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PAX5, amaster regulatorofBcell developmentandmaintenance, is oneof themost

common targets of genetic alterations in B-cell acute lymphoblastic leukemia (B-

ALL). PAX5 alterations consist of copy number variations (whole gene, partial, or

intragenic), translocations, and point mutations, with distinct distribution across B-

ALL subtypes. The multifaceted functional impacts such as haploinsufficiency and

gain-of-function of PAX5 depending on specific variants have been described,

thereby the connection between the blockage of B cell development and the

malignant transformation of normal B cells has been established. In this review, we

provide the recent advances in understanding the functionof PAX5 in orchestrating

the development of both normal andmalignant B cells over the past decade,with a

focus on the PAX5 alterations shown as the initiating or driver events in B-ALL.

Recent large-scale genomic analyses of B-ALL have identified multiple novel

subtypes driven by PAX5 genetic lesions, such as the one defined by a distinct

gene expression profile and PAX5 P80R mutation, which is an exemplar leukemia

entitydrivenbyamissensemutation.AlthoughalteredPAX5 is sharedasadriver inB-

ALL, disparate disease phenotypes and clinical outcomes among the patients

indicate further heterogeneity of the underlying mechanisms and disturbed gene

regulation networks along the disease development. In-depthmechanistic studies

in human B-ALL and animal models have demonstrated high penetrance of PAX5

variants alone or concomitant with other genetic lesions in driving B-cell

malignancy, indicating the altered PAX5 and deregulated genes may serve as

potential therapeutic targets in certain B-ALL cases.

KEYWORDS

PAX5, PAX5 alterations, B cell development, B-cell acute lymphoblastic leukemia,
driver genetic lesions, B-ALL subtype, PAX5alt, PAX5 P80R
Background

B lymphocytes are known for generating countless high-affinity antibodies against foreign

pathogens. The development of B cells starts in the bone marrow, where the hematopoietic

stem cells hierarchically differentiate into fate-restricted progenitors, eventually giving rise to

immature B cells heading to the spleen, where B cells further differentiate into mature B cells.
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This process is highly elaborate and orchestrated by a combination

of intracellular mechanisms and external stimuli. Among them,

PAX5 (paired box 5), or BSAP (B-cell-specific activator protein), is

the pivotal transcription factor commanding theB cell development.

It has beenwell-established that PAX5 is not only required to initiate

B-lineage commitment but also essential for the maintenance of B

cell identity by repressing signature genes of other lineages during

the whole differentiation process.

Accompanied by the gradually uncovered mechanisms of

PAX5 in normal B lymphopoiesis, extensive studies have revealed

that deregulated PAX5 activities by somatic or germline alterations

may lead to B-cell malignancies. Recent advances in genome-wide

assays have greatly accelerated the discovery of genomic variants in

B-cell acute lymphoblastic leukemia (B-ALL). SNPmicroarray and

DNA sequencing of large cohorts of pediatric and adult B-ALL

samples revealed diverse genetic lesions, of whichPAX5was ranked

themost frequently altered gene being detected in aroundone-third

of B-ALL cases (Table 1) (1, 2, 6). The prevalence of PAX5

alterations has been continually emphasized in different cohorts

of B-ALL (3, 5, 7, 9, 10, 12, 15), with two B-ALL subtypes even
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defined by PAX5 genetic lesions and distinct gene expression

profiles (GEPs) (16). PAX5 genetic lesions are heterogeneous,

including deletions, rearrangements, sequence mutations, and

focal intragenic amplifications (iAmp), which lead to the

haploinsufficiency or gain-of-function of PAX5 depending on

specific variants (1, 2, 8, 16). Rather than secondary events,

increasing evidence from recent multi-omics and mechanistic

studies has demonstrated that PAX5 alterations can function as

the initiating genetic lesions for B-ALL. In this review, we

summarize recent advances in understanding the function of

PAX5 in both normal and malignant B cells, with a focus on the

PAX5 alterations as founder events in B-ALL.
The function of PAX5 in B cell
development

The multifaceted roles of PAX5 in B cell development and

differentiation have been gradually unveiled. In blood cells,

PAX5 expression is exclusively restricted to the B lineage,
TABLE 1 PAX5 alterations in B-ALL.

Cohort Platform Comments on PAX5 alteration Ref.

242 pediatric ALL SNP array PAX5 gene is the most frequent target of somatic mutation, being altered in 31.7% of cases. (1)

40 pediatric ALL SNP array Cell cycle and B cell related genes, including PAX5, are the most frequent mutated genes. (2)

304 ALL samples SNP array Deletion of PAX5 in 51% BCR::ABL1 cases, of which 95% have a deletion of IKZF1. (3)

61 pediatric B-ALL
(diagnosis & relapse)

SNP array Around 50% of B-ALL have CNAs in genes known to regulate B-lymphoid development, especially in
PAX5 and IKZF1 genes.

