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abstract

 

Direct stretch of 

 

�

 

1 integrin activates an outwardly rectifying, tamoxifen-sensitive Cl

 

�

 

 current (Cl

 

�

 

 SAC)
via focal adhesion kinase (FAK) and/or Src. The characteristics of Cl

 

�

 

 SAC resemble those of the volume-sensitive
Cl

 

�

 

 current, I

 

Cl,swell

 

. Because myocyte stretch releases angiotensin II (AngII), which binds AT1 receptors (AT1R)
and stimulates FAK and Src in an autocrine-paracrine loop, we tested whether AT1R and their downstream signaling
cascade participate in mechanotransduction. Paramagnetic beads coated with mAb for 

 

�

 

1-integrin were applied
to myocytes and pulled upward with an electromagnet while recording whole-cell anion current. Losartan (5 

 

�

 

M),
an AT1R competitive antagonist, blocked Cl

 

�

 

 SAC but did not significantly alter the background Cl

 

�

 

 current in
the absence of integrin stretch. AT1R signaling is mediated largely by H

 

2

 

O

 

2

 

 produced from superoxide generated
by sarcolemmal NADPH oxidase. Diphenyleneiodonium (DPI, 60 

 

�

 

M), a potent NADPH oxidase inhibitor, rapidly
and completely blocked both Cl

 

�

 

 SAC elicited by stretch and the background Cl

 

�

 

 current. A structurally unrelated
NADPH oxidase inhibitor, 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF, 0.5 and 2 mM), also rapidly and
completely blocked Cl

 

�

 

 SAC as well as a large fraction of the background Cl

 

�

 

 current. With continuing integrin
stretch, Cl

 

�

 

 SAC recovered upon washout of AEBSF (2 mM). In the absence of stretch, exogenous AngII (5 nM)
activated an outwardly rectifying Cl

 

�

 

 current that was rapidly and completely blocked by DPI (60 

 

�

 

M). Moreover,
exogenous H

 

2

 

O

 

2

 

 (10, 100, and 500 

 

�

 

M), the eventual product of NADPH oxidase activity, also activated Cl

 

�

 

 SAC
in the absence of stretch, whereas catalase (1,000 U/ml), an H

 

2

 

O

 

2

 

 scavenger, attenuated the response to stretch.
Application of H

 

2

 

O

 

2

 

 during NADPH oxidase inhibition by either DPI (60 

 

�

 

M) or AEBSF (0.5 mM) did not fully
reactivate Cl

 

�

 

 SAC, however. These results suggest that stretch of 

 

�

 

1-integrin in cardiac myocytes elicits Cl

 

�

 

 SAC by
activating AT1R and NADPH oxidase and, thereby, producing reactive oxygen species. In addition, NADPH oxidase
may be intimately coupled to the channel responsible for Cl

 

�

 

 SAC, providing a second regulatory pathway.

 

key words:

 

stretch-activated channels • swelling-activated channels • arrhythmia • preconditioning •
heart failure

 

I N T R O D U C T I O N

 

Integrins are heterodimeric receptors for the extracel-
lular matrix that physiologically transmit forces from
the extracellular matrix to the cytoskeleton and partici-
pate in signaling (Wang et al., 1993; Ross and Borg,
2001). We recently showed that direct stretch of 

 

�

 

1-
integrin using mAb-coated paramagnetic beads evokes
an outwardly rectifying Cl

 

�

 

 current (Cl

 

�

 

 SAC) in rabbit
ventricular myocytes (Browe and Baumgarten, 2003b),
whereas several other forms of stretch do not stimulate
Cl

 

�

 

 currents (Baumgarten and Clemo, 2003; Browe
and Baumgarten, 2003b). Mechanotransduction involves
protein tyrosine kinases (PTKs), specifically focal adhe-
sion kinase (FAK) and/or Src, the principal upstream
PTKs stimulated by both mechanical stretch (Sadoshima
and Izumo, 1997) and integrin clustering (Parsons,
2003). Cl

 

�

 

 SAC resembles I

 

Cl,swell

 

, the volume-sensitive

Cl

 

�

 

 current elicited in cardiac myocytes by osmotic
swelling (Tseng, 1992; Sorota, 1992) or hydrostatic
pressure-induced cell inflation (Hagiwara et al., 1992).
Like I

 

Cl,swell

 

, Cl

 

�

 

 SAC activates slowly over several min-
utes, exhibits outward rectification, partially inactivates
at positive potentials, and is blocked by tamoxifen
(Browe and Baumgarten, 2003b). Furthermore, I

 

Cl,swell

 

is regulated by PTKs (Sorota, 1995), including Src
(Lepple-Wienhues et al., 2000), and other signaling
molecules activated by stretch or integrin clustering,
such as PKC (Duan et al., 1995), protein phosphatases
(Duan et al., 1999), phosphatidylinositol-3-kinase (PI-3K)
(Shi et al., 2002), and small GTP-binding proteins
(Tilly et al., 1996; Nilius et al., 1999).

Stretch of cardiac myocytes causes the rapid release
of angiotensin II (AngII), which stimulates the G pro-
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tein–coupled AT1 receptor in an autocrine–paracrine
loop (Sadoshima et al., 1993). Subsequently, AT1 re-
ceptors initiate the activation of FAK, Src, PKC, protein
phosphatases, PI-3K, and small GTP-binding proteins
(Seshiah et al., 2002; Touyz, 2002). These are the same
signaling molecules that are activated by integrin clus-
tering, and in turn, regulate Cl

 

�

 

 SAC and/or I

 

Cl,swell

 

.
Furthermore, AngII elicits an outwardly rectifying Cl

 

�

 

current in rabbit ventricular (Morita et al., 1995) and
sino-atrial node (Bescond et al., 1994) myocytes. The
AngII-stimulated Cl

 

�

 

 current in sino-atrial node is regu-
lated by PKC and blocked by losartan, a nonpeptide
specific AT1 receptor antagonist (Bescond et al., 1994).
Taken together, these data raise the possibility that AT1
receptors are involved in the activation of Cl

 

�

 

 SAC by

 

�

 

1-integrin stretch.
AngII-induced signaling is mediated largely by reac-

tive oxygen species (ROS) generated by sarcolemmal
NADPH oxidase, a heteromeric enzyme complex broadly
distributed throughout cardiovascular and other tissues
(Griendling et al., 2000; Vignais, 2002). Cardiac myo-
cytes express all of the components of a phagocyte-like
NADPH oxidase: a transmembrane flavocytochrome
b

 

558

 

 complex consisting of a large gp91

 

phox

 

 (Nox2) and
a smaller p22

 

phox

 

 subunit, cytosolic p47

 

phox

 

 and p67

 

phox

 

subunits, and the small GTP-binding protein Rac (Li et
al., 2002; Xiao et al., 2002; Heymes et al., 2003). Nox4,
a gp91

 

phox

 

 homologue, recently was found to be ex-
pressed as well (Byrne et al., 2003). Translocation of
the cytosolic subunits and Rac to the membrane and
their assembly with gp91

 

phox

 

 and p22

 

phox

 

 involves PKC,
Src and other PTKs, and PI-3K (Yamaguchi et al.,
1996; Bokoch and Diebold, 2002; Seshiah et al., 2002;
Vignais, 2002). Once activated, the phagocyte-type
NADPH oxidase uses intracellular NADPH and NADH
as electron donors to catalyze the single electron reduc-
tion of extracellular molecular oxygen to superoxide
anion (O

 

2

 

�

 

�

 

) (Griendling et al., 2000; Vignais, 2002).
O

 

2

 

�

 

�

 

 is unstable and is rapidly converted by superoxide
dismutase (SOD) to H

 

2

 

O

 

2

 

, a more stable, membrane-
permeant ROS that widely participates in signaling
(Griendling and Ushio-Fukai, 2000) and directly acti-
vates NADPH oxidase (Grandvaux et al., 2001; Li et al.,
2001). In ventricular myocytes, dismutation is per-
formed by membrane-bound extracellular-facing SOD
(ecSOD), as well as cytoplasmic CuZn and mitochon-
drial Mn isoforms of SOD (Brahmajothi and Campbell,
1999).

The aim of the present study was to test the hypothe-
sis that the AT1 receptor-NADPH oxidase-H

 

2

 

O

 

2

 

 signal-
ing pathway participates in the activation of Cl

 

�

 

 SAC by
stretch of 

 

�

 

1-integrin in ventricular myocytes. Paramag-
netic beads coated with anti-

 

�

 

1-integrin mAb were em-
ployed to specifically stretch integrins. Block of either
the AT1 receptor or NADPH oxidase and also enzy-

matic scavenging of H

 

2

 

O

 

2

 

 during stretch inhibit Cl

 

�

 

SAC. Furthermore, either AngII or H

 

2

 

O

 

2

 

 applied in the
absence of stretch activate Cl

 

�

 

 SAC. Preliminary re-
ports appeared previously (Browe and Baumgarten,
2003a, 2004).

 

M A T E R I A L S  A N D  M E T H O D S

 

Ventricular Myocyte Isolation

 

Left ventricular myocytes were freshly isolated from adult New
Zealand white rabbits (

 

�

 

3 kg) by a pronase-collagenase II enzy-
matic dissociation procedure as described previously (Browe and
Baumgarten, 2003b) and stored in a modified KB medium. All
membrane current recordings were made within 10 h after myo-
cyte isolation. Single myocytes chosen for study were rod-shaped,
quiescent, displayed clear striations, and were free of membrane
blebs or other morphological irregularities.

Tyrode solution for cell isolation contained (in mM) 130 NaCl,
5 KCl, 1.8 CaCl

 

2

 

, 0.4 KH

 

2

 

PO

 

4

 

, 3 MgCl

 

2

 

, 5 HEPES, 15 taurine, 5
creatine, 10 glucose, pH 7.25. For Ca-free Tyrode solution, CaCl

 

2

 

was replaced with 0.1 mM Na

 

2

 

EGTA. For enzyme solution, 1.5–
1.75 mg/ml BSA (Sigma-Aldrich), 0.5 mg/ml collagenase (type
II; Worthington), and 0.05 mg/ml pronase (type XIV; Sigma-
Aldrich) were added to Ca- and EGTA-free Tyrode. KB solution
contained (in mM) 120 K-glutamate, 10 KCl, 10 KH

 

2

 

PO

 

4

 

, 0.5
K

 

2

 

EGTA, 10 taurine, 1.8 MgSO

 

4

 

, 10 HEPES, 20 glucose, 10 man-
nitol, pH 7.2.

