. The difference between true and estimated 
priors is negligible at low overall error rates, but as basecalling quality decreases it 
becomes difficult to distinguish true barcodes from noise since P(r|b) for a true bar-
code is more likely to fail the noise filter. As a result, individual barcode classes are 
increasingly underestimated and P̂ε is correspondingly overestimated.

To examine the sources of performance gains at a more fine-grained level, we plot-
ted FDR, MR and F-score statistics separately for classified, classifiable, and unclas-
sified reads across a range of error rates. Classified reads represent true barcodes or 
noise reads that were classified to a real barcode. These include correct assignments 
(TP), noise or barcode reads assigned to the wrong barcode class (FP), and true bar-
codes not assigned to their proper class (FN). While all decoders perform reason-
ably well on classified reads overall (Additional file 1: Figure S2), Pheniqs with true or 
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estimated priors consistently results in a lower rate of misclassified reads (lower FDR) 
and recovers more reads (lower MR) than other decoders. Filtering noise helps Phe-
niqs outperform deML in any configuration, primarily by reducing FDR (Additional 
file 1: Figure S2A). In the lower error range relevant to most Illumina runs ( ∼ 1/1000), 
PAMLD shows a lower FDR than even MDD (Additional file 1: Figure S2B). The FDR 
is flat for MDD because it ignores any reads with more than one mismatch, and for 
the same reason the miss rate climbs dramatically relative to the other decoders as the 
error rate increases.

Since datasets now contain increasingly large numbers of multiplexed samples or indi-
vidual cells, the ability to accurately identify rare barcode classes is of high interest. We 
used read counts for each barcode class (Fig.  3A) to examine performance for classi-
fied reads binned by their relative abundance: very low (< 0.1% of reads), low (0.1–0.3%), 
similar to uniform (0.3–3%) and overrepresented (> 3%; here a single control barcode 
accounted for 32% of all reads). Across the entire spectrum, PAMLD with estimated or 
true priors shows better overall performance (F-score) than either deML or PAMLD 
with uniform priors (Additional file 1: Figure S3). For more abundant barcode classes, 
gains are mainly due to higher sensitivity (lower MR). For lower abundance barcodes (< 
0.3% of total reads), PAMLD makes ∼ 10-fold fewer incorrect assignments than deML 
(lower FDR) with only a modest loss of sensitivity. Thus PAMLD is especially beneficial 
for the detection of rare barcodes.

Indeterminate barcodes are not uncommon in short-read datasets and can greatly 
reduce the yield of usable data. We found that PAMLD improves accuracy for both 
classifiable reads (true barcode reads, correctly classified or not) and unclassified reads 
(reads that are noise or fail quality control). For classifiable reads, both FDR and MR are 
consistently lower, leading to improved F-scores (Additional file 1: Figure S4; examples 
in Fig.  5A–C). For unclassified reads, probabilistic decoders have a lower FDR (Addi-
tional file 1: Figure S5) and also classify many fewer true barcodes as noise than MDD 
(Additional file 1: Figure S5; examples shown in Fig. 5A, B, D). The PAMLD noise filter 
rejects reads when the evidence for the barcode with the highest posterior is no better 
that for a random sequence (Fig. 1B). This is arguably a desired property since such reads 
have very weak evidence for classification. When the overall error rate is low, PAMLD 
errs on the side of caution and classifies slightly more true barcodes as noise than deML 
(FDR, Additional file  1: Figure S5A). On the other hand, PAMLD misses many fewer 
true noise reads (lower MR) than deML (Additional file 1: Figure S5A; example shown in 
Fig. 5D), and in the range of error rates for Illumina sequencers filters true noise better 
than even MDD (lower MR, Additional file 1: Figure S5B).

In summary, we find that using prior knowledge of barcode frequency and sequence 
quality statistics, combined with noise filtering, increases the recovery of true barcodes 
and reduces the number of misclassified reads. These benefits are most pronounced for 
barcodes present at low frequency and for data with high error rates. Thus probabilis-
tic, quality-aware decoding offers distinct advantages for classifying short-read datasets 
that are highly complex and/or use combinatorial barcoding strategies. Pheniqs may also 
prove advantageous for third-generation single-molecule sequencing platforms that pro-
vide long sequence reads at much higher error rates.
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Runtime speed and memory

To evaluate speed and memory usage we used a single lane from an Illumina NovaSeq, 
the highest throughput instrument available today, containing 94 multiplexed libraries 
with standard dual i7 and i5 barcodes. 151 cycles were sequenced on each of the two 
template segments and 8 cycles on each of the i7 and i5 index segments.