(4)

399 pediatric ALL SNP array 7 cases harbor PAX5 fusions. (5)

221 pediatric B-ALL
(high-risk)

SNP array, GEP array,
target sequencing

PAX5 CNA is involved in 31.7% of patients; P80R is the most frequent mutation. (6)

466 pediatric ALL FISH PAX5 rearrangements occur in 2.5% of B-ALL. (7)

117 adult B-ALL FISH, qPCR, target
sequencing

PAX5 is mutated in 34% of adult B-ALL. P80R is the most frequent point mutation. PAX5 deletion is a
secondary event.

(8)

153 adult and pediatric B-
ALL with 9p abnormalities

SNP array, FISH PAX5 has internal rearrangements in 21% of the cases. Malignant cells carrying PAX5 fusion genes
displayed a simple karyotype.

(9)

89 Ph+ B-ALL SNP array PAX5 genomic deletions were identified in 29 patients (33%). In all cases, the deletion was heterozygous. (10)

Two B-ALL families WES, SNP array Germline PAX5 G183S confers susceptibility to B-ALL. (11)

116 B-ALL MLPA 5 cases with PAX5 intragenic amplifications were identified. (12)

One B-ALL family SNP array A third B-ALL family carrying germline G183S mutation. (13)

798 adult B-ALL GEP array, SNP array,
RNA-seq

38% of Ph-like B-ALL have PAX5 alterations. Enrichment of CNA of IKZF1, PAX5, EBF1, and
CDKN2A/B observed in the Ph-like subtype.

(14)

79 B-ALL with PAX5 iAmp MLPA, FISH, SNP
array

PAX5 iAmp defines a novel, relapse-prone subtype of B-ALL with a poor outcome. (15)

1,988 B-ALL RNA-seq, WGS, WES,
SNP array

Detailed description of PAX5 alterations in B-ALL. Defined the PAX5alt and PAX5 P80R subtypes. (16)

110 pediatric B-others RNA-seq, WES, SNP
array

PAX5 fusions, iAmp and P80R mutations are mutually exclusive, altogether accounting for 20% of the
B-other group. PAX5 P80R is associated with a specific gene expression signature.

(17)

250 B-ALL DNA methylation
array, WES, RNA-seq

16 patients with P80R grouped into an individual subgroup with biallelic PAX5 alterations. (18)

1,028 pediatric B-ALL SNP array 20 cases of PAX5 P80R with intermediate or poor outcome compared to the rest of this cohort. (19)

One B-ALL family WES, RNA-seq PAX5 R38H germline mutation was identified in a family with B-ALL. (20)
frontiersi
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beginning from the early pre-pro B cells and maintained through

the whole process of B cell development (Figure 1) (27).

Expression levels of PAX5 are correlated with B cell

developmental stages (28). During terminal differentiation

from mature B cells to plasma cells, physiological down-

regulation of PAX5 is observed (29). This repression is not

necessary for plasma cell development but essential for optimal

IgG production (30). Constitutive deletion of Pax5 in mice failed

to produce mature B cells owing to a complete arrest of B

lymphopoiesis at an early pro-B stage in the bone marrow (31).

In contrast, B cell development is blocked at an earlier stage even

before the appearance of B220+ progenitors in the fetal liver,

suggesting different roles of PAX5 in fetal and postnatal B

lymphopoiesis (31, 32). Without Pax5, pro-B cells retain

lineage-promiscuous capacity that can differentiate into other

lineages upon stimulation with proper cytokines (32–34).

Therefore, PAX5 is not only required for B lymphopoiesis

initiation but also continuously required for its maintenance

(34). Conditional inactivated Pax5 expression from pro-B to

mature B cell stages leads to down-regulation of B-cell-specific

genes and preferential loss of mature B cells, indicating that

PAX5 is essential for maintaining the identity of B cells during

late B lymphopoiesis (35). Further investigation of deleting Pax5

in immature B cells in the spleen results in the loss of B-1a,

marginal zone, and germinal center B cells as well as plasma cells

(22). Finally, Pax5-deficient follicular B cells fail to proliferate

due to the inhibition of PI3K signaling via PTEN up-

regulation (22).

PAX5 safeguards the development of B cells by tailoring the

gene expression profile towards the B-lineage program. On one

hand, it up-regulates the expression of B-cell-specific genes such

as CD19 and BLNK (36). On the other hand, it down-regulates

lineage-inappropriate genes such as FLT3 and CCL3 to suppress

alternative lineage choices (Figure 1) (33, 37). Both activation
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and repression require its continuous expression (37). ChIP

analysis revealed that through binding to promoters and

enhancers, PAX5 directly regulates 44% of previous identified

PAX5-activated genes and 24% of repressed genes (38). For

PAX5 activated genes, it can induce active chromatin marks at

their regulatory elements (36, 38). For example, PAX5 activates

HCK transcription by inducing active chromatin in the HCK

promoter in MYD88-mutated lymphoma cells (21). Conversely,

it can also modify the chromatin state of its repressed genes by

eliminating active histone marks (38).