 

Experimental Solutions and Drugs

 

Single ventricular myocytes were scattered on a poly-

 

l

 

-lysine–
coated, glass-bottomed chamber and placed on the stage of an
inverted microscope (Diaphot; Nikon). Hoffman modulation op-
tics (

 

�

 

40; NA 

 

�

 

 0.55) and a high resolution TV camera (CCD72;
Dage-MTI) were used to visualize myocytes. Bath solution de-
signed to isolate anion currents was suprafused at 2–3 ml/min
and contained (in mM) 145 

 

N

 

-methyl-

 

d

 

-glucamine (NMDG)-Cl,
4.3 MgCl

 

2

 

, 10 HEPES, 5 glucose, pH 7.4. The pipette solution
contained (in mM) 110 Cs-aspartate, 20 CsCl, 2.5 MgATP, 8
Cs

 

2

 

EGTA, 0.1 CaCl

 

2

 

, 10 HEPES, pH 7.1 (liquid junction poten-
tial, 

 

�

 

13.2 mV). Pipette free-Ca

 

2

 

�

 

 was estimated as 

 

�

 

35 nM
(WinMAXC ver 2.4; www.stanford.edu/~cpatton/maxc.html).
All recordings were made at room temperature (22–23

 

�

 

C).
Tamoxifen (20 mM; Sigma-Aldrich) was prepared as a stock so-

lution in DMSO and kept frozen (

 

�

 

4

 

�

 

C) in small aliquots until
use. Diphenyleneiodonium chloride (DPI; Sigma-Aldrich) was
dissolved by warming in DMSO and added to bath solution. The
final concentration of DMSO was 0.1%. Losartan-K (Merck),
4-(2-aminoethyl)-benzenesulfonyl fluoride HCl (AEBSF; Sigma-
Aldrich), and catalase (Sigma-Aldrich) were dissolved directly in
bath solution. Human AngII (Calbiochem) was dissolved in 5%
acetic acid, but its addition to bath solution did not significantly
alter pH. H

 

2

 

O

 

2

 

-containing solutions were freshly prepared by di-
luting 30% (wt/wt) H

 

2

 

O

 

2

 

 (Fisher Scientific) to make a 10 mM
stock that was added to bath solution.

 

Paramagnetic Bead Method

 

As previously described (Browe and Baumgarten, 2003b), stretch
was applied directly and specifically to 

 

�

 

1-integrins with mAb-
coated paramagnetic beads and an electromagnet. IgG

 

1

 

 mAb for
the 

 

�

 

1 subunit of integrin (MAB2250; Chemicon) was attached
by an anti-pan IgG mAb to the surface of uniform 4.5 

 

	

 

 0.2 

 

�

 

m
diameter (mean 

 

	

 

 SD) superparamagnetic beads containing
iron oxides (Dynabeads M-450 Pan Mouse IgG; Dynal Biotech).
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Anti-

 

�

 

1-integrin mAb–coated beads were added to myocytes in
the experimental bath and permitted to randomly settle on myo-
cytes from above while the flow of bath solution was turned off.
After 

 

�

 

5 min, unbound beads were washed away by restoring
bath flow. Myocytes chosen for study typically had three to five
coated beads on their surface, and presumably, each bead was
bound to multiple 

 

�

 

1 integrins.
An electromagnet was placed directly on top of the experi-

mental bath, and patch pipettes were passed through an ellipti-
cal opening at its base. Coil current was set to generate a mag-
netic flux density of 35 Gauss (G) and a magnetic flux density
gradient of 2,400 G/m that was uniform in the x–y plane occu-
pied by the myocytes (5080 Gauss meter; F.W. Bell). The result-
ing force vector imposed on each bead was directed upwards to-
ward the coil, perpendicular to the long axis of the myocyte, and
was estimated to have a magnitude of 1.2 pN/bead (Browe and
Baumgarten, 2003b).

 

Electrophysiological Recordings

 

Pipettes were pulled from 7740 thin-walled borosilicate glass cap-
illary tubing and then fire polished to give a final tip diameter of
3–4 

 

�

 

m and resistance in bath solution of 2–3 M

 




 

. Membrane
currents were recorded with an EPC-7 amplifier (List-Medical)
using the whole cell configuration of the patch clamp technique.
A 150 mM KCl agar bridge served as the ground electrode dur-
ing recordings. Seal resistances of 5–30 G

 




 

 were typically ob-
tained. Membrane potential was corrected for the measured liq-
uid junction potential before forming a seal. The membrane
patch was ruptured by a brief, 500-mV zapping pulse, and myo-
cytes were dialyzed for 10 min before recordings commenced.
Voltage clamp protocols and data acquisition were governed by a
Digidata 1200B A/D board and pClamp 8.0 (Axon Instruments).
Successive 500-ms voltage steps were taken from a holding poten-
tial of 

 

�

 

60 mV to test potentials ranging from 

 

�

 

100 to 

 

�

 

40 mV
in �10-mV increments. Membrane currents were low-pass fil-
tered at 2 kHz (8-pole Bessel 902; Frequency Devices) and digi-
tized at 10 kHz. For presentation, selected records were filtered
at 50 Hz. Cl� SAC exhibited strong voltage-dependent inactiva-
tion, and isochronal IV curves were plotted based on the average
current recorded 20–35 ms after the onset of the voltage step.

Statistics

Data are reported as mean 	 SEM; n denotes the number of
cells. Mean currents are expressed as current density (pA/pF) to
account for differences in myocyte surface membrane area. For
multiple comparisons, a repeated measures or one-way ANOVA
was performed, and the Student-Newman-Keuls or the Bonfer-
roni t test was employed to compare groups. For comparisons of
two groups, a one-tailed paired Student’s t test was conducted.
Statistical analyses were performed by SigmaStat 2.03 (Systat),
and P � 0.05 was taken as significant.

R E S U L T S

AT1 Receptors Participate in the Activation of Cl� SAC 
by �1-Integrin Stretch

Mechanical stretch of myocytes releases AngII, which
binds to AT1 receptors and activates FAK and Src in an
autocrine–paracrine loop (Sadoshima et al., 1993).
Therefore, losartan, a selective AT1 receptor competi-
tive antagonist (Chung and Unger, 1998), was used to
test whether AT1 receptors participate in the FAK-

and/or Src-dependent activation of Cl� SAC upon �1-
integrin stretch (Browe and Baumgarten, 2003b).

Fig. 1 shows an example of families of currents ob-
tained upon stepping voltages to between �100 and
�40 mV for 500 ms, and the corresponding I–V rela-
tionships. Under control conditions in solutions de-
signed to isolate anion currents (Fig. 1 A), a small back-
ground current that partially inactivated at potentials
positive to �10 mV was present before the application
of integrin stretch. The I–V relationship for the back-
ground current displayed outward-going rectification
and reversed at �50 mV, near the calculated value of
ECl, �52 mV (Fig. 1 D). Static stretch of the bead-
attached �1-integrins for 8 min progressively increased
the Cl� current. The Cl� current after stretch (Fig. 1 B)
also partially inactivated at potentials positive to �10
mV, and its I–V relationship showed strong outward
rectification and reversed at �52 mV (Fig. 1 D). The
stretch-induced activation of Cl� current was inhibited
by selective block of AT1 receptors. Myocytes were ex-
posed to 5 �M losartan for 30 min while maintaining
stretch. After AT1 receptor blockade, the family of cur-
rents (Fig. 1 C) and the I–V relationship (Fig. 1 D)
were nearly restored to their control levels.

Overall, 5 �M losartan applied for 30–32 min with
continued stretch inhibited 72 	 3% (n � 4; P �
0.002) of the Cl� SAC at �40 mV. Stretch significantly

Figure 1. Losartan, a specific AT1 receptor competitive antago-
nist, inhibits Cl� SAC. Membrane potential was stepped from
�60 mV to test potentials between �100 and �40 mV for 500 ms
in solutions designed to isolate anion currents. Membrane current
families recorded before (A, Control) and after (B, Stretch) 8 min
of integrin stretch, and following application of 5 �M losartan
for 30 min while maintaining integrin stretch (C, �Losartan).
Horizontal bar denotes 0 current. (D) I–V relationships for A–C.
Each reversed near ECl. At �40 mV, the stretch-activated current
was 1.15 	 0.22 pA/pF, and losartan blocked 72 	 3% (n � 4) of
Cl� SAC. Inset, chemical structure of losartan.
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increased the current at �40 mV from 1.97 	 0.15 to
3.12 	 0.29 pA/pF, and after block of AT1 receptors,
the current was reduced to 2.30 	 0.18 pA/pF, a value
not significantly different from control (P � 0.08, n �
4). At �100 mV, the stretch-induced inward currents
were much smaller than the outward currents, and the
control, stretch, and stretch plus losartan currents at
�100 mV were not significantly different from each
other (P � 0.363).

To verify that losartan was principally inhibiting the
stretch-induced current rather than the background
current, 100 �M losartan was applied for 12–15 min to
unstretched myocytes that had bound anti-�1-integrin
mAb-coated beads. Blockade of AT1 receptors under
these conditions did not significantly alter the mem-
brane current (n � 4; unpublished data).

NADPH Oxidase and H2O2 Participate in the Activation 
of Cl� SAC

Activation of AT1 receptors generates ROS primarily
by stimulation of the sarcolemmal NADPH oxidase
(Seshiah et al., 2002). Moreover, mechanical stretch or
integrin clustering can also generate ROS via activation
of NADPH oxidase (Howard et al., 1997; Löfgren et al.,
1999; Pimentel et al., 2001; Oeckler et al., 2003).
Therefore, we tested the idea that the NADPH oxidase-

mediated generation of ROS regulates the Cl� SAC
elicited by integrin stretch.

Fig. 2 shows the effect of DPI, a potent inhibitor of
O2

�� production by NADPH oxidase that binds to the
flavin and heme b redox centers of gp91phox (O’Donnell
et al., 1993; Doussiere et al., 1999). As before, a
small, outwardly rectifying background Cl� current was
present before stretch (Fig. 2, A and D), and 8 min of in-
tegrin stretch greatly increased the Cl� current (Fig. 2, B
and D). In the continued presence of integrin stretch,
exposure to 60 �M DPI for 5 min completely blocked
both the Cl� SAC and nearly all of the outwardly rectify-
ing background Cl� current. The current remaining af-
ter block by DPI (Fig. 2, C and D) was very small in am-
plitude and exhibited a linear I–V relationship.