Benchmarking for speed (Fig.  6A) and memory (Fig.  6B) was executed on an Intel 
Xeon CPU E5-2690 v4 @ 2.60 GHz with 14 cores and 28 threads. Basecalling the lane 
with bcl2fastq (without demultiplexing) took 47 min and yielded 11,578,868,372 dual-
indexed paired-end reads that passed quality filtering. bcl2fastq produces reads with seg-
ments split over four gzip compressed FASTQ files that were used as input to Pheniqs. 
Pheniqs runtime benchmarks show that output format encoding greatly impacts speed. 
With null output Pheniqs decodes the barcodes and collects statistics (for instance to be 
used for prior estimation) but does not write any output. The null benchmark completed 
in less than half the time of all others, demonstrating that writing output files is the rate-
limiting factor for performance. Pheniqs performs fastest when producing interleaved 
BAM output and demultiplexed the NovaSeq run in 3 h and 10 min. Even computing 
the full posterior probability, Pheniqs scales almost linearly with the number of available 
cores and is at least 20 times faster than deML, which lacks support for multithreading. 

A B

C D

Fig. 5  Decoding examples. A The barcode on this read has only two mismatches (highlighted in red in 
Observed). MDD rejects it and assigns it to the undetermined bin. PAMLD easily classifies it with a confidence 
of more than 99.9999%. This is a good example of why MDD is overly conservative and has such a high 
rate of false negatives. B This example has 4 mismatches and one uncalled nucleotide (highlighted in red 
in Observed). MDD rejects it while PAMLD still classifies it with relatively good confidence of 99.337%. C In 
this example there are 5 mismatches and one uncalled nucleotide (highlighted in red in Observed). PAMLD 
classifies it correctly with a good confidence of 99.3944%, while deML classifies the read to the wrong bin. 
Mismatched nucleotides in the Observed sequence are marked in red. D In this example the read was noise 
and should have been rejected and assigned to the undetermined bin. PAMLD initially classifies it to a 
barcode with 6 mismatches, but it rejects the classification because the error probability is above 9%. deML 
incorrectly classifies the read. PAMLD’s decision is influenced by the prior for the barcode it chooses, which is 
about 10 times higher than the barcode chosen by deML
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deML could only produce FASTQ output with FASTQ input, so we could not test BAM 
output.

Future work

We can envision a variety of ways to enhance the performance of Pheniqs. Our initial 
focus will be to facilitate integration into standard analysis workflows. To assist with 
configuration, we are building a library of barcode configuration templates for com-
mon sequencing kits and experimental designs. The Pheniqs website currently includes 
vignettes for configuring standard Illumina sequencing runs, single-cell RNA sequenc-
ing using the Fluidigm platform, and two plate-based split-pooling methods for single-
cell RNA-seq: sciRNA-seq [2] and SPLiT-seq [3]. We also plan to add vignettes for other 
types of single-cell profiling, as well as multimodal profiling, spatial transcriptomics, and 
other novel sequencing applications as they arise.

One limitation of Bayesian decoding is that computing the posterior probability 
requires knowing the list of expected barcodes in advance. To overcome this problem, 
the same strategy used by Pheniqs to estimate priors for a known set of barcodes could 
be extended to an unknown set of barcodes. First, a preliminary run configured with a 
whitelist (e.g. a list of all known cellular barcodes in a single-cell sequencing kit) can be 
used to estimate the relative abundances of observed barcodes. A shorter list of barcodes 
can then be extracted from the preliminary run report by placing a threshold on the 
abundance of observed barcodes, which may then be decoded in a second run using the 
imputed priors. Providing decoding quality scores for whitelisted cellular barcodes based 
on the full posterior probability will allow improved estimation of their relative abun-
dance, thus increasing accuracy and sensitivity for single-cell applications. An overall 
classification quality score combining multiple types of barcodes can then be computed, 
which will be easy to both report and understand. Since the complexity of computing 
the posterior is linearly correlated with the size of the barcode set, however, computing 
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Fig. 6  Speed and memory benchmarks. One lane of an Illumina NovaSeq run was analyzed. The two letter 
codes describe the output layout: S for split and I for interleaved, first for library and second for segment. A 
Pheniqs with PAMLD generated interleaved BAM output in 3:10 h. CRAM is much more complex than BAM 
and employs several compression algorithms that are more aggressive than gzip to produce smaller files, 
so writing CRAM output took slightly longer as expected. Pheniqs scales almost linearly with the number 
of available cores and is at least 20 times faster than deML, which took almost 80 h to complete. B Pheniqs 
memory consumption increases linearly with the number of output files, since each is allocated separate IO 
buffers, but even with 200 output files and generous buffers Pheniqs still used less than 1 GB of memory
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priors for a very large whitelist may become impractically slow. To address this, we are 
considering alternative strategies to reduce the complexity of the problem in such cases.