PAX5 is part of a complex network of transcription factors

orchestrating B cell development, including IKZF1, E2A, EBF1,

and RUNX1 (23, 39, 40). Together with IKZF1, PAX5 functions

as a metabolic gatekeeper to restrict glucose and energy supply.

Heterozygous deletion of Pax5 releases this restriction and

increases glucose uptake and ATP levels (23). Furthermore,

PAX5 is found in a physiological complex together with

IKZF1 and RUNX1. Specifically, over 65% of PAX5 binding

sites identified in mouse pre-B cells are overlapped with regions

bound by either IKZF1, RUNX1, or both, suggesting that they

are part of a regulatory network sharing a multitude of target

genes (40). In addition, PAX5 and EBF1 are actively involved in

a reciprocal positive regulatory loop (41, 42), yet with opposing

roles in Myc regulation through binding to the Myc promoter

(24). They also cooperatively regulate IL-7 signaling and folate

metabolism (25).

A signature feature of B cells is the recombination of VHDJH
segments to generate a functional immunoglobulin heavy chain

(IgH) gene for B cell receptor and antibody coding. PAX5

contributes to the diversity of the antibody repertoire by

balancing distal-proximal VH gene choices. The first insight

into the VHDJH recombination role of PAX5 was provided by

the observation that, in Pax5-deleted mouse pro-B and pre-B-I

(large pre-B) cells, recombination of distal but not proximal VH
FIGURE 1

PAX5 functions in B cell development. PAX5 is expressed during the whole B cell developmental stages. It activates the expression of B cell specific
genes, while at the same time represses the expression of other lineage genes to initiate and maintain the B cell identity. In MYD88-driven B-cell
lymphomas, it activates the pro-survival kinase HCK (21). In addition, it activates PI3K signaling via PTEN inhibition to stimulate follicular B cell
proliferation (22). Furthermore, PAX5 safeguards leukemic transformation by limiting glucose and energy supply, inhibiting IL-7 signaling as well as
MYC expression (23–25). Finally, PAX5 also has an essential role in the V(D)J recombination of the IgH locus by repressing WAPL expression (26).
PAX5 alterations with compromised activity can lead to developmental arrest of B cells, which are commonly seen in B-ALL.
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genes was dramatically compromised (43, 44). Further

experiments uncovered that PAX5 can mediate spatial

organization of the Igh locus to balance the accessibility of

distal and proximal VH genes (45). The mystery of this spatial

regulation remained unsolved for more than a decade. Recently,

it was found that PAX5 specifically inhibits the expression of

WAPL, which encodes an architectural protein that releases the

cohesin complex from chromatin (Figure 1) (26). With

decreased levels of WAPL protein, chromatin loops are able to

extrude for a longer distance to spatially connect the distal VH

genes with the recombination center during the loop extrusion

process (26). Thus, PAX5 fulfills a master regulator role for B

lymphopoiesis by, but not limited to, inducing B-lineage

commitment, maintaining B cell identity, and regulating

VHDJH recombination.
Copy-number alterations of
PAX5 in B-ALL

Deletion is the most frequent form of copy number

alteration of PAX5 in B-ALL (1, 6, 8, 16). PAX5 deletions

usually affect only one allele, with either no expression or

expression of truncated proteins lacking functional domains,

resulting in loss of function of this allele (1). These monoallelic

PAX5 deletions in B-ALL are observed on different scales, from

as focal as deletion of exons within PAX5 gene body, to as large

as loss of 9p arm or whole chromosome 9 where PAX5 gene is

located (1). In B-ALL, PAX5 deletions are commonly concurrent

with complete loss of CDKN2A/B genes, which encode key cell

cycle regulators also situated in chromosome 9p (8, 46). Notably,

PAX5 deletions are associated with complex karyotype which is

thought to be a secondary or late event, indicating the

requirement of other oncogenic lesions to cause overt

malignant transformation (1, 8). In support of this notion,

PAX5 deletions were found in over 50% of BCR::ABL1 and

18% of TCF3::PBX1 B-ALL cases (3, 8, 10), and were enriched in

Ph-like B-ALL patients as well (14).

Studies using mouse models showed that haploinsufficiency

of Pax5 caused by monoallelic deletion exerted susceptibility of

B cell transformation. Mice with heterozygous loss of Pax5 show

normal B cell development and never develop leukemia (47). But

with the acquisition of other oncogenic events, they can

spontaneously develop B-lineage leukemia. For example,

Pax5+/- cooperated with STAT5 activation can initiate B-ALL

with full penetrance in mice (47). Furthermore, compound

heterozygous mutations in Pax5 and Ebf1 dramatically

increase ALL frequency in mice (48), which is associated with

the hyperactivation of the IL-7 signaling pathway (25). When

synergized with BCR::ABL1 in hematopoietic stem cells, Pax5+/-

gives rise to B-ALL with shorter latencies and high incidence

compared to BCR::ABL1 alone (49). This synergistic effect may

explain the frequent PAX5 deletions in BCR::ABL1 B-ALL cases
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(3, 10). Finally, in Pax5+/- mice, Jak3 mutations following

postnatal infections can also act as a secondary hit for

leukemic transformation (50).