DPI profoundly inhibited the Cl� SAC as well as the
background Cl� current in each myocyte studied. At
�40 mV, 60 �M DPI inhibited 156 	 9% (n � 6, P �
0.001) of the Cl� SAC after 5 min. In these myocytes,
integrin stretch significantly increased the Cl� current
from 0.97 	 0.07 to 2.04 	 0.12 pA/pF, and DPI mark-
edly decreased the current to 0.44 	 0.08 pA/pF in the
continued presence of integrin stretch. The current af-
ter DPI was significantly less than the background Cl�

current before stretch (n � 6, P � 0.001). At �100 mV,
integrin stretch increased the Cl� current from
�0.08 	 0.02 to �0.29 	 0.17 pA/pF, and DPI de-
creased the current to �0.07 	 0.03 pA/pF. The in-
ward currents were small and were statistically indistin-
guishable, however. These results suggest that NADPH
oxidase is required for both the Cl� SAC and the back-
ground Cl� current.

To verify that NADPH oxidase is involved in the regu-
lation of Cl� SAC, the effect of AEBSF, a second
NADPH oxidase inhibitor, was examined at two concen-
trations, 500 �M and 2 mM. AEBSF is structurally dis-
tinct from DPI and interferes with the assembly of the
active NADPH oxidase complex (Diatchuk et al., 1997).

Experiments with AEBSF are illustrated in Fig. 3. As
shown previously, the outwardly rectifying background
Cl� current present (Fig. 3, A and D) was increased by
5 min of integrin stretch (Fig. 3, B and D). Treatment
with AEBSF (500 �M, 6 min) while maintaining stretch
restored the current to its control level (Fig. 3, C and
D). At �40 mV, 500 �M AEBSF (5–6 min) blocked
106 	 7% (n � 3, P � 0.001) of the Cl� SAC. Stretch
significantly increased the outward current from 1.47 	
0.31 to 2.49 	 0.52 pA/pF, and 500 �M AEBSF reduced
the outward current to 1.43 	 0.35 pA/pF, a value not
different from control. At �100 mV, the effects of inte-
grin stretch and 500 �M AEBSF were small and not sta-
tistically significant.

A higher concentration of AEBSF had a more pro-
nounced effect on the Cl� current that was similar to
that seen with 60 �M DPI. After the activation of Cl�

Figure 2. Diphenyleneiodonium (DPI), a potent inhibitor of
electron transport within the NADPH oxidase complex, completely
blocks both Cl� SAC and background Cl� current. Currents
before (A, Control) and after (B, Stretch) activation of Cl� SAC by
8 min of integrin stretch, and after application of 60 �M DPI for
5 min with continued stretch (C, �DPI). (D) I–V relationships for
A–C, with each reversing at about �50 mV. At �40 mV, DPI
blocked 156 	 9% (n � 6) of the integrin stretch–induced current.
The membrane current after DPI exhibited a linear I–V relation-
ship and was significantly less than the background Cl� current
(P � 0.001 at �40 mV). Inset, chemical structure of DPI.
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SAC with 5 min of integrin stretch, myocytes were ex-
posed to 2 mM AEBSF for 6 min with continued stretch.
This resulted in the complete inhibition of Cl� SAC as
well as most of the background Cl� current (Fig. 3 E).
At �40 mV, 2 mM AEBSF (5–6 min) reduced the Cl�

SAC by 139 	 28% (n � 3, P � 0.006). In these myo-
cytes, integrin stretch significantly increased the current
from 1.22 	 0.23 to 2.20 	 0.26 pA/pF, and then 2 mM
AEBSF decreased the current to 0.76 	 0.24 pA/pF.

Block of Cl� current by 2 mM AEBSF was almost
completely reversed after 6 min of washout of the drug
in the continued presence of integrin stretch (Fig. 3 F).
The Cl� current blocked by 2 mM AEBSF at �40 mV
recovered by 91 	 16% (n � 3, P � 0.007), returning

to 2.01 	 0.46 pA/pF. There was no significant differ-
ence between the stretch-induced current before treat-
ment with AEBSF and after washout (P � 0.496). These
results strongly support the idea that NADPH oxidase is
required for both the activation of Cl� SAC by integrin
stretch and the background Cl� current.

Fig. 4 illustrates the time course of Cl� current block
by AEBSF (500 �M and 2 mM) and DPI (60 �M) at
�40 mV obtained from I–V curves taken at 1-min inter-
vals. Each is well described by a single exponential. The
time constant for Cl� current block by 2 mM AEBSF
was 0.39 	 0.03 min (n � 3), approximately fourfold
faster than that for the fourfold lower concentration of
AEBSF, 1.48 	 0.17 min (n � 3). Block of Cl� current
by DPI (60 �M) proceeded with a time constant of
0.55 	 0.03 min (n � 3). The rapid kinetics of block of
both the Cl� SAC and the background Cl� current, �90%
block occurred within 1 min with 2 mM AEBSF and 60
�M DPI, suggests a close coupling between NADPH ox-
idase activity and gating of the Cl� channels.

Experiments with NADPH oxidase blockers suggest
that up-regulation of NADPH oxidase and ultimately
the production of O2

�� and its dismutation to H2O2 are
critical for the activation of Cl� SAC. If this idea is cor-
rect, degradation of the H2O2 produced by myocyte
stretch should abrogate the response to stretch. Fig. 5
shows the effect of catalase, which rapidly converts
H2O2 to H2O, on activation of Cl� SAC by integrin
stretch. Following a 15-min exposure of the myocyte to
1,000 U/ml catalase in the bath solution, a control cur-
rent exhibiting modest outward rectification typical of
the background Cl� current was recorded (see Fig. 1
D). Integrin stretch was then applied for 6 min in the
continued presence of catalase, a time sufficient to acti-
vate significant Cl� SAC, but virtually no change in the

Figure 3. AEBSF, an inhibitor of NADPH oxidase assembly and
activation, blocks both Cl� SAC and background Cl� current.
Currents before (A, Control) and after (B, Stretch) activation of
Cl� SAC by 5 min of integrin stretch, and after application of
500 �M AEBSF for 6 min with continued stretch (C, �500 �M
AEBSF). Inset, chemical structure of AEBSF. (D) I–V relationships
for A–C. Each reversed near ECl. (E) I–V relationships in a separate
experiment during control (�), after Cl� SAC activation by 5 min
of integrin stretch (�), and after application of a higher concen-
tration of AEBSF (2 mM) for 6 min with continued stretch (�). At
2 mM, AEBSF blocked both Cl� SAC and background Cl� current.
(F) I–V relationships after integrin stretch and 2 mM AEBSF from
E and after a 6-min washout of 2 mM AEBSF with continued
stretch. Washout of AEBSF leads to almost complete recovery of
Cl� SAC (�). At �40 mV, AEBSF (500 �M and 2 mM) blocked
106 	 7% (n � 3) and 139 	 28% (n � 3) of Cl� SAC, respec-
tively. Block by 2 mM AEBSF was reversed by 91 	 16% (n � 3)
upon washout with continued integrin stretch.

Figure 4. Time course of Cl� current block by AEBSF and DPI.
Fractional current was determined at 1-min intervals. Block was
very rapid and was described by single exponentials with time
constants of 1.48 	 0.17 and 0.39 	 0.03 for 500 �M and 2 mM
AEBSF, respectively, and 0.55 	 0.03 min, for 60 �M DPI (n � 3).
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Cl� current was observed. Subsequent washout of cata-
lase for 5 min resulted in full activation of Cl� SAC,
documenting the ability of the myocyte to respond to
stretch. At �40 mV, in the presence of 1,000 U/ml ex-
tracellular catalase, the current after stretch, 1.97 	
0.42 pA/pF, was not significantly different than that be-
fore stretch, 1.77 	 0.40 pA/pF (n � 4, P � 0.393). Fol-
lowing washout of catalase, the current markedly in-
creased to 2.86 	 0.46 pA/pF. The small increment of
current activated in the presence of catalase, 0.19 	
0.08 pA/pF, represented only 17 	 7% of total Cl� SAC
activated by the end of the catalase washout period.

Angiotensin II Activates a DPI-sensitive, Outwardly 
Rectifying Cl� Current

If stretch of �1 integrin releases AngII, which stimu-
lates AT1 receptors in an autocrine–paracrine loop to
elicit Cl� SAC, then exogenous AngII should rapidly
elicit a Cl� current in the absence of stretch. Myocytes
were treated with 5 nM AngII for 6 min, a concentra-
tion sufficient to activate AT1 (Kd � 420 pM) but not
AT2 (Kd � 100 nM) receptors in rabbit ventricle
(Wright et al., 1983). As shown in Fig. 6 (A, B, and D),
exogenous AngII elicited an outwardly rectifying Cl�

current in the absence of stretch that partially inacti-
vated at positive potentials. Moreover, the AngII-induced
current was fully inhibited by the NADPH oxidase
blocker DPI (60 �M; Fig. 6, C and D), as previously
shown for the stretch-induced Cl� SAC. At �40 mV, AngII
increased the current by 0.85 	 0.03 pA/pF, from
1.18 	 0.25 to 2.04 	 0.27 pA/pF (n � 4, P � 0.01),
and DPI blocked 149 	 30% of the AngII-induced cur-

rent (n � 4, P � 0.005), reducing the current to 0.75 	
0.13 pA/pF. There was no significant difference be-
tween the background current before AngII and the
current after treatment with DPI (P � 0.11).

H2O2 Activates a Tamoxifen-sensitive, Outwardly Rectifying 
Cl� Current

If stretch-induced activation of AT1 receptors and
NADPH oxidase stimulates Cl� current via ROS, exoge-
nous ROS might be expected to mimic the effects of
stretch. Fig. 7 illustrates a test of this prediction with
H2O2 as the ROS. A typical background current was ob-
served under control conditions (Fig. 7, A and E). Ad-
dition of 500 �M H2O2 to the bath solution leads to the
substantial activation of outward Cl� current in the ab-
sence of stretch. The current recorded after a 7-min ex-
posure to H2O2 was outwardly rectifying, reversed at
�50 mV, and partially inactivated at potentials positive
to �10 mV (Fig. 7, B and E), as were shown for the con-
trol current. A family of H2O2-induced difference cur-
rents, calculated by digitally subtracting the control
currents from those after application of H2O2, and the
resulting I–V relationship are shown in Fig. 7 (D and
F). H2O2 evoked a much greater increase in outward
current than inward current, as previously found for in-
tegrin stretch, and the difference current reversed at
�50 mV, close to the calculated ECl of �52 mV. Thus,

Figure 5. Catalase, which rapidly converts H2O2 to H2O, inhibits
activation of Cl� SAC by integrin stretch. I–V relationships before
(�) and after (�) 6 min of integrin stretch in the presence of
1,000 U/ml extracellular catalase, and after a 5-min washout of
catalase with continued integrin stretch (�). At �40 mV, integrin
stretch in the presence of catalase did not significantly activate Cl�

SAC; the Cl� SAC elicited was 17 	 7% (n � 4; P � 0.393) of that
in the same cell after washout of catalase.

