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To control mosquito populations for managing vector-borne diseases, a critical need is to identify and
predict their response to causal environmental variables. However, most existing attempts rely on
linear approaches based on correlation, which cannot apply in complex, nonlinear natural systems,
because correlation is neither a necessary nor sufficient condition for causation. Applying empirical
dynamic modelling that acknowledges nonlinear dynamics on nine subpopulations of tiger mosquitos
from three neighbouring reef islets of the Raiatea atoll, we identified temperature, precipitation, dew
point, air pressure, and mean tide level as causal environmental variables. Interestingly, responses

of subpopulations in close proximity (100-500 m) differed with respect to their causal environmental
variables and the time delay of effect, highlighting complexity in mosquito-environment causality
network. Moreover, we demonstrated how to explore the effects of changing environmental variables
on number and strength of mosquito outbreaks, providing a new framework for pest control and
disease vector ecology.

Mosquito-borne diseases contribute significantly to human mortality causing more than 1 billion cases and over
1 million deaths every year!. A case in point are mosquitoes of the genus Aedes being the main vector of dengue
fever. For predicting disease outbreaks, population dynamics of mosquitoes are important concern. A critical
need is therefore to understand and predict how environmental change may impact on fluctuation of mosquito
populations?.

There are two main strains of research aiming to examine how mosquito populations respond to climate
changes. On the one hand, lab experiments are conducted to detect causal environmental drivers of mosquito sur-
vival, larval developmental time and other fitness parameters (e.g.>*). However, whether the findings in lab exper-
iments can be generalized to natural systems remain unclear. On the other hand, time series data of mosquito
abundance in natural systems are analysed for statistical associations with climate variables. For example, pop-
ulation abundance of the yellow fever mosquito Ae. aegypti was found to correlate with temperature, humidity,
and precipitation®~®. However, majority of the studies linking natural mosquito abundances with climate variables
employed linear correlation analyses. While, correlation does not necessarily imply causation, lack of correlation
does not imply lack of causation either'®!!. Applying linear methods to time series data generated from nonlinear
processes bears the risk to detect mirage correlations, which may lead to wrong and misleading conclusions'®!>!3,

Indeed, mirage correlation (or non-stationary relationship) between mosquito populations and climate
variables were often found in nature”'¥. Mirage correlation is commonly found, as a result of a fundamental
property of nonlinear dynamical systems, known as state dependency'®'>. State dependency means that the
relationships among interacting variables change with different states of the dynamical system'>. The follow-
ing example illustrates state-dependence in mosquitoes. It was shown experimentally that Ae. aegyptii females
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have lower vector competence for dengue virus in lower temperature environments only when the temperature
is fluctuating; in comparison, without such a specific temperature combination (i.e. mosquitoes living in the
environment of high temperature or constant temperature), the females have higher vector competence'®"”. For
Aedes mosquitoes, evidence abounds suggesting that nonlinear population dynamics are common. For exam-
ple, experimental studies show that larval survival depends on larval density'®, temperature®, and the mosquito’s
genomic background and microbiome' in a complex, nonlinear way. In addition, abundance data of lab and field
populations are best described by nonlinear mathematical models'®-?!. All these studies suggest that, in general,
mosquito-environment interactions are complex, nonlinear, and inter-dependent; as such, linear methods are not
adequate for these questions.

Here, we aim at disentangling the causality network between climate variables and mosquito populations
and predict how environmental change may impact on the populations. To overcome the limitation of linear
approaches, we use the empirical dynamical modelling (EDM) framework, which is specifically designed for
analysing time series data with underlying nonlinear dynamics''>!. To demonstrate the efficacy of EDM frame-
work for disease vectors, we analysed a unique longitudinal data set of the Polynesian tiger mosquito, Aedes
polynesiensis, which is an important vector for lymphatic filariasis and dengue fever in the South Pacific?>* (see
Supplementary Material for more information on Ae. polynesiensis). The data consist of biweekly (14-day interval)
mosquito counts over two years at nine sampling points on three motu islands?* (Figs S1, S2). The motus have
similar climate, but differ in vegetation and human activity as well as in larval competition and average body size
of adult mosquitoes. This exceptionally high temporal and spatial resolution gives unique opportunities for study-
ing population dynamics of mosquitos. In particular, it allows investigating to what extent the local habitat drives
mosquito dynamics and how neighbouring population in a meta-population are interconnected. Our objectives
are (1) to identify the critical environmental variables that causally affect mosquito populations using convergent
cross mapping (CCM) (Methods), (2) to test for causal interactions between mosquito subpopulations, and (3)
to explore scenarios how change in a causal environmental variable may affect mosquito abundance as well as
number and strength of mosquito outbreaks.