The indispensable role of PAX5 in B-lineage maintenance

also explains the monoallelic but not biallelic deletions of PAX5

observed in B-ALL cases. Complete loss of Pax5 in mice resulted

in the lack of B cells, growth retardation, and premature death

(31). When Pax5 deficiency is restricted to mature B cells to

circumvent premature death, these cells dedifferentiate back into

uncommitted progenitors and develop aggressive progenitor cell

tumors instead of B-ALL (51). Therefore, PAX5 deletions often

disrupt only one allele and act as cooperating events in B-ALL.
Translocations

Translocations resulting in PAX5 rearrangements occur in

around 2.5% of pediatric and 1% of adult B-ALL patients (8).

The majority of the rearrangements produce chimeric genes

encoding proteins that retain the DNA-binding paired box

domain and nuclear localization signal of PAX5, but with C-

terminal domains adopted from the fusion partners (7)

(Figure 2). A variety of partner genes, including transcription

factors, structural proteins, and signal transducers, have been

identified to fuse with the PAX5 gene (7, 16).

With the intact paired domain, these fusion proteins are

thought to bind DNA and act as dominant-negative proteins to

interfere the wild-type (WT) PAX5 activities (1, 52–54).

Notably, PAX5 protein consisting of only the paired domain

cannot compete with full-length PAX5 for DNA binding in vivo

(55), suggesting that the C terminal of PAX5 may contribute to

DNA binding through unknown mechanisms. Indeed, PAX5

fusions with different partners display distinct DNA binding and

gene regulation activities which should be examined case by case

(56). In general, transient reporter assays revealed that PAX5

fusions functioned as a dominant-negative regulator for WT

PAX5 through binding to PAX5-target sequences (5, 52). Some

of the fusions, such as PAX5::C20S and PAX5::ETV6, showed

stable DNA binding activity through forming oligomers due to

the presence of oligomerization domains of the fusion partners

(54, 56). As one exception, PAX5::PML barely showed DNA-

binding activity but interfered with PAX5 regulatory activity

through association with PAX5 proteins (53).

In contrast to deletions, PAX5 fusions are commonly

observed in leukemic cells displaying a relatively normal

karyotype, indicating that they are founder lesions in

leukemogenesis (9). In addition, PAX5 fusions, except PAX5::

JAK2 and PAX5::ZCCHC7, are observed in over 30% of PAX5alt

B-ALL, a recently reported subtype defined by various PAX5

alterations and a distinct gene expression profile (16).

Consistently, PAX5 rearranged with ETV6, ELN, and PML

were verified to be the primary oncogenic drivers in transgenic

mice (55, 57, 58). PAX5::ETV6, the most recurrent PAX5 fusion
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in B-ALL, contains three domains that contribute to DNA

binding behavior, which are the paired box and helix-loop-

helix domain of PAX5, and the DNA binding domain of ETV6

(16, 56, 59, 60). PAX5::ETV6 regulates 68% of PAX5-target

genes in an opposing manner when transduced into murine B

cells. This opposite dominant effect might be responsible for

impaired B cell development (61). When knocked-in into the

mouse Pax5 locus, PAX5::ETV6 blocked B cell development at

the pro-B to pre-B transition but was insufficient to promote

leukemogenesis (55). However, when crossed with Cdkn2a/b

deletion mice, B-lineage leukemia was developed at full

penetrance with frequent loss of the remaining WT Cdkn2a/b

allele (55). Comparing to PAX5::ETV6, PAX5::ELN acts as a

more potent initiating event to induce leukemia, with frequent

acquisition of secondary mutations in Ptpn11, Jak3, and Kras

genes in mice (58). Different from the transient expression in

vitro, the PAX5 fusions expressed in murine models do not

generally antagonize the WT PAX5 function but activate

independent biological pathways to establish the molecular

basis required for leukemic transformation (55, 58). This

discrepancy may be explained by either different protein levels

or distinct regulatory mechanisms between transient and in vivo

expressed proteins (58).