Figure 6. Exogenous AngII activates a Cl� current in the absence
of integrin stretch via NADPH oxidase. Currents before (A,
Control) and after (B, AngII) a 6-min exposure to 5 nM AngII,
and after block of NADPH oxidase by exposure to 60 �M DPI for
5 min in the continued presence of AngII (C, �DPI). (D) I–V
relationships for A–C. AngII activated an outwardly rectifying Cl�

current that partially inactivated at positive potentials and reversed
at ECl. DPI rapidly blocked the AngII-induced current and the
background Cl� current. At �40 mV, the AngII-induced Cl�

current was 0.85 	 0.03 pA/pF (n � 4), and DPI blocked this
current by 149 	 30% (n � 4).
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the H2O2-induced Cl� current shares several of the
characteristics of both the integrin stretch–induced Cl�

SAC and ICl,swell (Browe and Baumgarten, 2003b).
Tamoxifen inhibits ICl,swell but does not affect

CFTR or Ca2�-activated Cl� currents (Hume et al., 2000;
Baumgarten and Clemo, 2003). Moreover, tamoxifen
inhibits both Cl� SAC and a large fraction of the back-
ground Cl� current during integrin stretch (Browe and
Baumgarten, 2003b). To further identify the H2O2-
induced current, we tested its sensitivity to tamoxifen.
Fig. 7 (C and E) shows that 10 �M tamoxifen, applied
for 6 min in the continued presence of 500 �M H2O2,
completely blocked the Cl� current elicited by H2O2, as
well as virtually all of the background Cl� current.

An H2O2-induced, outwardly rectifying Cl� current
that was blocked by 10 �M tamoxifen was observed in

each myocyte tested. H2O2 (500 �M), in the absence of
integrin stretch, significantly increased outward Cl�

current at �40 mV by 1.00 	 0.15 pA/pF (n � 4, P �
0.01), from 1.24 	 0.21 to 2.27 	 0.23 pA/pF. Tamox-
ifen (10 �M, 6–8 min) in the continued presence of
H2O2 significantly decreased the current at �40 mV to
1.06 	 0.26 pA/pF, representing a block of 121 	 15%
(P � 0.002) of the current evoked by H2O2. There was
no significant difference between the control current
and the current after tamoxifen block (P � 0.349). The
inward Cl� current at �100 mV was significantly in-
creased 0.36 	 0.13 pA/pF (n � 4, P � 0.05) by H2O2,
from �0.22 	 0.08 to �0.59 	 0.21 pA/pF. Tamoxifen
decreased the current at �100 mV to �0.45 	 0.16 pA/
pF in the continued presence of H2O2, although block
at �100 mV was not statistically significant (P � 0.2).

Although 500 �M exogenous H2O2 often is used to
demonstrate effects of ROS, this concentration may
be higher than the local concentration produced by
stretch in situ. Fig. 8 compares the activation of out-
wardly rectifying Cl� current by different concentra-
tions of exogenous H2O2 in the absence of integrin
stretch. Exposure to 100 �M H2O2 for 7 min increased
the outward Cl� current (Fig. 8 A) to the same degree
as seen with 500 �M, whereas exposure to 10 �M H2O2

for 7 min elicited a smaller current (Fig. 8 B). At �40
mV, 100 �M H2O2 increased Cl� current by 1.04 	 0.08
pA/pF, from 1.74 	 0.15 to 2.78 	 0.16 pA/pF (n � 4;
P � 0.0005), but 10 �M H2O2 stimulated the current by
0.63 	 0.04 pA/pF (n � 4; P � 0.0005), from 1.88 	
0.29 to 2.52 	 0.33 pA/pF. The current densities at
�40 mV for the Cl� currents activated by 10, 100, and
500 �M H2O2 and by integrin stretch are illustrated in
Fig. 8 C. The magnitude of the currents evoked by inte-
grin stretch and 100 or 500 �M H2O2 were not statisti-
cally distinguishable, whereas the Cl� current elicited
by 10 �M H2O2 was significantly smaller than the
stretch-induced Cl� SAC (P � 0.026).

Fig. 9 compares the kinetics of activation of Cl� cur-
rent by 500 �M H2O2 and integrin stretch. In both
cases, stimulation occurred over several minutes, but
differences in the kinetics were notable. The time
course for activation of the H2O2-induced Cl� current
at �40 mV (Fig. 9 A, filled circles) was well- described
by a single exponential with a time constant of 1.79 	
0.13 min (n � 4), equivalent to a t1/2 of 1.24 	 0.09
min. In contrast, the activation of Cl� SAC at �40 mV
(Fig. 9 A, open circles) is sigmoidal with a t1/2 of 3.5 	
0.1 min (n � 5) (Browe and Baumgarten, 2003b). The
more rapid activation of Cl� current by H2O2 than by
stretch is consistent with the idea that H2O2 is an inter-
mediate in the process. Moreover, the I–V relationships
for the H2O2-induced Cl� current and Cl� SAC deter-
mined after reaching steady-state activation (Fig. 9 B)
nearly superimposed.

Figure 7. Exogenous H2O2 activates Cl� SAC in the absence of
integrin stretch. Currents before (A, Control) and after (B, H2O2)
a 7-min exposure to 500 �M H2O2, and after application of 10 �M
tamoxifen for 6 min in the continued presence of H2O2 (C,
�Tamoxifen). The H2O2-induced difference current (D, H2O2-
Induced Difference) was obtained by digital subtraction. (E) I–V
relationships for A–C, and for the H2O2-induced current (F). Each
I–V relationship reversed near ECl. The H2O2-induced current
partially inactivated at positive potentials and exhibited strong
outward rectification. Tamoxifen, an inhibitor of Cl� SAC and
ICl,swell, blocked all of the H2O2-induced Cl� current, as well as a
large fraction of the background Cl� current. At �40 mV, the
H2O2-induced Cl� current was 1.00 	 0.15 pA/pF (n � 4), and
tamoxifen blocked this current by 121 	 15% (n � 4). Inset,
chemical structure of tamoxifen.



280 AT1 Receptors and NADPH Oxidase Regulate Cl� SAC

If the action of NADPH oxidase blockers is solely to
prevent generation of O2

�� and ultimately H2O2, exog-
enous H2O2 should be sufficient to reactivate the
stretch-induced Cl� current in the presence of NADPH
oxidase blockade. Fig. 10 (A and B) illustrates experi-
ments testing this idea. First, myocytes were stretched
for 5 min to elicit the Cl� SAC. Then, either 60 �M DPI
(Fig. 10 A) or 500 �M AEBSF (Fig. 10 B) was applied
for 5–6 min to block the Cl� SAC in the continued
presence of stretch. Finally, myocytes were exposed to
500 �M H2O2 for 10 min in the presence of both the
NADPH oxidase blocker and stretch. At �40 mV, H2O2

reactivated only 4 	 2% (n � 3) and 31 	 2% (n � 3)

of the Cl� current blocked by DPI and AEBSF, respec-
tively. There was not a significant difference between
the current after H2O2 addition and the current after
either DPI or AEBSF block, however. Thus, block of
NADPH oxidase prevented full activation of Cl� chan-
nels by a concentration of exogenous H2O2 normally
sufficient to fully activate Cl� SAC.

Tamoxifen blocks both the H2O2-induced Cl� cur-
rent (Fig. 7) and the stretch-activated Cl� SAC (Browe
and Baumgarten 2003b). Provided that the same chan-
nel protein is responsible for both currents, a model as-
suming block results from binding of tamoxifen to the
channel predicts that the kinetics of block of both of
these currents will be identical. A test of this prediction

Figure 8. Concentration depen-
dence of H2O2-induced current in
the absence of integrin stretch. I–V
relationships before (�) and after
(�) a 7-min exposure to 100 �M
(A) or 10 �M (B) exogenous H2O2.
(C) Comparison of H2O2-induced
(10, 100, 500 �M) currents at �40
mV (solid bars) with those elicited
by integrin stretch (hatched bar).
Currents activated by 100 and 500
�M H2O2 were not significantly
different from each other or from
that elicited by integrin stretch,
whereas10 �M H2O2 elicited a signif-
icantly smaller current than stretch
(P � 0.026).

Figure 9. Time course for Cl� SAC activation by H2O2 (500 �M)
and integrin stretch and their respective steady-state I–V relation-
ships. (A) The H2O2- and integrin stretch–induced currents at
�40 mV were recorded at 1-min intervals and normalized by the
steady-state currents to obtain the fractional activation. The time
course for Cl� SAC activation by H2O2 was exponential with a time
constant of 1.78 	 0.13 min (n � 4), equivalent to a t1/2 of 1.24 	
0.09 min. Cl� SAC activation by integrin stretch was slower,
following a sigmoidal time course with a t1/2 of 3.5 	 0.1 min
(n � 5) (Browe and Baumgarten, 2003b). (B) Steady-state I–V
relationships for the stretch- and H2O2-induced currents could not
be distinguished.

Figure 10. Exogenous H2O2 does not fully reactivate Cl� SAC
after block of NADPH oxidase by DPI or AEBSF. (A) I–V relation-
ships after Cl� SAC activation by 5 min of integrin stretch (�),
exposure to 60 �M DPI for 5 min with continued stretch(�), and
then application of 500 �M H2O2 for 10 min in the continued
presence of both integrin stretch and 60 �M DPI (�). (B) I–V
relationships in a similar experiment after Cl� SAC activation by
5 min of integrin stretch (�), exposure to 500 �M AEBSF for
6 min with continued stretch (�), and then application of 500 �M
H2O2 for 10 min in the continued presence of both integrin
stretch and 500 �M AEBSF (�). At �40 mV, H2O2 did not reactivate
Cl� SAC after treatment with DPI, 4 	 2% (n � 3), and only
partially reactivated Cl� SAC, 31 	 2% (n � 3; P � 0.104), after
treatment with AEBSF.
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is shown in Fig. 11. After 6–8 min of integrin stretch or
7 min of exposure to 500 �M H2O2, 10 �M tamoxifen
was added in the continued presence of stretch or
H2O2, respectively, and block at �40 mV was assessed at
1-min intervals. Although block of both the H2O2-

induced Cl� current and Cl� SAC were well described
by single exponential functions, the kinetics of block
were different. The time constant for tamoxifen block
of the H2O2-induced Cl� current, 4.15 	 0.49 min (n �
4), was significantly slower than that of the Cl� SAC,
2.07 	 0.25 min (n � 4; P � 0.01).