Results

Causality between environment and mosquito abundance. Comparing the results based on CCM
versus correlation demonstrates the efficacy of using EDM in our data. Indeed, correlation does not imply causa-
tion (Fig. S3), while lack of correlation does not imply lack of causation (Fig. S4). Moreover, correlation can
change sign, depending on ecosystem context, known as mirage correlation (Fig. S5). These examples from our
data highlight the need to employ correct methods for studying causality in complex nonlinear systems.

When analysing the mosquito dynamics for each of the nine sampling sites separately using CCM, we found
that temperature, precipitation, dew point, air pressure, and mean tide level are causal variables for the mosquito
populations (Fig. 1; Supplementary Table S2). Remarkably, the forcing environmental variables varied substan-
tially among the nine sampling sites (Fig. 1). For example, we found that sampling site S7 at Toamaro island is
affected by four climate variables (temperature, dew point, precipitation, mean tide level), site S8 by only one (air
pressure), and site S9 by none. Similarly strong differences between sampling sites were found for the other two
islands. However, when repeating the same analysis for each of the three islands (sum of the three sites within the
same island) and for the whole meta-population (i.e., sum of the nine sampling sites), we found no climatic effect
on mosquito abundance from any variable that we analysed here. The spatial scale dependence is remarkable,
given the small sizes of the islands (100-500 m length) and short distance between sites (a maximum distance
between two sampling sites of less than 5km).

Moreover, the causal forcing variables showed large variation in time lag, from zero day to more than five
weeks even for the same environmental variables. For example, the mean tide level affects the mosquito dynamics
at S6 with a time lag of 0-4 days, but the lag is 27-30 days at S7; time lags for air pressure are 14-17 days at S1,
but 34-39 days at S8. In other words, the causal effect of climate on the mosquito dynamics has strong temporal
scale dependence.

A striking spatial pattern emerges when the three islands are compared with respect to the number of causally
forcing variables and the time lag of the causal effect. For Horea, we found only the mean tide level and the air
pressure to be causal drivers. The associated time lags are 7-9 and 14-17 days, respectively (Fig. 1). For Tiano
and Toamaro, on the other side, we detected four and five causally forcing variables, respectively, and the associ-
ated time lags range from 0 to 35 days for Tiano and 9 to 39 days for Toamaro (Fig. 1). These results suggest that
mosquito-environment interactions are more complex on Tiano and Toamaro than on Horea.

Causality between mosquito populations. We tested for causal interactions between all pairs of the
nine subpopulations, and found bidirectional causality in one case (S8 <->S9) and unidirectional causality in
four cases (S1- > S3, S2- > 83, S2- > §7, S7- > S8) (Fig. 1, black arrows; Supplementary Table S3). A clear spatial
pattern emerges. All causality links start and end at Horea or Toamaro, but none at Tiano. Further, five of the six
links appear within motu (either Horea or Toamaro), with no time lag. Between-motu interaction among sub-
populations was only found in one case, from Horea (S2) to Toamaro (S7), with a time lag of 14 days. This case is
surprising because Horea and Toamaro are not neighbouring motus, but separated by Tiano (cf. Fig. 1). The lack
of connectivity between the subpopulations of Tiano and the other two motus may be explained by the fact that
Tiano has the lowest mosquito abundances due to intensive pest control management?.