PAX5::JAK2 rearrangement exerts a distinct gene expression

signature in B-ALL and is exclusively found in the Ph-like

subtype (16, 62). It consists of the paired domain of PAX5 and

the kinase domain of JAK2 (7). In contrast to cytoplasmatic

localization of other JAK2 fusions such as BCR::JAK2 and

ETV6::JAK2, PAX5::JAK2 protein is localized in nucleus and

binds the PAX5 targets (62). It simultaneously deregulates

PAX5-target genes while activating JAK/STAT signaling in the

nucleus (62). In a constitutive knock-in mouse model, PAX5::

JAK2 rapidly induced aggressive B-ALL without acquisition of

other cooperating mutations (63), which unequivocally

implicated that PAX5::JAK2 functions as dual hits, which are
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PAX5 haploinsufficiency and constitutively active kinase

activity, to drive leukemogenesis (63).

There’s a rare translocation that does not produce chimeric

protein but juxtaposes the IGH Eµ enhancer to proximity of the

PAX5 promoter, leading to dysregulation of PAX5 expression.

This translocation is found in a subset of B cell non-Hodgkin’s

lymphoma cases (64, 65). When reconstructed by insertion of a

PAX5 mini gene into the mouse Igh locus, these mice develop

aggressive T-lymphoblastic lymphomas instead of B-ALL,

probably because of the expression of PAX5 throughout the

lymphoid system as a germline mutation rather than as somatic

mutations in patients (66). It also reflects the potential caveats of

using mouse models to mimic the B-lineage malignancies

induced by PAX5 alterations (67).
Intragenic amplification (iAmp)

PAX5 intragenic amplifications (PAX5-iAmp) were reported

in different B-ALL cohorts at an incidence of 0.5-1.4% (1, 15–17,

68). B-ALL cases with PAX5-iAmp lacked stratifying genetic

markers and were mutually exclusive from other risk-stratifying

alterations (12, 15). Transcriptome sequencing (RNA-seq)

revealed that they formed a tight cluster in unsupervised

hierarchical cluster analysis (17) and can be grouped into the

PAX5alt subtype (16). Interestingly, PAX5-iAmp frequently

harbor CDKN2A/B homozygous loss and trisomy 5 (15, 17).

The preservation of PAX5-iAmp in matched diagnosis and

relapse samples, as well as GEP clustering in the PAX5alt

subtype, indicates that it may act as a driver lesion in B-ALL

(15, 16).

Whether PAX5-iAmp can encode structurally mutant PAX5

proteins or loss of function is still unknown. For most cases, the

amplifications encompass exons 2 to 5, which encode the DNA-

binding and octapeptide domains of PAX5 (15, 16, 68). Efforts
BA

FIGURE 2

PAX5 rearrangements in B-ALL. The summary of PAX5 rearrangements is based on the result from the 1,988 B-ALL cohort (16). (A) Distribution
of PAX5 fusion partners. The fusion partners observed in at least 2 B-ALL cases are annotated in the pie chart, and the singletons are merged
into the “other” group. (B) Scheme of PAX5 rearrangements with recurrent partner genes. The most common isoform of each fusion is shown.
The green bars indicate the remaining part of the PAX5 protein. The starting amino acid (aa) of the fusion partners are annotated in parentheses.
All the rearrangements reserve the paired box DNA binding domain of PAX5, except the fusions with ZCCHC7, a proximal gene commonly fused
with PAX5 by focal deletion.
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have been taken to delineate the copy number of the amplified

region, including chromosomal microarray analysis and

multiplex ligation dependent probe amplification-based testing

(15, 68). Recently, optical genomic mapping, a direct

visualization method, has been applied to 3 PAX5-iAmp cases

and found that they have an extra 4-5 copies of exons 2 to 5

inserted in situ in direct orientation (68) (Figure 3). Considering

the amplified paired domain by PAX5-iAmp, the increased

copies of the DNA-binding region may alter the binding to

PAX5-target genes, thus leading to dysregulated B cell

differentiation and transformation. Further functional studies

are still needed to address the specific role of PAX5-iAmp in

B-ALL.
Alternative splicing and different
isoforms

Alternative splicing of PAX5 gene has been found during

normal B cells development. By using two distinct promoters,

PAX5 can generate two different isoforms (PAX5A and PAX5B)

that share the same exons 2-10 but with different exon 1

encoding N-terminal 15 or 14 amino acids, respectively (64).

Pax5A is exclusively expressed in B cells, while Pax5B is active in

all Pax5-expressing tissues such as the nervous system, testis,

and B-lineage cells (64). In humans, five additional alternative

isoforms have been detected in normal human B cells generated

by the exclusion of exons 7, 8 and/or 9, which encode the C-

terminal transactivation domain (69). The ability to induce

CD19-promoter-based reporter expression by various isoforms

was significantly influenced by the changes in the C-terminal

domain (69). In mouse models, three additional isoforms of
Frontiers in Oncology 06
Pax5 due to alternative splicing have been detected during B cells

development. These isoforms arise from the exclusion of exon 2

and/or 3’ region, encoding proteins lacking part of the DNA-

binding and/or the transcriptional regulatory domains, which

are assumed to participate in stage-specific regulation of B cell

maturation (70).