D I S C U S S I O N

We previously demonstrated that direct and specific
stretch of �1-integrin activates an outwardly rectifying,
tamoxifen-sensitive Cl� SAC in ventricular myocytes via
FAK and/or Src and that Cl� SAC resembles the vol-
ume-sensitive Cl� current, ICl,swell (Browe and Baumgar-
ten, 2003b). The present results suggest that integrin
stretch-induced activation of Cl� SAC requires release
of AngII and subsequent stimulation of both AT1 re-
ceptors and sarcolemmal NADPH oxidase. NADPH ox-
idase directly produces O2

��, which is rapidly converted
to membrane permeant H2O2 by dismutation (Brahma-
jothi and Campbell, 1999), and H2O2 and possibly
other ROS participate in the activation of Cl� SAC. As
expected from the proposed mechanism depicted in
Fig. 12, inhibition of AT1 receptors by losartan, inhibi-
tion of NADPH oxidase by DPI and AEBSF, and scav-
enging of H2O2 by catalase suppressed Cl� SAC. In ad-
dition, exogenous AngII and H2O2 each elicited a Cl�

current that resembled Cl� SAC. The H2O2-induced
Cl� current was suppressed by tamoxifen, a blocker of

Figure 11. Time course of tamoxifen block of H2O2- and stretch-
induced Cl� currents. Currents at �40 mV were recorded at 1-min
intervals after application of 10 �M tamoxifen and were normalized
by the initial current. In both cases, the time course of block was
exponential, but the time constant for block of H2O2-induced
current, 4.15 	 0.49 min (n � 4), was slower than for stretch-
induced current, 2.07 	 0.25 min (n � 4, P � 0.01). This unex-
pected discrepancy can be accounted for by an H2O2-mediated
breakdown of tamoxifen.

Figure 12. Simplified proposed model of the mechanotransduction process coupling �1 integrin stretch to activation of Cl� SAC in
ventricular myocytes. Integrin stretch triggers the phosphorylation and activation of focal adhesion kinase (FAK) and Src, and the release
of Ang II from secretory vesicles. Ang II binds to the AT1 receptor (AT1R) and activates the AT1R signaling cascade. Components of the
AT1R signaling cascade, possibly in concert with components of integrin signaling, induce the activation of p47phox, p67phox, and rac, which
translocate to the membrane and assemble with gp91phox and p22phox to form the active NADPH oxidase complex. NADPH oxidase recruits
NAD(P)H as an electron donor and catalyzes the transmembrane transfer of electrons to molecular O2 to form superoxide (O2

�). Extra-
cellular O2

�� is rapidly converted to membrane-permeant H2O2 by ecSOD. H2O2 may activate Cl� SAC either directly or via ROS-sensitive
signaling pathways. The idea that NADPH oxidase may be a closely coupled regulator of the Cl� SAC channel is not illustrated.
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Cl� SAC and ICl,swell, and the AngII-induced current was
blocked by inhibition of NADPH oxidase. Moreover,
the background Cl� current also was blocked by inhibi-
tion of NADPH oxidase but not by an AT1 receptor an-
tagonist. To our knowledge, this is the first report that
cardiac Cl� currents are regulated by H2O2 or other
ROS and the first evidence that NADPH oxidase modu-
lates cardiac electrical activity.

Autocrine/Paracrine Regulation of Cl� SAC by Angiotensin II

AngII is stored in secretory vesicles in myocytes and re-
leased within 1 min by mechanical stretch of cultured
rat myocytes grown on an elastic substrate (Sadoshima
et al., 1993). Stretch-induced AngII release is sufficient
to activate AT1 receptors in an autocrine–paracrine
loop and induce gene expression and hypertrophy.
Block of Cl� SAC by losartan, a highly selective AT1 an-
tagonist with an IC50 of 20 nM (Lambert et al., 1995;
Chung and Unger, 1998), activation of Cl� current by
exogenous AngII (5 nM), and the much greater AngII
affinity of AT1 than AT2 receptors (Wright et al., 1983)
strongly argue for involvement of AngII and AT1 re-
ceptors in the transduction of integrin stretch. The
amount of AngII released was not determined. It is im-
portant to note, however, that a large number of myo-
cytes bound to �1-integrin mAb-coated beads covered
the chamber floor. All myocytes were stretched simulta-
neously, and presumably all released AngII. Therefore
the voltage-clamped cell was exposed not only to locally
released AngII, but also to AngII delivered by diffusion
and solution flow from other cells.

Morita et al. (1995) previously reported that exoge-
nous AngII evokes an outwardly rectifying Cl� current
in rabbit ventricular myocytes. They found the current
is blocked by saralasin and eliminated when cytoplas-
mic free-Ca2� is driven to vanishing levels with Ca2�-
free pipette solutions containing 10 mM EGTA. In our
study, free-Ca2� was �35 nM. In rabbit SA node, AngII
induces an outwardly rectifying Cl� current that is PKC
dependent and blocked by losartan (Bescond et al.,
1994). On the other hand, ICFTR,cardiac is strongly inhib-
ited by AngII via AT1 receptors and inhibition of ade-
nylate cyclase (Obayashi et al., 1997). AngII also acti-
vates a Ca2�-dependent Cl� current in mesangial (Mar-
rero et al., 1996) and adrenal zona fasciculata cells
(Chorvatova et al., 1998). In addition to effects on Cl�

currents, AngII modulates a number of cation currents
(for review see Chorvatova et al., 1996), and thus, inte-
grin stretch-induced activation of AT1 receptors also
may affect cardiac cation currents (Browe and Baum-
garten, 2003b).

A coordination of stretch and AngII receptor activa-
tion is implicated in a variety of cardiac responses in ad-
dition to hypertrophy and gene expression (Sadoshima
et al., 1993). Losartan and/or the AngII converting en-

zyme inhibitor captopril suppress stretch-induced phos-
phatidylinositol hydrolysis, PKC translocation (Paul et
al., 1997), and atrial natriuretic peptide secretion (Rusko-
aho et al., 1997). AngII also mediates stretch-induced
activation of the Na�/H� exchanger and changes in
contractility in cardiac myocytes (Dostal and Baker,
1998; Cingolani et al., 2001).

Regulation of Cl� SAC by NADPH Oxidase and ROS

It is proposed that activation of Cl� SAC by integrin
stretch is due to the activation of NADPH oxidase and
production of ROS. Involvement of NADPH oxidase
and ROS in the stimulation of Cl� current is supported
by three lines of evidence. First, two structurally distinct
blockers of NADPH oxidase, DPI and AEBSF, rapidly
and completely inhibited Cl� SAC. DPI acts by displac-
ing FAD from the electron transfer chain (O’Donnell et
al., 1993; Doussiere et al., 1999), making it a potent
NADPH oxidase inhibitor; its IC50 for O2

�� production
is 0.9 and 5.6 �M in intact macrophages (Hancock and
Jones, 1987) and neutrophils (O’Donnell et al., 1993),
respectively. DPI also inhibits other flavoprotein-con-
taining enzymes, however, including nitric oxide syn-
thase (Stuehr et al., 1991). AEBSF prevents assembly of
the NADPH oxidase active complex and blocks O2

��
production with an IC50 of 1 mM (Diatchuk et al., 1997),
but there is no evidence that AEBSF interacts with nitric
oxide synthase. Moreover, DPI and AEBSF inhibit ROS-
dependent ERK activation in ventricular myocytes (Xiao
et al., 2002). Second, activation of Cl� SAC by integrin
stretch was strongly attenuated by extracellular catalase,
which rapidly breaks down H2O2. This implies that inte-
grin stretch must lead to H2O2 production and that
H2O2 is required for Cl� SAC activation. The effect of
extracellular catalase is consistent with the topology of
gp91phox (Nox2), the prototypic phagocyte-type NADPH
oxidase found in heart. Nox2 produces O2

�� at the ex-
tracellular face of the sarcolemma (Griendling et al.,
2000; Vignais, 2002), where ecSOD is positioned to con-
vert O2

�� to H2O2 (Brahmajothi and Campbell, 1999).
Third, direct application of exogenous H2O2 in the ab-
sence of integrin stretch promptly activated a tamoxifen-
sensitive Cl� current with biophysical characteristics sim-
ilar to those of Cl� SAC; the ED50 was �10 �M. Al-
though we refer to this as an H2O2-induced Cl� current,
the present data do not exclude the possibility that
other reactive species participate in its regulation.

Activation of Cl� current by H2O2 was more rapid
than the activation of Cl� current by integrin stretch, as
expected if H2O2 is an intermediate in stretch-induced
signaling. Nevertheless, H2O2 and ROS activate a vari-
ety of signaling processes (Allen and Tresini, 2000). We
cannot rigorously exclude the possibility that exoge-
nous H2O2 regulates Cl� current, at least in part, by sig-
naling cascades that are unaffected by integrin stretch.
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Both gp91phox and Nox4, a homologue of gp91phox, are
found in ventricle (Byrne et al., 2003). Knockout of
gp91phox abrogates AngII-induced O2

�� production and
ventricular hypertrophy, suggesting gp91phox underlies
the stretch-induced, NADPH oxidase-dependent re-
sponses studied here. It is clear that AngII activates
NADPH oxidase in vascular smooth muscle by a pro-
cess that involves AT1 receptors, FAK and Src, and
transactivation of EGF receptors (Seshiah et al., 2002).
This may explain why block of FAK and Src inhibits Cl�

SAC (Browe and Baumgarten, 2003b). Moreover, in
preliminary experiments, we found that Cl� SAC acti-
vated by integrin stretch was blocked by the EGF recep-
tor inhibitor AG1478 (unpublished data).

Stretch of cultured rat ventricular myocytes previ-
ously was shown to generate O2

�� by a NADPH-depen-
dent mechanism (Pimentel et al., 2001). Mechanical
stimulae activate NADPH oxidase in isolated endothe-
lial cells (Howard et al., 1997; De Keulenaer et al.,
1998) and coronary artery denuded of endothelium
(Oeckler et al., 2003). NADPH oxidase also is activated
by integrin clustering. In eosinophils, CR3 (CD11b/
CD18) integrin-mediated adhesion activates NADPH
oxidase by a pathway that includes Src, PKC, and PI-3K
(Lynch et al., 1999). Application of particles coated
with Ab for the �-integrin subunit of LFA-1, CR3, or
CR4 (CD11a, CD11b, or CD11c, respectively) or the �2-
integrin subunit of CR3 (CD18) stimulates NADPH ox-
idase in neutrophils by a process that requires cytoskel-
etal rearrangements but not phagocytosis (Serrander et
al., 1999), and activation by anti-�2 integrin Ab de-
pends on PTK (Löfgren et al., 1999).

