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Abstract

While the classical knapsack problem has been the object to be solved by optimization algo-

rithm proposals for many years, another version of this problem, discounted {0-1} knapsack

problem, is gaining a lot of attention recently. The original knapsack problem requires select-

ing specific items from an item set to maximize the total benefit while ensuring that the total

weight does not exceed the knapsack capacity. Meanwhile, discounted {0-1} knapsack

problem has more stringent requirements in which items are divided into groups, and only

up to one item from a particular group can be selected. This constraint, which does not exist

in the original knapsack problem, makes discounted {0-1} knapsack problem even more

challenging. In this paper, we propose a new algorithm based on salp swarm algorithm in

the form of four different variants to resolve the discounted {0-1} knapsack problem. In addi-

tion, we also make use of an effective data modeling mechanism and a greedy repair opera-

tor that helps overcome local optima when finding the global optimal solution. Experimental

and statistical results show that our algorithm is superior to currently available algorithms in

terms of solution quality, convergence, and other statistical criteria.

Introduction

Mathematical problems are not merely theoretical abstractions. Many of them are the map-

pings of real-life problems, and some have broad and practical applications. Hence, solving

those problems becomes more urgent, and we can recognize the efforts of researchers in this

area for many decades. Knapsack problem (KP) [1] is a typical example of such problems. In

particular, KP is a classical combinatorial optimization problem in which we have a given set

of items, and each item is coupled with a weight and a profit value.

The knapsack problem has vast practical applications in many areas. These applications

include but are not limited to computer memory management, facilities management, energy

consumption optimization, adaptive multimedia systems, resource allocation, logistics,

encryption, cryptography, etc. All these seemingly unrelated problems meet in a common

point: there is a limited resource and the utilization of that resource needs to be optimized.

To resolve the KP, we have to determine an item subset with the maximum sum profit

while the total weight of the selected items is still less than or equal to a predetermined
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knapsack capacity. In Guldan’s thesis [2], new mathematical models of the discounted {0-1}

knapsack problem (DKP01) are introduced. This problem integrates the discount concept

used in the real-world sale business, in which we can get a discounted price for purchasing

multiple items together.

In DKP01, assume that we have n groups with three items each. Each item has two features.

These features were often referred to as profit and weight in previous works. Although these

names are consistent with the idea of the capacity of a knapsack in the original KP, they do not

really fit the cost reduction concept in the DKP01. Therefore, we suggest that this pair of fea-

tures be value and cost, abbreviated as v and c. Items in group i, i 2 {0, 1, . . ., n − 1}, can be

modeled as xi,1(ci,1, vi,1), xi,2(ci,2, vi,2), and xi,3(ci,3, vi,3). Note that the third item, xi,3, represents

the case where the discount is applied in real life, with ci,1 + ci,2 > ci,3 and vi,3 = vi,1 + vi,2. In

other words, the situation where item xi,3 is chosen is equivalent with the case where both of

the first and the second item in the group, xi,1 and xi,2, are selected and, for choosing them

together, we get a discounted cost. As a result, for each group, one in four options can happen:

(i) taking the first item only, (ii) taking the second item only, (iii) taking the third item (which

equals to taking both the first and second item in real world) and get the discounted cost ci,3,

and (iv) not taking any in these items at all. In another way, in the presentation model of the

problem where there are three items in a group, we can select at most one item from that

group. This is what separates DKP01 from the traditional KP, which does not divide items into

groups and does not have any limitation in terms of the number of items to be selected in each

group. This particular characteristic makes DKP01 more strenuous than the original KP.

Generally, the goal in solving DKP01 is selecting a subset of items whose total value is maxi-

mum while the sum cost of the chosen ones is not greater than a predefined threshold C and

no more than one item can be picked from each group. This problem is mathematically mod-

eled as follows.

Maximize f ðXÞ ¼
Xn� 1

i¼0

ðsi;1vi;1 þ si;2vi;2 þ si;3vi;3Þ ð1Þ

Subject to si;1 þ si;2 þ si;3 � 1; i 2 f0; 1; ::; n � 1g ð2Þ

Xn� 1

i¼0

ðsi;1ci;1 þ si;2ci;2 þ si;3ci;3Þ � C ð3Þ

si;1; si;2; si;3 2 f0; 1g; 8i 2 f0; 1; . . . ; n � 1g ð4Þ

where, si,j = 0 shows that the item xi,j is not chosen, and si,j = 1 means the item xi,j is selected,

with i 2 {0, 1, . . ., n − 1}, j 2 {1, 2, 3}. A binary vector A = (a0, a1, . . ., a3n−1) 2 {0, 1}3n is a can-

didate solution of DKP01 if A complies with the conditions given by Eqs 2 and 3.