In multiple myeloma, a plasma cell disorder, diverse PAX5

isoforms have been identified accompanied with low levels of the

WT PAX5 expression (71). These noncanonical isoforms are

incapable of generating functional PAX5 proteins, which may

drive proliferating B cells to prematurely differentiate into

plasma cells (71). In B-ALL, alternative PAX5 isoforms

missing exon 2, exons 8-9, or exon 5 have been reported (72,

73). However, considering the frequent PAX5 intragenic

deletions in B-ALL (1, 16), some of the alternative isoforms

found in B-ALL might be attributed to focal deletions instead of

alternative splicing.
Point mutations

Point mutations are the second most common PAX5 variants

observed in B-ALL (7%~10%) (1, 6, 8). In 203 nonsilent PAX5

mutations identified from 1,988 B-ALL cases (16), around three

quarters are missense mutations enriched in the DNA-binding

domain and are predicted to impair DNA binding by structural

modelling, whereas disruptive mutations such as frameshift and

nonsense are often found in the transcriptional regulatory domain

(1, 16). The paired domain is a bipartite DNA-binding domain

consisting of two subdomains (NTD and CTD). Each subdomain

contains a helix-turn-helix motif which binds to major grooves of

the DNA helix contributing to the overall binding affinity (74).
B

A

FIGURE 3

Scheme of PAX5 intragenic amplification (PAX5 iAmp). (A) PAX5 iAmp detected by RNA-seq and whole genome sequencing (WGS (16)). The
most frequently affected exons are e2-5, which are shown with increased expression levels (by RNA-seq) compared to the adjacent exons. The
amplified region on the genomic level is reflected by abruptly elevated depth from WGS, which corroborates the affected exons identified from
RNA-seq. (B) PAX5 iAmp leads to an extended isoform of PAX5. Using optical genomic mapping, 4-5 extra copies of PAX5 e2-5 were
determined in the PAX5 iAmp cases. The tandem multiplication of PAX5 paired box DNA binding domain may change its binding activity, thus
altering its transcription program and disrupting B cell differentiation (68).
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Although both contribute to DNA binding, NTD determines the

specificity of binding with its affinity 10 times higher than the CTD

(75, 76). Coincidentally, mutations within the paired domain tend

to enrich in NTD compared to CTD (52.7% to 10.3%, respectively)

(16). Supporting the prevalence and importance of paired domain

mutations, a study used chemical and retroviral strategies to induce

random mutagenesis in Pax5+/- mice. For the 13 induced Pax5

mutations acting as cooperating lesions for B-ALL, 12 are in the

paired domain (67).

PAX5 P80R, a substitution located in the paired domain, was

identified as the most frequent sequence mutation of PAX5 (1, 6,

8). B-ALL patients with the PAX5 P80Rmutation are classified as

a novel subtype defined by this missense mutation and a highly

distinct GEP (16, 77). This subtype is characterized by biallelic

alterations of PAX5, homozygous deletion of CDKN2A/B, and

hotspot activating mutations of RAS signaling (Figure 4) (16, 18).

The biallelic alterations of PAX5 are achieved by deletions, copy-

neutral loss of heterozygosity, or deleterious mutations on the

other allele of PAX5 (16). Gene set enrichment analysis (GSEA)

revealed dysregulation of B-cell-specific genes, suggesting that

PAX5 P80R decreases the regulatory activity of PAX5 (16),

probably through altering its DNA binding pattern (1).

Consistently, PAX5 P80R blasts were arrested at the pre-pro-B

stage (16), with T-cell antigen CD2 expressed in half of the

patients (78). PAX5 P80R B-ALL subtype, together with DUX4r

and ZNF384r subtypes, frequently undergo monocytic switch

(79). The patients of this subtype were reported with various

levels of risk in different cohorts (16, 18, 19, 80). Therefore,

further evaluation of the clinical significance of this novel subtype
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is still needed. The oncogenic role of PAX5 P80R has been

demonstrated using constitutive knock-in mouse models. Both

homozygous and heterozygous Pax5 P80R transgenic mice

developed B-lineage leukemia with almost complete

penetrance. Analysis of mouse leukemia from the Pax5 P80R

heterozygous mice revealed the disruption of the remaining Pax5

WT allele by deletion or frameshift mutations, which

recapitulated the loss of PAX5WT allele in patient samples (16).

Non-silent PAX5 mutations are observed in over 30% of the

PAX5alt group compared to less than 5% of the other B-ALL

cases (16). Over 40% of PAX5mutations within PAX5alt subtype

are hemizygous due to loss of the PAX5WT allele. The two most

recurrent mutations enriched in this subtype are R38H and

R140L, which are located in the NTD and CTD of the DNA

binding domain, respectively. Notably, 10 of 11 R140L

mutations were found co-occurrent with R38H in the same

patients (16). RNA-seq of one familial B-ALL case observed that

these two mutations were detected on different alleles (20).