Scenario Exploration. After identifying the critical forcing environmental variables, we then explored the
scenarios how changes of these causally forcing variables may affect mosquito abundance (Methods). The key
idea is to predict mosquito abundances for scenarios, in which a climate variable is increased or decreased at each
time point, and then compare the predicted abundances with the original values. Take site S7 as an example, Fig. 2
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Figure 1. Causality network of the Polynesian tiger mosquito (Ae. polynesiensis). Upper graph: Field site in
Raiatea (French Polynesia). Lower graph: Causal interactions within the mosquito meta-population (black
arrows) and between climate variables and mosquito abundances (coloured arrows). Causality was evaluated
using convergent cross mapping. Only significant results are shown (see Methods, Supplementary Tables S2, S3
for details). Numbers next to arrows indicate the time lag d (in days), for which causality was detected. Symbols
S1 to S9 denote the different sampling sites.

shows the observed abundances of Ae. polynesiensis and the predicted abundances for a scenario with increased
mean tide level. We found that the predicted abundances are higher than the observed for 28 time points but
lower for the other 19. Note that increasing tide level does not always result in reduced or elevated mosquito
abundance; rather, the response depends on the state of population (e.g. the abundance of mosquitos in combi-
nation of other environmental variables at a given sampling interval). We conducted a large-scale screen for all
causality links between climate variables and mosquito abundance. The results suggest that state dependence is a
common feature of the Ae. polynesiensis population dynamics (Supplementary Fig. S7).

Finally, using the same approach, we also explored how environmental change affects the number and strength
of mosquito outbreaks. Here, mosquito outbreak is defined as mosquito abundance that is five standard devia-
tions larger than the median abundance of a given time series. This analysis focuses on mosquito peak abun-
dances but not averages because the former are of particular importance for pest control and disease prevention.
For example in S6, changes in the mean tide level may have substantial effect on mosquito outbreaks (Fig. 3).
Increased mean tide level is predicted to increase the number of mosquito outbreaks from 12 up to 17 (Fig. 3A,C)
and the outbreak strength by up to a factor of 1.5 (Fig. 3A,C,D). However, the predicted effect depends on the spe-
cific time lag under consideration. For instance, a moderate reduction in MTL is predicted to reduce the number
of outbreak for d=0 (Fig. 3A), but to increase outbreak for d =1 (Fig. 3B). General predictions for the mean tide
level are difficult to make because our methodology does not allow evaluating the joined effect of all time lags.
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Figure 2. Predicted state-dependent effect of environmental change on mosquito dynamics using scenario
exploration. Shown are the observed mosquito abundances at sampling site S7 (black), and the predicted
abundances for the same sampling site under an increase of the mean tide level by half of its standard deviation
(red). Predictions were generated using multivariate simplex projections and a time lag of d =28 days. Note that
there is a causal effect of the MTL on the S7 population for this time lag (see Fig. 1). The analysis predicts that
an increase in the MTL results in increased or decreased mosquito abundance depending on the state of the
system.

At S7, changes in three climate variables were found to significantly alter number and/or strength of mosquito
outbreaks (Fig. 3E,F), including the dew point with a lag of 22 days, the mean tide level with a lag of 28 days, and
precipitation with a lag of 9 days.

Discussion

Causality between environment and mosquito abundance. We applied for the first time the cau-
sality test using CCM to a longitudinal mosquito data set and found that temperature, precipitation, dew point,
air pressure, and mean tide level are forcing climate variables. Our analyses confirm the common belief that
temperature and precipitation causally affect mosquito abundance; in particular, container breeder mosquitoes,
such as Ae. polynesiensis and Ae. aegypti, critically rely on rainfall and moderate temperatures for their larval
development®. However, previous rigorous tests for causal effects of environmental factors on mosquitos stem
only from lab experiments (e.g.*), whereas studies using longitudinal field data employed mostly linear statistical
methods such as correlation analysis®*?¢ that are not appropriate for the nonlinear mosquito dynamics. Here, our
causality analysis confirms the experimental predictions that, however, hitherto have not been confirmed at the
population level in the natural environment.