NADPH oxidase also appeared to be required to sup-
port the background Cl� current. The NADPH oxidase
inhibitors DPI and AEBSF not only blocked Cl� SAC,
but also suppressed the outwardly rectifying component
of Cl� current present before integrin stretch. On the
other hand, block of the AT1 receptor by losartan did
not affect the Cl� current in the absence of stretch. Both
gp91phox (Nox2) and Nox4 contribute to basal O2

�� and
H2O2 production in the unstimulated heart (Bendall et
al., 2002; Heymes et al., 2003; Byrne et al., 2003). There-
fore, background Cl� current seems to be regulated by
NADPH oxidase independent of AT1 receptor activity.
Others have attributed the background Cl� current in
heart to ICl,swell (Sorota, 1992; Duan et al., 1995, 1997).

Identity of the H2O2-induced Cl� Current

The primary Cl� currents in cardiac myocytes are a
PKA-dependent current due to the cardiac isoform of
CFTR (ICFTR,cardiac), the calcium-dependent transient
outward Cl� current (ICl,Ca), and the volume-sensitive
Cl� current (ICl,swell) (Hume et al., 2000), and we previ-
ously suggested that the Cl� SAC is due to ICl,swell

(Browe and Baumgarten, 2003b). Several of the bio-

physical and pharmacological properties of the H2O2-
induced current are consistent with Cl� SAC rather
than either ICFTR,cardiac or ICl,Ca.. Cl� SAC and the H2O2-
induced current both exhibit strong outward rectifica-
tion, similar kinetics and voltage-dependence of inacti-
vation, and steady-state I–V curves that are superimpos-
able. ICFTR,cardiac is time independent at all voltages
(Shuba et al., 1996; Hume et al., 2000), whereas H2O2-
induced current partially inactivated at positive poten-
tials. ICl,Ca is initiated by elevation of cytoplasmic Ca2�

and exhibits both inactivation at positive potentials and
a bell-shaped I–V relationship if Ca2� handling is un-
compromised (Zygmunt and Gibbons, 1991). When cy-
toplasmic Ca2� is set at an elevated level, however, ICl,Ca

is time independent with a linear I–V relationship (Zyg-
munt, 1994). In contrast, the H2O2-induced current in-
activated and displayed outward rectification in Ca2�-
free bathing media with strongly buffered pipette Ca2�,
conditions that reduced cytoplasmic free-Ca2� to �35
nM and minimized Ca2� transients. Moreover, tamox-
ifen completely blocked the H2O2-induced current, but
ICFTR,cardiac (Vandenberg et al., 1994) and ICl,Ca (Val-
verde et al., 1993) are insensitive to tamoxifen.

One argument against the H2O2-induced current be-
ing the same as Cl� SAC is the kinetics of block by 10
�M tamoxifen. The time constant was 4.1 min for the
H2O2-induced current and 2.1 min for the Cl� SAC,
whereas identical kinetics were expected if tamoxifen
blocked at the same site in both cases. The action of
tamoxifen is more complex than classic channel block,
however. Tamoxifen can act as an ROS scavenger (Cus-
todio et al., 1994). This suggests that the approximately
twofold slowing of block could have arisen because ap-
proximately half of the tamoxifen was converted to an
inactive form by exposure to 500 �M H2O2. In addi-
tion, tamoxifen is reported to inhibit NADPH oxidase
in uterine smooth muscle (Jain et al., 1999). Because
both NADPH oxidase and ROS regulate Cl� SAC/
ICl,swell, these actions of tamoxifen are likely to contrib-
ute to its block of both Cl� SAC with integrin stretch
and ICl,swell with osmotic swelling.

H2O2 modulates multiple Cl� conductances in other
systems. It activates native ICl(Ca) in Xenopus oocytes in-
directly via Na�–Ca2� exchange (Schlief and Heine-
mann, 1995), but suppresses a chlorotoxin-sensitive,
time-independent Cl� conductance in retinal pigmented
epithelium (Weng et al., 2002), and a sarcoplasmic
reticulum Cl� channel (Kourie, 1997). Because the
present studies were done under Na�-free conditions,
stimulation of ICl(Ca) via Na�–Ca2� exchange can be
excluded.

Is NADPH Oxidase Directly Coupled to Cl� Channels?

Inhibition of Cl� SAC and background Cl� current by
60 �M DPI and 2 mM AEBSF was both complete and
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rapid. The kinetics of block appears to place a limit on
the complexity of the signaling pathway between
NADPH oxidase and the Cl� channel. One possibility is
that NADPH oxidase is a closely coupled Cl� channel
regulator. That is to say, it may regulate Cl� SAC by a di-
rect molecular interaction, as well as by production of
ROS. Such a coupling might explain why exogenous
H2O2 did not fully reactivate Cl� SAC in the presence
of either DPI or AEBSF. Interestingly, recent studies
demonstrated that knockout of ClC-3, which has been
postulated to underlie cardiac ICl,swell (Duan et al.,
1999), leads to suppression of Nox 2 activity in stimu-
lated leukocytes (Moreland et al., 2004) but up-regula-
tion of Nox1 in vascular smooth muscle (Miller et al.,
2004). In addition, �2 integrin cross-linking can trigger
a Cl� efflux that regulates the generation of ROS in
neutrophils (Menegazzi et al., 1999).

An alternative possibility is that NADPH oxidase
blockers directly inhibit Cl� channels independent of
their action on NADPH oxidase. This possibility seems
unlikely because DPI and AEBSF are structurally dis-
tinct molecules. Apocynin, a third structurally distinct
NADPH oxidase blocker, and DPI also inhibit swelling-
induced ICl,swell in rabbit ventricular myocytes (Ren, Z.,
personal communication; unpublished data). More-
over, the hypothesis that NADPH oxidase blockers di-
rectly inhibit Cl� channels fails to explain why extracel-
lular catalase abrogated the response to stretch or why
exogenous H2O2 mimicked stretch by eliciting a Cl�

current. Nevertheless, precise understanding of the re-
lationship between NADPH oxidase and the Cl� chan-
nel and the action of NADPH oxidase blockers awaits
further investigation.

NADPH Oxidase, Cl� Current, and Cardiac Pathophysiology

ICl,swell blockers reportedly abolish ischemia-, drug-, and
hypoosmotic stress–induced preconditioning and exert
protective effects in ischemia/reperfusion (for review
see Baumgarten and Clemo, 2003). Mohazzab-H et al.
(1997) demonstrated that NADPH oxidase is activated
during ischemia/reperfusion, and it is well established
that H2O2 and ROS are critically important in precon-
ditioning (LeBuffe et al., 2003), myocardial injury (Li
and Jackson, 2002), and apoptosis (von Harsdorf et al.,
1999). As noted above, NADPH oxidase can be blocked
and ROS can be scavenged by agents that also block
ICl,swell, such as tamoxifen (Jain et al., 1999) and DIDS
(Schwingshackl et al., 2000). Indeed, block of NADPH
oxidase or scavenging of ROS by such agents, rather
than a direct block of Cl� SAC or ICl,swell, may contrib-
ute to their effects on preconditioning, oxidant injury
and apoptosis. Alternatively, a functional coupling be-
tween NADPH oxidase and Cl� channels may lead to
inhibition of NADPH oxidase when Cl� channels are
blocked.

NADPH oxidase and ICl,swell are concurrently up-regu-
lated by chronic cardiac disease in animal models and
man. Hypertrophy and heart failure trigger increased
NADPH-dependent, DPI-inhibitable O2

�� production
due either to increased expression of NADPH oxidase
subunits (Li et al., 2002) or increased translocation
(Heymes et al., 2003), as well as chronic activation of
ICl,swell (Clemo et al., 1999). Furthermore, increased ex-
pression of NADPH oxidase subunits (Fukui et al.,
2001; Krijnen et al., 2003) and chronic activation of
ICl,swell (Clemo et al., 2001) are found in the infarct and
peri-infarct zones after acute myocardial infarction.
The degree to which up-regulation of NADPH oxidase
accounts for concurrent up-regulation of ICl,swell under
these conditions is unclear, however.

NADPH Oxidase, ROS, and Cation Channels

The stretch-induced activation of NADPH oxidase and
production of ROS also may help explain two other
consequences of �1 integrin stretch in rabbit ventricu-
lar myocytes: activation of a nonselective cation current
and inhibition of the inward rectifier, IK1 (Browe and
Baumgarten, 2003b). ROS and oxidant stress activate a
nonselective cation current (Matsuura and Shattock,
1991; Jabr and Cole, 1995) and inhibit IK1 (Matsuura
and Shattock, 1991; Jabr and Cole, 1993) in ventricular
myocytes. Other cation channels also are modulated by
ROS (Kourie, 1998).

In summary, direct and specific stretch of �1 integrin
elicits Cl� SAC in ventricular myocytes by a mechanism
that involves release of AngII, engagement of AT1 re-
ceptors in an autocrine/paracrine loop, activation of
NADPH oxidase, and production of ROS. AngII or
H2O2 applied exogenously in the absence of stretch
also activates Cl� SAC.

We thank Justin Hormel and Steve Hutchens for technical
assistance. 

This work was supported by National Institutes of Health
grant HL-46764.

Olaf S. Andersen served as editor.

Submitted: 11 February 2004
Accepted: 3 August 2004

R E F E R E N C E S

Allen, R.G., and M. Tresini. 2000. Oxidative stress and gene regula-
tion. Free Radic. Biol. Med. 28:463–499.

Baumgarten, C.M., and H.F. Clemo. 2003. Swelling-activated chlo-
ride channels in cardiac physiology and pathophysiology. Prog.
Biophys. Mol. Biol. 82:25–42.

Bendall, J.K., A.C. Cave, C. Heymes, N. Gall, and A.M. Shah. 2002.
Pivotal role of a gp91phox-containing NADPH oxidase in angio-
tensin II-induced cardiac hypertrophy in mice. Circulation. 105:
293–296.