PAX5alt cases with PAX5 mutations (except R38H and

R140L) are commonly observed with loss of the remaining

PAX5 WT allele and total deletion of CDKN2A/B genes. They

are also enriched with RAS signaling pathway mutations as

cooperating events (Figure 4) (16). Besides PAX5 mutations,

PAX5 rearrangements and intragenic amplifications were also

reported as signature genetic lesions of the PAX5alt group (16).

The prognosis of this subtype is significantly worse than PAX5

P80R (16), especially in adult cases (78). Within the PAX5alt

subtype, patients with IKZF1 deletions were observed with even

worse prognosis (81). In conclusion, the large collection of PAX5
FIGURE 4

Summary of PAX5 alterations in B-ALL. Deletion is the most common type of PAX5 alteration in B-ALL, but generally considered as a secondary
driver event. Focal deletion can lead to the concatenation of PAX5 to its adjacent gene ZCCHC7, a genetic lesion frequently observed in Ph-like
and other B-ALL subtypes. PAX5 fusions, iAmp (most commonly targeting exon 2 to 5 (e2-5)), and point mutations are highly enriched in the
PAX5alt subtype (16). PAX5 fusions and iAmp of e2-5 driven B-ALL harbor biallelic CDKN2A/B loss and RAS or JAK/STAT pathway mutations (16,
55, 58). PAX5::JAK2, a signature fusion of the Ph-like subtype, can act as a dual hit for B-ALL without cooperating lesions (63). PAX5-mutation-
driven cases normally have deletion of the remaining WT allele and total loss of CDKN2A/B. They also frequently acquire mutations in the RAS
signaling pathway. PAX5 P80R mutation defines an independently subtype with a distinct GEP (16).
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point mutations in B-ALL with unique gene expression features

implies that besides P80R, certain PAX5 mutations may also act

as initiating driver events. Further direct experimental evidence

is needed to test this hypothesis.
Germline variants and
B-ALL susceptibility

PAX5 germline variants have been identified in multiple

familial B-ALL studies. Although rare, the existence of certain

familial B-ALL cases provided compelling evidence that PAX5

germline variants can induce B-ALL. The first evidence came

from a heterozygous germline variant PAX5 G183S, affecting the

octapeptide domain of PAX5, found in three unrelated B-ALL

kindreds with incomplete penetrance (11) (13). All affected cases

exhibited chromosome 9p deletion that removed the PAX5 WT

allele and caused homozygous deletion of CDKN2A/B (Figure 4).

Functional and gene expression analysis of the PAX5 G183S

mutation demonstrated that it significantly reduced

transcriptional activity of PAX5 (11). The finding of PAX5

WT allele deletion in PAX5 G183S cases suggests that a

complete disruption of WT PAX5 is essential for B cell

developmental arrest mediated by G183S (11, 13).

Further evidence came from another family with a high

incidence of B-ALL affecting all three children, which harbored a

PAX5 R38H germline variant (20). This variant was inherited

from one of the parents who didn’t develop leukemia, suggesting

that additional lesions are required for full transformation.

Consistently, all affected children gained mutations in the

remaining PAX5 WT allele. Specifically, two of them

independently developed R140L mutation, which is commonly

concomitant with R38H in sporadic B-ALL, while the remaining

one had a PAX5 frameshift mutation at Y371. In addition, all

three children had CDKN2A/B homozygous loss and RAS

signaling pathway mutations (Figure 4) (20). When transduced

into murine Pax5-/- cells, PAX5 R38H failed to regulate PAX5-

target genes, suggesting that R38H impaired normal PAX5

function (20). Comparing to PAX5 G183S germline variant,

PAX5 R38H is associated with an older onset, but both shared

the feature of disrupting the PAX5 WT allele and CDKN2A/B

genes (11, 13, 20). Taken together, these findings strengthen the

conclusion that PAX5 germline variants can confer strong B-

ALL susceptibility and are associated with specific additional

genetic lesions to initiate overt B-ALL.
Therapeutic potential of
PAX5 alterations

As the most frequent genetic lesions in B-ALL, PAX5

alterations have been demonstrated to impair B cell

differentiation and give rise to overt leukemia with the
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acquisition of cooperating genetic lesions. In addition, ongoing

PAX5 deficiency is required for maintaining the lymphoblastic

status of the malignant B cells in vivo (82). Based on these

findings, strategies such as re-activating the differentiation

potential of the malignant B cells to circumvent the

developmental blockage may provide new therapeutic entry

points. Indeed, restoring Pax5 through Tet-Off the transgenic

shPax5 in a mouse B-ALLmodel (driven by Pax5 knockdown and

constitutively active Stat5) enables differentiation and

immunophenotypic maturation by reshaping the B cell

development program, leading to durable disease remission

(82). Remarkably, even brief Pax5 restoration in B-ALL cells

causes rapid cell cycle exit and disables their leukemia-initiating

capacity (82). In addition, reconstitution of PAX5 in B-ALL

patient samples carrying PAX5 deletions can restore an energy

nonpermissive state, leading to energy crisis and cell death (23).