Surprisingly, we found that the mean tide level, an environmental factor that was rarely discussed in the lit-
erature, is the most influential environmental variable (quantified by the number of significant tests) in affecting
mosquito populations in French Polynesia (Fig. 1). We suggest the effect of tide may be related with the special
life style of Ae. polynesiensis. Specifically, larvae of Ae. polynesiensis can develop in breeding containers filled with
brackish water due to their high tolerance to salinity*”?%. Considering that tide is likely to affect both the water
level and the degree of salinity in the breeding containers, tide potentially has an impact on the number and
quality of breeding sites, which may cause changes of oviposition, larval density, larval survival and subsequently
mosquito population dynamics. Our finding may have important management implications because the tide level
is mainly determined by lunar cycles and therefore bears a high long-term predictability. This is in stark contrast
to the other climate variables, which have comparatively low long-term predictability. An interesting question
for future research is whether the long-term predictability of the tides may be used for improving forecast of Ae.
polynesiensis outbreaks.

We additionally found that the air pressure is a forcing variable of Ae. polynesiensis. While the effect of air
pressure on mosquito survival has been suggested from lab experiments, although for a different species (Ae.
aegypti®), the empirical evidence for natural mosquito populations has never been found. A possible explanation
is that mosquitoes use decreasing air pressure as an indicator for adverse weather conditions and modify their
behaviour (e.g. mating) to reduce the risk of injury or death. Such changes in behaviour were previously reported
for Drosophila melanogaster® as well as for beetles, moths, and aphids®.

Our results on the dew point suggest that evaporation and condensation of water are causal drivers of the
mosquito dynamics. Evaporation reduces water level and increases salinity in breeding containers, whereas con-
densation has the opposite effect. A previous study showed a positive correlation between the dew point and the
percentage of containers holding water versus number of Ae. aegypti larvae’'.

Temporal scale dependence of mosquito-climate interactions. The mosquito-climate interactions
exhibited temporal scale dependence. This may be associated with the mosquito life cycle that consists of 5-10
days larval development including pupation, and a total life span of up to four weeks. Our causality analysis
revealed short time-lag effects of 0-9 days for temperature, precipitation, dew point, and mean tide level, which
may reflect a causal effect of the climate variable on adult mortality, larval developmental time or mortality at
late larval stages. Intermediate time-lag effects were found for temperature, precipitation, mean tide level, and air
pressure, which may reflect an effect on larval mortality, larval competition or larval developmental time. Long
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Figure 3. Effect of climate change on number and strength of mosquito outbreaks. Two types of scenario
explorations were conducted. The blue line shows how climate change affects the number of mosquito
outbreaks, defined as mosquito abundances that are five standard deviations larger than the median of the
original data. The red line indicates the relative strength of mosquito outbreaks, defined as the arithmetic mean
of the highest five population abundances under climate change divided by that of the original data. The light
red zone indicates the range between the highest and the fifth highest mosquito abundance of the original time
series. The figure shows only the cases, in which the outbreak strength is at least once outside of the light red
zone. These are considered as scenarios with a substantial effect of climate change on mosquito abundance.
However, the analysis was conducted for all causality links between climate and mosquito abundance (see
Supplementary Table S2).

time-lag effects were found for temperature, dew point, and mean tide level, which may indicate an effect of the
climate variables on female fecundity or host availability (e.g., human, bird, rat, dog). Very long time-lag effects of
30-39 days were found for dew point, mean tide level, and air pressure, which may reflect an effect on the availa-
bility of breeding habitats such as broken coconuts or crab holes. We remark that the causal effect may be direct,
e.g., temperature may directly affect larval survival due to stress, or indirect, e.g., temperature may alter behaviour
of larval predators. In addition, indirect causality may involve human activity, e.g., temperature dependent behav-
iour of pesticide usage. Importantly, the same climate variable may affect the mosquito at different life stages with
different time lags. This may even occur at the same population; e.g., $4 is affected by temperature with delays of
8 days and 20-23 days.

Spatial variation in mosquito-climate interactions. The causality network displays strong spatial scale
dependence with respect to mosquito-environment interactions. Causal interactions were only detected at the
smallest spatial scale of a single sampling site, but neither at the level of a motu nor at the whole meta-population.
Similar patterns were previously reported for the dynamics of measles, which showed signatures of nonlinearity
and predictability only at the city-by-city scale, but not at the larger country-wide scale®’. In both cases, signatures
for nonlinearity are lost by summation of subpopulation dynamics. This may seem counter-intuitive, but is actu-
ally to be expected for a nonlinear dynamical system, in which subpopulations are affected by different forcing
variables or the forcing is non-synchronized®, as was found in this study (Fig. 1).