Bescond, J., P. Bois, J. Petit-Jacques, and J. Lenfant. 1994. Charac-
terization of an angiotensin-II-activated chloride current in rab-
bit sino-atrial cells. J. Membr. Biol. 140:153–161.



285 Browe and Baumgarten

Bokoch, G.M., and B.A. Diebold. 2002. Current molecular models
for NADPH oxidase regulation by Rac GTPase. Blood. 100:2692–
2696.

Brahmajothi, M.V., and D.L. Campbell. 1999. Heterogeneous basal
expression of nitric oxide synthase and superoxide dismutase iso-
forms in mammalian heart: implications for mechanisms govern-
ing indirect and direct nitric oxide-related effects. Circ. Res. 85:
575–587.

Browe, D.M., and C.M. Baumgarten. 2003a. Angiotensin (AT1) re-
ceptors and sarcolemmal NADPH oxidase regulate a Cl� current
elicited by �1 integrin stretch in rabbit ventricular myocytes. J.
Gen. Physiol. 122:31a (Abstract).

Browe, D.M., and C.M. Baumgarten. 2003b. Stretch of �1 integrin
activates an outwardly-rectifying chloride current via FAK and Src
in rabbit ventricular myocytes. J. Gen. Physiol. 122:689–702.

Browe, D.M., and C.M. Baumgarten. 2004. Angiotensin II (AT1) re-
ceptors and NADPH oxidase regulate a Cl� current elicited by
�1 integrin stretch in ventricular myocytes. Biophys. J. 86:545a
(Abstract).

Byrne, J.A., D.J. Grieve, J.K. Bendall, J.M. Li, C. Grove, J.D. Lam-
beth, A.C. Cave, and A.M. Shah. 2003. Contrasting roles of
NADPH oxidase isoforms in pressure-overload versus angiotensin
II-induced cardiac hypertrophy. Circ. Res. 93:802–805.

Chorvatova, A., N. Gallo-Payet, C. Casanova, and M.D. Payet. 1996.
Modulation of membrane potential and ionic currents by the
AT1 and AT2 receptors of angiotensin II. Cell. Signal. 8:525–532.

Chorvatova, A., A. Guyot, C. Ojeda, O. Rougier, and A. Bilbaut.
1998. Activation by angiotensin II of Ca2�-dependent K� and Cl�

currents in zona fasciculata cells of bovine adrenal gland. J.
Membr. Biol. 162:39–50.

Chung, O., and T. Unger. 1998. Pharmacology of angiotension re-
ceptors and AT1 receptor blockers. Basic Res. Cardiol. 93:15–23.

Cingolani, H.E., N.G. Perez, and M.C. Camilion de Hurtado. 2001.
An autocrine/paracrine mechanism triggered by myocardial
stretch induces changes in contractility. News Physiol. Sci. 16:88–
91.

Clemo, H.F., B.S. Stambler, and C.M. Baumgarten. 1999. Swelling-
activated chloride current is persistently activated in ventricular
myocytes from dogs with tachycardia-induced congestive heart
failure. Circ. Res. 84:157–165.

Clemo, H.F., J. Rana, A.M. Vaida, G.N. Tseng, R.S. Higgins, and
C.M. Baumgarten. 2001. Chronic activation of ICl,swell in canine
infarction model suppresses inducibility of early afterdepolariza-
tions. Circulation. 104:II-624 (Abstract).

Custodio, J.B., T.C. Dinis, L.M. Almeida, and V.M. Madeira. 1994.
Tamoxifen and hydroxytamoxifen as intramembraneous inhibi-
tors of lipid peroxidation. Evidence for peroxyl radical scaveng-
ing activity. Biochem. Pharmacol. 47:1989–1998.

De Keulenaer, G.W., D.C. Chappell, N. Ishizaka, R.M. Nerem, R.W.
Alexander, and K.K. Griendling. 1998. Oscillatory and steady
laminar shear stress differentially affect human endothelial re-
dox state. Circ. Res. 82:1094–1101.

Diatchuk, V., O. Lotan, V. Koshkin, P. Wikstroem, and E. Pick. 1997.
Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-
benzenesulfonyl fluoride and related compounds. J. Biol. Chem.
272:13292–13301.

Dostal, D.E., and K.M. Baker. 1998. Angiotensin and endothelin:
messengers that couple ventricular stretch to the Na�/H� ex-
changer and cardiac hypertrophy. Circ. Res. 83:870–873.

Doussiere, J., J. Gaillard, and P.V. Vignais. 1999. The heme compo-
nent of the neutrophil NADPH oxidase complex is a target for
aryliodonium compounds. Biochemistry. 38:3694–3703.

Duan, D., B. Fermini, and S. Nattel. 1995. Alpha-adrenergic control
of volume-regulated Cl� currents in rabbit atrial myocytes. Char-
acterization of a novel ionic regulatory mechanism. Circ. Res. 77:

379–393.
Duan, D., J.R. Hume, and S. Nattel. 1997. Evidence that outwardly

rectifying Cl� channels underlie volume-regulated Cl currents in
heart. Circ. Res. 80:103–113.

Duan, D., S. Cowley, B. Horowitz, and J.R. Hume. 1999. A serine
residue in ClC-3 links phosphorylation- dephosphorylation to
chloride channel regulation by cell volume. J. Gen. Physiol. 113:
57–70.

Fukui, T., M. Yoshiyama, A. Hanatani, T. Omura, J. Yoshikawa, and
Y. Abe. 2001. Expression of p22-phox and gp91-phox, essential
components of NADPH oxidase, increases after myocardial in-
farction. Biochem. Biophys. Res. Commun. 281:1200–1206.

Grandvaux, N., S. Elsen, and P.V. Vignais. 2001. Oxidant-depen-
dent phosphorylation of p40phox in B lymphocytes. Biochem. Bio-
phys. Res. Commun. 287:1009–1016.

Griendling, K.K., and M. Ushio-Fukai. 2000. Reactive oxygen spe-
cies as mediators of angiotensin II signaling. Regul. Pept. 91:21–
27.

Griendling, K.K., D. Sorescu, and M. Ushio-Fukai. 2000. NAD(P)H
oxidase role in cardiovascular biology and disease. Circ. Res. 86:
494–501.

Hagiwara, N., H. Masuda, M. Shoda, and H. Irisawa. 1992. Stretch-
activated anion currents of rabbit cardiac myocytes. J. Physiol.
456:285–302.

Hancock, J.T., and O.T. Jones. 1987. The inhibition by diphenyl-
eneiodonium and its analogues of superoxide generation by
macrophages. Biochem. J. 242:103–107.

Heymes, C., J.K. Bendall, P. Ratajczak, A.C. Cave, J.L. Samuel, G.
Hasenfuss, and A.J. Shah. 2003. Increased myocardial NADPH
oxidase activity in human heart failure. J. Am. Coll. Cardiol. 41:
2164–2171.

Howard, A.B., R.W. Alexander, R.M. Nerem, K.K. Griendling, and
W.R. Taylor. 1997. Cyclic strain induces an oxidative stress in en-
dothelial cells. Am. J. Physiol. Cell Physiol. 272:C421–C427.

Hume, J.R., D. Duan, M.L. Collier, J. Yamazaki, and B. Horowitz.
2000. Anion transport in heart. Physiol. Rev. 80:31–81.

Jabr, R.I., and W.C. Cole. 1993. Alterations in electrical activity and
membrane currents induced by intracellular oxygen-derived free
radical stress in guinea pig ventricular myocytes. Circ. Res. 72:
1229–1244.

Jabr, R.I., and W.C. Cole. 1995. Oxygen-derived free radical stress
activates nonselective cation current in guinea pig ventricular
myocytes. Role of sulfhydryl groups. Circ. Res. 76:812–824.

Jain, S., D. Saxena, P.G. Kumar, S.S. Koide, and M. Laloraya. 1999.
Effect of estradiol and selected antiestrogens on pro- and antiox-
idant pathways in mammalian uterus. Contraception. 60:111–118.

Kourie, J.I. 1997. A redox O2 sensor modulates the SR Ca2� coun-
tercurrent through voltage- and Ca2�-dependent Cl� channels.
Am. J. Physiol. Cell Physiol. 272:C324–C332.

Kourie, J.I. 1998. Interaction of reactive oxygen species with ion
transport mechanisms. Am. J. Physiol. 275:C1–C24.

Krijnen, P.A.J., C. Meischl, C.E. Hack, C.J.L.M. Meijer, C.A. Visser,
D. Roos, and H.W.M. Niessen. 2003. Increased Nox2 expression
in human cardiomyocytes after acute myocardial infarction. J.
Clin. Pathol. 56:194–199.

Lambert, C., Y. Massillon, and S. Meloche. 1995. Upregulation of
cardiac angiotensin II AT1 receptors in congenital cardiomyo-
pathic hamsters. Circ. Res. 77:1001–1007.

LeBuffe, G., P.T. Schumacker, Z.H. Shao, T. Anderson, H. Iwase,
and T.L. Vanden Hoek. 2003. ROS and NO trigger early precon-
ditioning: relationship to mitochondrial KATP channel. Am. J.
Physiol. Heart Circ. Physiol. 284:H299–H308.

Lepple-Wienhues, A., I. Szabo, U. Wieland, L. Heil, E. Gulbins, and
F. Lang. 2000. Tyrosine kinases open lymphocyte chloride chan-
nels. Cell. Physiol. Biochem. 10:307–312.



286 AT1 Receptors and NADPH Oxidase Regulate Cl� SAC

Li, C., and R.M. Jackson. 2002. Reactive species mechanisms of cel-
lular hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol. 282:
C227–C241.

Li, J.M., N.P. Gall, D.J. Grieve, M. Chen, and A.M. Shah. 2002. Acti-
vation of NADPH oxidase during progression of cardiac hyper-
trophy to failure. Hypertension. 40:477–484.

Li, W.G., F.J. Miller Jr., H.J. Zhang, D.R. Spitz, L.W. Oberley, and
N.L. Weintraub. 2001. H2O2-induced O2

� production by a non-
phagocytic NAD(P)H oxidase causes oxidant injury. J. Biol. Chem.
276:29251–29256.

Löfgren, R., L. Serrander, M. Forsberg, Å. Wilsson, Å. Wasteson,
and O. Stendahl. 1999. CR3, Fc
RIIA, and Fc
RIIIA induce acti-
vation of the respiratory burst in human neutrophils: the role of
intracellular Ca2�, phospholipase D and tyrosine phosphoryla-
tion. Biochim. Biophys. Acta. 1452:46–59.