Another issue that Pheniqs currently does not address is error correction for UMIs 
(unique molecular identifiers)-barcodes that tag individual molecules in a library, which 
are used to identify PCR duplicates and to quantify the abundance of distinct molecular 
species. Since reads classified to a single combination of sample, cellular and molecular 
barcode are assumed to be a clone of the same biological sequence, the barcodes are not 
independent, making computing the full posterior probability unfeasible. To incorporate 
error correction for UMIs, we are looking into heuristic algorithms that rely on estab-
lished peer-reviewed methods.

We are also interested in applying Pheniqs to data from other sequencing platforms. 
Performance evaluations of PAMLD on synthetic data show that gains in decoding accu-
racy become more pronounced as the rate of substitution errors increases. This suggests 
that Pheniqs could greatly enhance the analysis of sequence data with high error rates, 
such as third generation single-molecule sequencing platforms, which currently oper-
ate with error rates in the range of several percent [21–23]. In order to apply PAMLD 
to PacBio and Oxford Nanopore sequencing, we will need to incorporate support for 
insertions/deletion errors, which are more common on these platforms (particularly at 
homopolymers). We thus plan to evaluate performance and to investigate alternative 
noise models for these sequencing technologies.

Finally, while barcode decoding quality can have profound impacts on data quality, 
this issue has not so far received widespread attention. To address this, we advocate for 
working toward common benchmarks for barcode decoding quality, which would be 
tremendously useful for the development of community standards for evaluation and 
reporting conventions.

Conclusion
We show that barcode classification using full posterior probabilities with noise filter-
ing is more accurate than other available methods. We provide a multithreaded software 
package with comprehensive input validation, Pheniqs, that is faster and more scalable 
than existing tools. The probability model implemented by Pheniqs accounts for both 
erroneous codewords and non-codeword random noise, can handle arbitrarily complex 
barcoding designs, and generalizes to multiple combinatorial tags. It relies on intuitive 
confidence thresholds for fine-tuning decoding accuracy and reports decoding con-
fidence scores and barcode sequences for individual reads by populating standardized 
SAM format auxiliary fields. Pheniqs is designed for integration into automated analysis 
workflows and can be extended with new error models and alternative decoders. An effi-
cient implementation, coupled with comprehensive documentation and a suite of helper 
tools, supports both individual users and core facilities alike. These combined features 
offer a new level of efficiency and flexibility for barcode decoding that is widely applica-
ble to current experimental designs and is easily adaptable to the rapidly evolving land-
scape of sequencing applications.
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Availability and requirements

•	 Project name: Pheniqs
•	 Project home page: http://​biosa​ils.​github.​io/​pheni​qs
•	 Bioconda package: https://​anaco​nda.​org/​bioco​nda/​pheni​qs
•	 Operating systems: Linux, macOS.
•	 Programming language: C++11, Python 3.
•	 Other requirements: clang, gcc 4.8 or newer.
•	 License: NYU non-commercial research license, free for academic use.
•	 Commercial use: License required.

Abbreviations
SAM: Sequence alignment/map format; MDD: Minimum distance decoding; PAMLD: Phred-adjusted maximum 
likelihood decoding; UMI: Unique molecular identifier. Also referred to a molecular barcode; TP: True positive; FP: False 

positive; FN: False negative; FDR: False discovery rate 

(

FP

TP+FP

)

; MR: Miss rate 

(

FN

TP+FN

)

; F-score: Harmonic mean of 

precision and recall; nt: Nucleotide; IO: Input/output.
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