The causality analysis revealed substantial heterogeneity in terms of causal environmental variables and
time-lagged effects between neighbouring populations even on the same motu (Fig. 1). How are such differences
at a very small spatial scale determined? A possible explanation is that populations in close proximity respond dif-
ferently to the climate, due to difference in microhabitat such as canopy cover, water availability, salinity and avail-
ability of breeding sites even if the distance is less then 100 m. When interpreting the results, however, it should
be kept in mind that the climate data were not directly collected at the mosquito sampling points (Methods).
Climate data with spatial resolution are necessary to evaluate whether Ae. polynesiensis is really affected by its
microhabitat.

An interesting finding was that mosquito-environment interactions are more complex on Toamaro and Tiano
than on Horea (Fig. 1). This difference in complexity may, to some extent, be explained by differences in mosquito
body size. In a previous study on Ae. polynesiensis using the same mosquito samples, Mercer et al.** reported that
female body size is significantly smaller on Toamaro motu than on Horea. The authors explain this finding by
higher larval densities and longer larval developmental times on Toamaro®*. We hypothesize that either (i) the
longer developmental times and the smaller adult body sizes make mosquitoes on Toamaro more sensitive to
environmental fluctuations, and that this causes the complex mosquito-climate interactions found for this motu
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or (ii) the climatic variables influence the larval stage which leads to longer development time, smaller adult body
size, and the complex dynamics. The hypotheses could be tested using longitudinal data that include both adult
and larval stages.

Causality between mosquito populations.  An interesting finding was the detection of causality between
subpopulations (Fig. 1). There is a clear spatial pattern with five out of six links connecting neighbouring popu-
lations, and only one link connecting two motus. A possible explanation is that female mosquitoes disperse by
prevailing winds. When interpreting the results, however, it is important to keep in mind that the lack of identi-
fied causal coupling could be due to data limitation, e.g. time series may not be long enough to fully decipher the
system attractor. Longer time series data may reveal a more complex network of causal couplings between the
populations, and the strength of coupling may vary over time.

Our results demonstrate that CCM allows identifying interactions within a meta-population. Meta-population
dynamics and structure are important determinants of ecological and evolutionary processes>>4.
Meta-population dynamics and structure were typically studied by directly measuring migration and disper-
sal, e.g., by mark-release-recapture experiments®, or indirectly reconstructed by estimating gene flow between
populations, e.g. using microsatellite data®®. Here for the first time, we demonstrated that CCM may provide
an alternative solution, which may be of wide applicability. For example, one may study how climate variables,
community composition, and population density causally affect the migration behaviour of a focal species. This
analysis provides information of the interconnectedness in a meta-population. CCM and scenario exploration
allow further investigating whether the meta-population structure itself is context-dependent and how changes
of climate variables alter the interconnectedness in the meta-population. Such research questions are difficult to
study with the existing methods.

Effect of pest control strategies. While the three motus were chosen as study sites because they have
similar climate, they actually differ with respect to vegetation and human impacts*. In Tiano, pest control is
intense and canopy cover and mosquito abundances are low; in Horea, canopy cover is high, pest control happens
on irregular basis and mosquito abundances are intermediate; in Toamaro, canopy cover is high, pest control
is mostly absent, and mosquito abundance is high. Among the three motus, Toamaro suffered the least human
effects, while the mosquito populations on this motu are characterized by the most complex interactions between
the climate variables and mosquito abundances and high connectivity between the subpopulations (Fig. 1). A
comparison with the two other islands reveals an interesting pattern. There are only two causal climate drivers
on Horea, but strong connectivity between subpopulations, and four causal climate variables on Tiano, but no
connectivity between subpopulations. This suggests that pest control strategies may not only reduce mosquito
abundance but also alter the complexity of mosquito-climate interdependencies. This may be a relevant aspect
in pest control. We hypothesize that regular and intense pest control reduces coupling between subpopulations
while irregular pest control reduces causal effect of climate on mosquitoes.