Being an NP-hard problem, unless P = NP, DKP01 cannot be resolved using a polynomial-

time algorithm. In her master’s thesis, Guldan proposes the DKP01 and uses dynamic pro-

gramming to solve it [2]. in fact, the set-out cases of the KP have very different properties. Cir-

cumstances where items have a weak relationship, or even no relationship, between value and

cost, are considered relatively easy to find the optimal solution even when the number of items

is large. Meanwhile, in cases where values and costs are closely related, choosing which items

to put in the knapsack is harder. Based on this characteristic, one way to solve the traditional

KP is using the idea of core, which is defined in [3, 4]. Then, the authors of [5] define an alter-

native core of the DKP01 by mimicking the idea of core in KP. Using this new alternative core,
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they propose a partitioning scheme to divide the original DKP01 into sub-problems to reduce

calculation complexity, and utilize dynamic programming to solve them. Additionally, [6] pro-

poses an exact algorithm that tries to minimize the total cost with a predetermined sum value

to solve DKP01. Then, based on this algorithm, three approximate algorithms are introduced.

Evolutionary and swarm intelligence-based computation are also applied in solving

DKP01. The authors of [7] propose two mathematical models for DKP01 and two genetic algo-

rithm-based algorithms, FirEGA and SecEGA, to resolve the problem. In [8], the authors pro-

pose two evolutionary operators called global exploration operator (R-GEO) and local

development operator (R-LDO) to design a ring theory-based evolutionary algorithm which is

used to solve the DKP01. While the two operators rely on ring theory, the evolutionary algo-

rithm is based on the flower pollination algorithm [9]. The authors of [10] also nominate a

multi-strategy algorithm for DKP01 on the basis of monarch butterfly optimization (MBO)

[11]. In this study, the monarch butterfly population was separated into two sub-populations.

The positions of monarch butterfly individuals in the first sub-population are handled by a

neighborhood mutation-based crowding operator, which replaces the original MBO migration

operator. Moreover, in [12], the application of moth search (MS) for DKP01 is investigated.

First, the impacts of the Lévy flights operator and the fly straightly operator on basic MS are

evaluated. Then, nine MS-based algorithms are developed using a global-best harmony search

(GHS)-based mutation operator. Another contribution in nature-inspired optimization algo-

rithm application, [13], introduces a discrete hybrid teaching-learning-based optimization

algorithm (HTLBO) to resolve DKP01. A quaternary code is introduced to represent a DKP01

solution, and the individuals are modeled by double coding. The Learner’s learning strategy is

improved to expand the discovery capabilities of HTLBO, while self-learning is implemented

to balance exploration and exploitation. Two sorts of crossover are also designed to strengthen

the effectiveness of global search in this algorithm.

In a recently published work [14], Truong has developed a binary version of the famous

Particle Swarm Optimization algorithm [15] to solve the DKP01 problem. In another publica-

tion [16], moth-flame optimization [17] is used to solve this problem. Most recently, an

improved version of the Harris Hawks Optimization (HHO) algorithm [18] is proposed in

[19]. Although the HHO algorithm has a pretty good balance between exploration and exploi-

tation, the authors of this paper have suggested tweaks that target the attack phase of Harris

hawks using opposition-based learning (OBL) strategy to increase the diversity in the search

process. The main idea of OBL is to compare the fitness values of the current solution and its

opposite case and then choose the better solution to include in the next generation. Addition-

ally, the prey escape energy value, which was originally designed to reduce linearly, has also

been redefined to reduce logarithmically non-linearly, making the transition between explora-

tion and exploitation smoother. The authors also introduce a random unscented sigma point

mutation mechanism to help HHO converge more quickly to the best solution the algorithm

can achieve. Besides solving traditional benchmark functions (CEC2017 and CEC2020) and

engineering problems, the resulting algorithm is also used to solve the DKP01 problem in

selected data sets. However, the test results show that the existing DKP01 test instances are not

simple, and this algorithm has not achieved very good results, which also means that there is

still a lot of space for other solutions in the future.

Besides taking advantage of classical optimization algorithms, new optimization algorithms

are also regularly introduced and open up new directions in solving optimization problems.