Interestingly, forced expression of PAX2 or PAX8, the two most

closely related paralogs of PAX5, resulted in growth inhibition of

the REH cell line, which carries a heterozygous PAX5 A322fs

frameshift mutation. These two paralogs complement the

haploinsufficiency of PAX5 in B-ALL cells by modulating

PAX5-target genes and restoring B cell differentiation (83).

Therefore, approaches that can by-pass the differentiation

blockage resulting from PAX5 haploinsufficiency may lead to

novel therapeutic approaches for this group of B-ALL, including

but not limited to PAX5 restoration and PAX5 paralog activation.

The deregulated networks triggered by PAX5 variants may

offer other therapeutic strategies as well. For example, PAX5

deficiency can lead to upregulated metabolic genes and

consequently increased glucose uptake and energy metabolism,

which are essential for leukemic transformation (23, 49).

Specifically, glucocorticoid receptor NR3C1, glucose-feedback

sensor TXNIP, and cannabinoid receptor CNR2 were identified

as central effectors of energy supply restriction in B cells. In

addition, agonists against CNR2 and TXNIP synergized with

glucocorticoids to exacerbate B-cell-intrinsic ATP depletion and

restored the energy barrier against B-cell malignancy (23).

Furthermore, Pax5 heterozygosis can enhance the expression

of inflammatory cytokine interleukin−6 (IL−6), which then

promote proliferation of leukemia cells. Genetic down-

regulation or pharmacologic inhibition of IL−6 is beneficial to

leukemic cell clearance (84). In addition, as mentioned above,

PAX5-variant-related leukemia is commonly associated with

aberrant activation of the kinase pathways such as JAK/STAT

and RAS signaling. On one hand, treatment with kinase

inhibitors resulted in increased apoptosis of leukemic cells (50,

85). On the other hand, considering the requirement of

converging genetic lesions into one principal pathway for

leukemia initiation, pharmacological reactivation of suppressed

divergent pathways may also provide a powerful barrier to

leukemic transformation (86). Finally, since the majority of B-

ALL subtypes are observed with distinct GEPs, the subtype-

specific biomarkers may serve as targets for developing tailored
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therapies. Notably, the MEGF10 gene was exclusively

overexpressed in the PAX5 P80R B-ALL subtype, which may

serve as a biomarker as well as a potential therapeutic target for

this subtype (16).
Discussion

Recent genomic and transcriptomic analysis of B-ALL has

largely advanced our understanding of PAX5 and its altered

isoforms in regulating normal B cell development and driving

malignant transformation (Table 1). It has been demonstrated that

genetic alterations of PAX5 in B-ALL commonly lead to a reduction

in rather than a total loss of PAX5 activity. These observations

suggest that a certain level of PAX5 activity is required in B-ALL to

maintain B cell identity and sustain clonal expansion but is

insufficient to execute normal B cell differentiation. Therefore, the

remaining PAX5 WT allele must be ablated by either deletions or

deleterious mutations to achieve this haploinsufficiency threshold.

The process of acquiring additional genetic lesions in PAX5-altered

B-ALL and the underlying mechanisms are intriguing but still

largely unknown. Themechanisms of V(D)J recombination, as well

as class-switch recombination and somatic hypermutation in B cell

development might be exploited to generate these

oncogenic lesions.

In-depth investigation of the oncogenic roles of germline

and somatic PAX5 variants is still largely unavailable.

Reconstruction of genetic lesions in mouse models to

recapitulate the corresponding human disease is widely

applied to approach this goal. However, cautions should be

taken considering the potential phenotypical discrepancies

between human diseases and mouse models. For example, the

Igh::Pax5 mice develop T-ALL instead of B-ALL observed in

patients, which might be attributed to the germline nature of the

fusion gene in mice (66). Moreover, the Pax5::Jak2mouse model

generates a more aggressive leukemia through loss of the Pax5

WT allele caused by uniparental disomy of the Pax5::Jak2 allele,

but the PAX5 WT allele is normally retained in human PAX5::

JAK2 leukemia (63). Finally, Pax5 G183S is insufficient for

malignant transformation in a transgenic mouse model (16),

although it has been found as a germline variant associated with

strong susceptibility to human B-ALL (11, 13). Nonetheless,
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mouse models still play a critical role for investigating the

function of PAX5 variants in leukemic transformation.

In summary, genome-wide technologies have greatly refined

the molecular diagnosis of B-ALL, at the same time leading to

the discovery of diverse PAX5 alterations as primary or

secondary events in B cell transformation. In conjunction with

the advanced understanding of PAX5 in B cell development, it

will provide an objective basis for a better diagnosis and

treatment of B-ALL.
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