Lynch, O.T., M.A. Giembycz, P.J. Barnes, P.G. Hellewell, and M.A.
Lindsay. 1999. ‘Outside-in’ signaling mechanisms underlying
CD11b/CD18-mediated NADPH oxidase activation in human ad-
herent blood eosinophils. Br. J. Pharmacol. 128:1149–1158.

Marrero, M.B., B. Schieffer, H. Ma, K.E. Bernstein, and B.N. Ling.
1996. ANG II-induced tyrosine phosphorylation stimulates phos-
pholipase C-
1 and Cl-channels in mesangial cells. Am. J. Physiol.
Cell Physiol. 270:C1834–C1842.

Matsuura, H., and M.J. Shattock. 1991. Effects of oxidant stress on
steady-state background currents in isolated ventricular myocytes.
Am. J. Physiol. Heart Circ. Physiol. 261:H1358–H1365.

Menegazzi, R., S. Busetto, E. Decleva, R. Cramer, P. Dri, and P.
Patriarca. 1999. Triggering of chloride ion efflux from human
neutrophils as a novel function of leukocyte �2 integrins: rela-
tionship with spreading and activation of the respiratory burst. J.
Immunol. 162:423–434.

Miller, F.J., Jr., A.H. Chamseddine, T.J. Barna, and F.S. Lamb. 2004.
Role of ClC3 chloride channels in intracellular superoxide levels
and cell growth. FASEB J. 18:A311–A312 (Abstract).

Mohazzab-H, K.M., P.M. Kaminski, and W.S. Wolin. 1997. Lactate
and PO2 modulate superoxide anion production in bovine car-
diac myocytes: potential role of NADH oxidase. Circulation. 96:
614–620.

Morita, H., J. Kimura, and M. Endoh. 1995. Angiotensin II activa-
tion of a chloride current in rabbit cardiac myocytes. J. Physiol.
483:119–130.

Moreland, J.G., W.M. Nauseef, A.P. Davis, G. Bailey, and F.S. Lamb.
2004. ClC-3 chloride channel is involved in generation of the re-
spiratory burst by stimulated leukocytes. FASEB J. 18:A1158
(Abstract).

Nilius, B., T. Voets, J. Prenen, H. Barth, K. Aktories, K. Kaibuchi, G.
Droogmans, and J. Eggermont. 1999. Role of rho and rho kinase
in the activation of volume-regulated anion channels in bovine
endothelial cells. J. Physiol. 516:67–74.

Obayashi, K., M. Horie, L.H. Xie, K. Tsuchiya, A. Kubota, H. Ishida,
and S. Sasayama. 1997. Angiotensin II inhibits protein kinase
A-dependent chloride conductance in heart via pertussis toxin-
sensitive G proteins. Circulation. 95:197–204.

O’Donnell, V.B., D.G. Tew, O.T.G. Jones, and P.J. England. 1993.
Studies on the inhibitory mechanism of iodonium compounds
with special reference to neutrophil NADPH oxidase. Biochem. J.
290:41–49.

Oeckler, R.A., P.M. Kaminski, and M.S. Wolin. 2003. Stretch en-
hances contraction of bovine coronary arteries via an NAD(P)H
oxidase -mediated activation of the extracellular signal-regulated
kinase mitogen-activated protein kinase cascade. Circ. Res. 92:23–
31.

Parsons, J.T. 2003. Focal adhesion kinase: the first ten years. J. Cell
Sci. 116:1409–1416.

Paul, K., N.A. Ball, G.W. Dorn II, and R.A. Walsh. 1997. Left ventric-

ular stretch stimulates angiotensin II-mediated phosphatidylino-
sitol hydrolysis and protein kinase C epsilon isoform transloca-
tion in adult guinea pig hearts. Circ. Res. 81:643–650.

Pimentel, D.R., J.K. Amin, L. Xiao, T. Miller, J. Viereck, J. Oliver-
Krasinski, R. Baliga, J. Wang, D.A. Siwik, K. Singh, et al. 2001. Re-
active oxygen species mediate amplitude-dependent hypertrophic
and apoptotic responses to mechanical stretch in cardiac myo-
cytes. Circ. Res. 89:453–460.

Ross, R.S., and T.K. Borg. 2001. Integrins and the myocardium.
Circ. Res. 88:1112–1119.

Ruskoaho, H., H. Leskinen, J. Magga, P. Taskinen, P. Mantymaa, O.
Vuolteenaho, and J. Leppaluoto. 1997. Mechanisms of mechani-
cal load-induced atrial natriuretic peptide secretion: role of en-
dothelin, nitric oxide, and angiotensin II. J. Mol. Med. 75:876–
885.

Sadoshima, J., and S. Izumo. 1997. The cellular and molecular re-
sponse of cardiac myocytes to mechanical stress. Annu. Rev. Phys-
iol. 59:551–571.

Sadoshima, J., Y. Xu, H.S. Slayter, and S. Izumo. 1993. Autocrine re-
lease of angiotensin II mediates stretch-induced hypertrophy of
cardiac myocytes in vitro. Cell. 75:977–984.

Schlief, T., and S.H. Heinemann. 1995. H2O2-induced chloride cur-
rents are indicative of an endogenous Na�-Ca2� exchange mech-
anism in Xenopus oocytes. J. Physiol. 486:123–130.

Schwingshackl, A., R. Moqbel, and M. Duszyk. 2000. Involvement of
ion channels in human eosinophil respiratory burst. J. Allergy
Clin. Immunol. 106:272–279.

Serrander, L., J. Larsson, H. Lundqvist, M. Lindmark, M. Fällman,
C. Dahlgren, and O. Stendahl. 1999. Particles binding �2-inte-
grins mediate intracellular production of oxidative metabolites
in human neutrophils independently of phagocytosis. Biochim.
Biophys. Acta. 1452:133–144.

Seshiah, P.N., D.S. Weber, P. Rocic, L. Valppu, Y. Taniyama, and
K.K. Griendling. 2002. Angiotensin II stimulation of NAD(P)H
oxidase activity: upstream mediators. Circ. Res. 91:406–413.

Shi, C., S. Barnes, M. Coca-Prados, and M.E.M. Kelly. 2002. Protein
tyrosine kinase and protein phosphatase signaling pathways reg-
ulate volume-sensitive chloride currents in a nonpigmented cili-
ary epithelial cell line. Invest. Ophthalmol. Vis. Sci. 43:1525–1532.

Shuba, L.M., T. Ogura, and T.F. McDonald. 1996. Kinetic evidence
distinguishing volume-sensitive chloride current from other types
in guinea pig ventricular myocytes. J. Physiol. 491:69–80.

Sorota, S. 1992. Swelling-induced chloride-sensitive current in ca-
nine atrial cells revealed by whole-cell patch-clamp method. Circ.
Res. 70:679–687.

Sorota, S. 1995. Tyrosine protein kinase inhibitors prevent activa-
tion of cardiac swelling-induced chloride current. Pflugers Arch.
431:178–185.

Stuehr, C., O.A. Fasehun, N.S. Kwon, S.S. Gross, J.A. Gonzalez, R.
Levi, and C.F. Nathan. 1991. Inhibition of macrophage and en-
dothelial cell nitric oxide synthase by diphenyleneiodonium and
its analogues. FASEB J. 5:98–103.

Tilly, B.C., M.J. Edixhoven, L.G. Tertoolen, N. Morii, Y. Saitoh, S.
Narumiya, and H.R. de Jonge. 1996. Activation of the osmo-sensi-
tive chloride conductance involves p21rho and is accompanied
by a transient reorganization of the F-actin cytoskeleton. Mol.
Biol. Cell. 7:1419–1427.

Touyz, R.M. 2002. Recent advances in angiotensin II signaling.
Braz. J. Med. Biol. Res. 35:1001–1015.

Tseng, G.N. 1992. Cell swelling increases membrane conductance
of canine cardiac cells: evidence for a volume-sensitive Cl chan-
nel. Am. J. Physiol. 262:C1056–C1068.

Valverde, M.A., G.M. Mintenig, and F.V. Sepulveda. 1993. Differen-
tial effects of tamoxifen and I� on three distinguishable chloride
currents activated in T84 intestinal cells. Pflugers Arch. 425:552–



287 Browe and Baumgarten

554.
Vandenberg, J.I., A. Yoshida, K. Kirk, and T. Powell. 1994. Swelling-

activated and isoprenaline-activated chloride currents in guinea
pig cardiac myocytes have distinct electrophysiology and phar-
macology. J. Gen. Physiol. 104:997–1017.

Vignais, P.V. 2002. The superoxide-generating NADPH oxidase:
structural aspects and activation mechanism. Cell. Mol. Life Sci.
59:1428–1459.

von Harsdorf, R., P.F. Li, and R. Dietz. 1999. Signaling pathways in
reactive oxygen species-induced cardiomyocyte apoptosis. Circu-
lation. 99:2934–2941.

Wang, N., J.P. Butler, and D.E. Ingber. 1993. Mechanotransduction
across the cell surface and through the cytoskeleton. Science. 260:
1124–1127.

Weng, T.X., B.F. Godley, G.F. Jin, N.J. Mangini, B.G. Kennedy,
A.S.L. Yu, and N.K. Wills. 2002. Oxidant and antioxidant modu-
lation of chloride channels expressed in human retinal pigment

epithelium. Am. J. Physiol. Cell Physiol. 283:C839–C849.
Wright, G.B., R.W. Alexander, L.S. Ekstein, M.A. Gimbrone, and

M.A. Jr. 1983. Characterization of the rabbit ventricular myocar-
dial receptor for angiotensin II. Evidence for two sites of differ-
ent affinities and specificities. Mol. Pharmacol. 24:213–221.

Xiao, L., D.R. Pimentel, J. Wang, K. Singh, W.S. Colucci, and D.B.
Sawyer. 2002. Role of reactive oxygen species and NAD(P)H oxi-
dase in �1-adrenoceptor signaling in adult rat cardiac myocytes.
Am. J. Physiol. Cell Physiol. 282:C926–C934.

Yamaguchi, M., S. Saeki, H. Yamane, N. Okamura, and S. Ishibashi.
1996. Involvement of several protein kinases in the phosphoryla-
tion of p47-phox. Biochem. Biophys. Res. Commun. 220:891–895.

Zygmunt, A.C. 1994. Intracellular calcium activates a chloride cur-
rent in canine ventricular myocytes. Am. J. Physiol. Heart Circ.
Physiol. 267:H1984–H1995.

Zygmunt, A.C., and W.R. Gibbons. 1991. Calcium-activated chlo-
ride current in rabbit ventricular myocytes. Circ. Res. 68:424–437.