Multiple testing and false positives. The whole analysis involved 2079 single tests for causality. There
are 1935 tests for climate effects on mosquito populations (9 populations, 5 climate variables, 43 time lags), and
144 tests for mosquito-mosquito interactions (9 x 8 ordered pairs of sampling sites, 2 time lags). An important
question is therefore how often false positives occur and whether the results are artifacts of multiple testing. In
order to estimate the number of false positives, we conducted additional causality tests with climate data collected
in Miinster (Germany), a place distant enough to have no causal effect on the mosquito populations (Methods,
Fig. S8, Table S4.). This analysis suggests that false positives occur in 1 to 1.5 out of 1000 tests. However, we iden-
tified 46 causal interactions in 2079 tests (Fig. 1, Tables S2, S3). This is in strong contrast to the expected 2-3 false
positives, suggesting that the results are no artifact of multiple testing.

Scenario Explorations. We used the scenario exploration technique'? to predict how environmen-
tal change affects mosquito abundance. Our analysis revealed strong state dependent responses (Fig. 2,
Supplementary Fig. S7). This result is expected given the various empirical evidences for complex and nonlinear
mosquito-environment interactions. Here, we tailored scenario exploration to the specific needs of disease vec-
tor control, and investigated how environmental change affects mosquito outbreaks. This analysis suggests that
climate change may substantially alter the number and strength of outbreaks, but that the outcome critically
depends on the local environmental conditions and may differ even between populations in short distance of less
than 200 m (Fig. 3).

We propose using scenario exploration as a new framework to predict environmental change effects on mos-
quito abundances and disease outbreaks. The main difference to previous forecasting methods is that realistic,
nonlinear mosquito-climate interdependencies are fully acknowledged. We believe that this offers new opportu-
nities for mosquito forecasting. As the skill of EDM forecasting depends crucially on the quality of data, there isa
critical need for long-term mosquito monitoring. We suggest to collect time series data of mosquito abundances
on a regular base of 1-2 weeks, and to combine them with climate information from data logger and case reports
of transmitted diseases at local hospitals. Scenario exploration may then be used to (1) predict when outbreaks of
mosquitoes or mosquito-borne diseases happen, and to (2) simulate different pest control strategies and explore
how they depend on climate conditions. In that sense, we hope that this study sets a first step towards a new direc-
tion of pest control and disease prevention strategies.

An important question is how far in the future we can predict using this new approach. For dynamical systems
(as are the mosquito populations that we analysed here), due to the chaotic behaviour, the prediction horizon is
necessary short-term*. More specifically, the response of mosquito population to decrease/increase of a specific
causal variable is context-dependent at a specific time point (Fig. 2); thus, for precise forecasting, continuous time
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series data are needed (as we illustrated using scenario of exploration). Nevertheless, the general tendency of the
effects of a specific variable can still be found in some variables (Fig. 3). In such a case, long-term prediction for
future climate can be possible; however, the precision is context-dependent.

In conclusion, we deciphered the causality network of a mosquito meta-population with climate variables
(temperature, precipitation, dew point, air pressure, mean tide level) using EDM (Fig. 1) that was otherwise
difficult to discern using linear methods. The findings that the responses of subpopulations in close proximity
(100-500m) differed substantially with respect to their causal environmental drivers and that no causal climate
variables were found for the motu scale and whole meta-population scale highlights the importance of spatial
scale dependency in complex systems. Moreover, we found strong temporal scale dependence of the causality
with time lags ranging from zero up to five weeks, suggesting that climate acts on the different life stages of the
mosquito and that the interdependencies of mosquito-climate interactions have a high degree of complexity.
More importantly, albeit with the complexity, we presented a new framework based on EDM to predict how
environmental change may affect the number and strength of mosquito outbreaks. These results bear profound
management implications for disease vector ecology and pest control.

Methods
Mosquito field site.  Adult Aedes polynesiensis mosquitoes were collected on three neighboring motu islands,
Horea, Tiano, and Toamaro, on the western coast of Raiatea? (see also Fig. 1). Mosquito data are shown in fig S1.

The linear distance between the shoreline of Raiatea and the motus is approximately 500-700 m. Horea, the
smallest among the three, is a publically held circular island of an area of 1.41 ha, with vegetation consisting of
60-80% canopy cover. This motu is semi permanently inhabited, and insecticides and wood smoke are used for
mosquito control. Mosquito larvae on this motu develop in artificial containers, coconuts, spathes, phytotemata,
and burrows made by the terrestrial crab Cardisoma carnifex. Blood meals of mosquitos are from humans, dogs,
rats, and birds including chicken.