An example for this is [20], where the authors presented two variants of a widely accepted

swarm intelligence-based optimization algorithm, the single objective salp swarm algorithm

(SSA) and the multi-objective salp swarm algorithm (MSSA). The main motivation of SSSA

and MSSA is the swarming conduct of salps when exploring and rummaging for food in the

PLOS ONE BSSA for DKP01

PLOS ONE | https://doi.org/10.1371/journal.pone.0266537 April 7, 2022 3 / 28

https://doi.org/10.1371/journal.pone.0266537


seas. Test results on various data sets show that the SSA is able to improve the initial arbitrary

solutions and converge towards the ideal one. More details on SSA will be given in the next

section of this paper.

Despite being a relatively new algorithm, SSA has been cited in several scientific works

across various research fields. In [21], the authors develop a binary version of SSA utilizing

eight transformation functions and a crossover operator instead of the basic one which the

original SSA provides. In [22], to study the optimal connections between switches and control-

lers and the optimal number of deployed controllers in large-scale software-defined networks

(SDN) [23], the authors propose an optimization algorithm based on SSA using chaotic maps.

In an effort to solve the feature selection problem, [24] introduces another chaotic SSA algo-

rithm and integrates it with a K-nearest neighbor classifier. Their solution is also proved to be

efficient in tackling the local optima stagnation issue as well as improving the convergence

behavior of the original SSA algorithm. [25] implements opposition-based learning in the ini-

tialization phase of SSA to enhance its population diversity. Moreover, local search algorithm

(LSA) is also used in this work to improve exploitation performance. The authors of [26] pro-

pose a binary SSA using a modified arctan transformation. In [27], SSA is enhanced by balanc-

ing the exploration and exploitation process. [28] extends the original SSA by implementing

multiple independent salp chains and applies them for maximum power point tracking

(MPPT) of photovoltaic systems under partial shading conditions. [29] uses space transforma-

tion search (STS) [30] to improve the performance of SSA, and the resulted algorithm is

deployed to train a multi-layer feed-forward network. A recent publication, [31], proposes

new mutation operators to balance the exploration and exploitation phases of SSA. The

authors of [32] present the solitary and colonial reproduction phase of salp in emended salp

swarm algorithm (ESSA), which is used to resolve the economic load dispatch problem in a

multi-objective framework. In [33], composite mutation strategy (CMS) and restart strategy

(RS) are integrated into SSA to boost exploitation and exploration trends of SSA as well as aid

salps in avoiding local optimum.

Though numerous studies have referred to SSA, to the best of our knowledge, this paper is

the first to utilize SSA in resolving DKP01. Although the algorithms for DKP01 mentioned

above have achieved encouraging results, parts of the solutions chosen by them are not very

reasonable. They can be improved, such as the classical solution representation, which is not

an ideal choice and will be replaced by the scheme in this paper. Besides, we intend to combine

the power of SSA with the application of a greedy repair operator for local optimization as well

as to address the weakness of SSA when its solutions are easily stuck at the local optimal point

and can’t get out to try other candidate solutions during the global optimization process. In

detail, the contributions of this work include:

• A novel binary salp swarm algorithm (BSSA) with four binary transformation functions and

a new solution presentation scheme to solve the discounted {0-1} knapsack problem.

• A combination with a minimal encoding scheme whose binary solution vector length is 2n
(in comparison to the length of 3n of the original DKP01 that is used in many previous

papers). While providing enhancements in calculation speed and reducing the complexity,

this scheme automatically satisfies the constraint of the DKP01 stated in Eq 2.

• The use of a repair operator on the positions of the salps during salp chain movement

towards the food source to avoid local optima and enhance calculation effectiveness.

The rest of this paper is as follows. The next section gives an introduction to the salp swarm

algorithm (SSA), which is the basis for our algorithm. The section after that details our pro-

posed binary SSA for DKP01. Then come the simulation results and discussion of our

PLOS ONE BSSA for DKP01

PLOS ONE | https://doi.org/10.1371/journal.pone.0266537 April 7, 2022 4 / 28

https://doi.org/10.1371/journal.pone.0266537


algorithm’s performance in comparison to those of other existing algorithms. Finally, the Con-

clusions section will conclude the paper.

Salp swarm algorithm

Introduced by [20], SSA has received much attention recently due to its simplicity, effective-

ness, as well as adaptability to various optimization problems. This section will give details on

this algorithm.

A salp, which can be found generally in deep seas but sometimes near the surface, is a bar-

rel-formed, planktic tunicate that moves by contracting, thereby pushing water through its

jelly-like body. One of the most interesting activities of a salp population is forming a salp

chain, which may increase the swarm effectiveness in traveling and foraging. SSA is an effort

to facsimile the swarming behavior of salps in oceans.