Tiano, the largest among the three, is privately owned and has a size of 6.34 ha. The vegetation has an open
canopy in the center (<20% cover) and 80-90% canopy around the edge. Mosquitoes are controlled by pesticide
usage and breeding site reduction. Mosquito larvae on this motu develop in cryptic tree holes, crab burrows, and
a pool that is temporarily filled with water. Blood meals are from dogs, rats, birds, and humans.

Toamaro is a privately owned motu with an area of 4.06 ha. The vegetation consists of 70-95% canopy and has
greater stratification with herbaceous and shrub layers than Horea and Tiano. This island is occasionally managed
by vegetation clearing. Insecticides are used for mosquito control during periods of coconut collection. Mosquito
larvae on this motu develop in artificial containers, broken coconuts, phytotemata, and crab burrows. Blood
meals are from rats, birds, and occasionally dogs, cats, and human.

Time series data. Ae. polynesiensis population data were previously presented by Mercer et al.?*. Adult mos-
quitoes were collected on three neighboring motu islands, Horea, Tiano, and Toamaro, on the western coast of
Raiatea (Society Archipelago, French Polynesia; 16°49.4'S, 159°29.2'W) from 1 February 2008 to 3 December
2009 (Fig. 1). On each motu, there were three sampling sites, and mosquitoes were collected at a 14-day interval
using Biogent Sentinel traps (data shown in Supplementary Fig. S1). Sampling sites are numbered serially from
north to south and denoted by S1 to S9. All collected mosquitoes were species identified, sex determined, and
counted for each time interval. In the present study, we focused on female Ae. polynesiensis, which comprised
about 99% of the caught mosquitoes. For further details see Mercer et al.**.

Climate data were downloaded from the National Oceanic and Atmospheric Administration (http://www.noaa.
gov/). From Bora Bora airport (16°26.4S, 151°45.1’W; approx. 50 km distance to the sampling sites at Raiatea), we
obtained daily records of mean temperature (T), dew point (DEW), precipitation (PREC), and air pressure (mean
atmospheric sea level pressure, SLP). From Pago Pago (American Samoa; 14°16.6'S, 170°41.3'W), we obtained
hourly tide data, from which we calculated the daily average mean tide levels (MTL). Pago Pago has a distance of
approximately 2000 km to Raiatea and was the nearest weather station providing tide data. Note that Raiatea and
Pago Pago have similar latitude. We remark that the mean tide level is mainly driven by the lunar cycle and there-
fore highly correlated among pacific islands of the same latitude. This justifies the usage of the American Samoa
data for tide level. All climate data were recorded daily for the period from 7 December 2007 to 3 December 2009
(Supplementary Fig. S2). This period is eight weeks longer than mosquito sampling and thus allows investigating
possible time-lag effects of climate variables.

Data analysis. Convergent cross mapping. Causal effects between mosquito populations, and from envi-
ronmental variables to mosquito populations were tested using convergent cross mapping (CCM)'°. CCM tests
whether two variables, each given as a time series, are coupled in the same dynamical system. Variable X is said
to be causally affected by Y if the underlying dynamic of X is a function of Y. This method, based on Takens’ the-
ory for dynamical systems®’, tests for causation by measuring the extent to which the causal variable has left an
imprint in the time series of the affected'’. The method is rooted in state space reconstruction of shadow manifold
by lagged coordinate embedding, and the essential ideas are summarized in the following animations: tinyurl.
com/EDM:-intro. In this study, the embedding dimension (E,) for each causal link (e.g. from Y{(¢) to X(#)) in CCM
analysis was determined by testing values of E from 2 to 10 dimensions that optimizes the cross-mapping p in
which X(#) is used to predict Y(¢).

The causation, Y causes X, can be confirmed if and only if SSRy(, cross-mapping SSRy(, converges, mean-
ing that the cross-mapping skill p(L) improves with increasing library lengths (L) of X'*. The direction of
cross-mapping (X maps Y) is opposite to the direction of causation (Y causes X) because only Y can leave foot-
prints on X and makes the backward cross-mapping from X possible. Note that in this study, we also explored the
causations with lag response®®. Specifically, for investigating effects of climate variables on mosquitos, we tested
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for time lags ranging from d =0 to 42 days, while 14-day arithmetic means of the climate variables were used such
that the climate time series match the mosquito-sampling interval. To investigate causal effect among mosquito
populations, we conduced CCM between paired populations. Potential lag effects were evaluated for d=0, 14
and 28 days.

To determine the convergence in cross-mapping, three statistical criteria were applied. First, Kendall’s 7 test
was used to examine whether the cross-map skill p increases monotonously as a function of library size L. Results
are considered as significant if 7 > 0 and P < 0.01. Second, Fisher’s Z test was used to examine whether the pre-
dictability under maximum library size, p(L,,,,)s is significantly higher than the predictability under minimum
library size, p(L,,;,). The threshold was set to P < 0.05. Third, we tested whether p(L,,,,) of the observed time
series is significant different from a null model, using the surrogate time series test. 100 surrogates were generated,
following®, by randomly reshuffling phases, while preserving the mean, variation and power spectrum. The
results are deemed significant if p(L,,,,) of the original data is larger than the 95% upper bound of the surrogates
(P < 0.05)*%. To account for multiple testing, however, we reduced the level of significance to P < 0.01 when
testing for causal climate effects.

Scenario exploration. To evaluate how change in a climate variable (the causal variable identified by CCM)
affect mosquito abundances of a given subpopulation, we used multivariate simplex projection following'2.
Specifically, we conducted scenario explorations with an extended shadow manifold that has E, + 1 dimensions'?
(Supplementary Fig. S6). The first E, dimensions contain the time-delayed embeddings of the mosquito abun-
dances, as described above. Then, to explore potential effects of changing environment, an additional coordinate
axis of either the time series of a climate variable or another mosquito population was appended, resulting in
E,+ 1 dimensions in state space. It is this extra variable that we aim to “manipulate” to achieve scenario explo-
ration. Specifically, we purposely increase or decrease that forcing variable by multiples of its standard deviation
and then forecast the resultant mosquito abundance one step (in our case, 14 days) into the future for every time
point.

The scenario exploration approach allows us to investigate how change in a climate variable affects the num-
ber and strength of mosquito outbreaks for each mosquito time series. Here, mosquito outbreaks are defined as
mosquito abundances that are five standard deviations larger than the median abundance. The outbreak strength
is defined as the arithmetic mean of the five highest abundances. For each mosquito time series, we compared the
number and strength of mosquito outbreaks as predicted under a “scenario” versus those in the original data. To
quantify the effect of a scenario of changing a climate variable, we calculated the relative outbreak strength, which
is defined as the arithmetic mean of the five highest population abundances under scenario exploration divided
by that of the original data.

Estimation of false positives. To account for multiple tests, we estimated the number of expected false positives
by applying the aforementioned CCM analyses to climate data of Miinster, Germany (51°57'N 7°37'E). Daily
records of mean temperature and precipitation were downloaded from the National Oceanic and Atmospheric
Administration (http://www.noaa.gov/) for the period from 7 December 2007 to 3 December 2009 (Fig. S8). This
is the same time interval as analyzed above. Miinster was chosen because of its distance to the mosquito sampling
sites in French Polynesia (>15.000km). A causal affect of temperature and precipitation on the mosquito popu-
lations is impossible. Miinster is also the place where this manuscript was written.

We tested for causal interactions of the Miinster climate on the Polynesian tiger mosquito by conducting the
CCM analysis for the nine populations, the two climate variables, and time lags ranging from zero to 42 days.
Within these 9 X 2 x 43 =774 tests, we found only one significant result (Table S4). In conclusion, the number of
false positives is estimated to be one out of 774, and the probability for false positives in a single test to be 0.13%.

Further details of data analysis. Time series analysis was conducted using the rEDM package (version 0.2.4)
of the programming language R*. To minimize autocorrelation and heteroscedasticity, all time series were first
differenced and normalized to zero mean and unit variance**2. Due to the paucity of observation points, we
performed leave-one-out cross-validation®.
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