In SSA, individuals in a salp population are classified into two categories: the leader,

which is the salp at the head of the chain, and the followers. The position of a given salp is

modeled as an n-dimensional search space, in which n is the number of variables of the prob-

lem to be solved. As a result, all the position vectors of the salp population form a 2-dimen-

sional matrix named pos. The food source of the swarm is modeled as the target F in the search

space.

The position of the leader is updated utilizing the below condition:

pos1
j ¼

Fj þ c1ððubj � lbjÞc2 þ lbjÞ; c3 � 0:5

Fj � c1ððubj � lbjÞc2 þ lbjÞ; c3 < 0:5

8
<

:
ð5Þ

where pos1
j represents the coordinates of the leader in the jth dimension, Fj depicts the position

of the target F in the jth dimension, ubj is the upper bound of the jth dimension, and lbj is the

lower bound of the jth dimension. Additionally, c1 is a number generated using the following

rule:

c1 ¼ 2e�
4k
Kð Þ

2

ð6Þ

where k is the current iteration and K is the maximum iteration. Meanwhile, c2 and c3 are ran-

domized in the range [0, 1].

The positions of the followers are manipulated using the below equation:

posij ¼
1

2
posij þ posi� 1

j

� �
ð7Þ

The general idea of SSA is simple: the leader moves towards the target (food source), and

the followers trail the leader. In optimization problems, while the global optimum should be

the target, there is no such thing that exists. To resolve this, the best solution obtained at a

given time is considered the global optimum, and the salps should head towards it. The

pseudo-code of SSA is shown in Algorithm 1.

Algorithm 1: The pseudo-code of salp swarm algorithm
Inputs: Initial parameters
Output: Optimal solution
Initialize salp population considering upper bound and lower bound
while end condition is not met do
F  the best search agent (salp)
Generate c1 using Eq 6
for each salp do
if the salp is the leader then
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Update the position of the leading salp by Eq 5
else
Update the position of the current salp by Eq 7

Amend the salps based on the upper and lower bounds of variables
return F

Next, we will do some analysis to clarify how SSA works. From the given information, the

interesting part is how the position elements of the salps are manipulated. Firstly, it is easy to

notice that the lower bound lb and upper bound ub vectors are critical in keeping the position

elements of the leading salp be in the valid range, which will, in turn, lead the followers on the

right path. For simplicity, assume that all items in lb has the same value of 1, and all items in

ub has the same value of 10. Thus, from Eq 5 and since c2 is randomly generated in [0, 1], the

position of the leader in the jth dimension is specified by:

pos1
j ¼

p1; p1 2 ½Fj þ c1; Fj þ 10c1�; with probability
1

2

p2; p2 2 ½Fj � 10c1; Fj � c1�; otherwise

8
><

>:
ð8Þ

The values of c1 are in the range of [0, 2]. Assume that the maximum iteration K = 100, the

curve formed by values of c1 is illustrated in Fig 1.

It can be seen that the closer k gets to K, the smaller c1 is, and the less chance that the corre-

sponding position element of the leading salp can change significantly. Although this is con-

sistent with the nature of global search in evolutionary computation, where searches in the

early stage should cover a broader scope than those in the later stage, this also represents the

risk that the leading salp can be easily stuck at a local optimal point. This becomes even more

serious when a position element of a following salp is simply the average between the value of

the new position element of the preceding salp and the value of its own position element in

the previous iteration. This means that, when the leading salp gets stuck, it is unlikely that the

salps that follow it have a way to assist it in coming up with solutions to get out of the local

optimum.

To resolve this problem and due to the fact that SSA has no mechanism to deal with DKP01

constraints, we decide to implement a repair operator which will help the solution given by

SSA avoid local optima, and improve its fitness. Details of this operator and other proposed

algorithms are given in the next section. Note that although there exists a multi-objective ver-

sion of SSA, discussion of it is beyond the scope of this paper.

Proposed binary salp swarm algorithm for DKP01

The original SSA needs many amendments to solve the DKP01. This section will provide

details on the solutions that we propose.

Binary transformation functions

To operate in a binary search space, binary transformation functions are necessary so that the

related parameters should take the value 0 or 1 only. Sigmoid function [34, 35] is widely

accepted as a means of transferring real values into probability. In this paper, we utilize four S-

shaped sigmoid transformation functions as follows:

Sig1ðzÞ ¼
1

1þ e� 2z
ð9Þ
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Sig2ðzÞ ¼
1

1þ e� z
ð10Þ

Sig3ðzÞ ¼
1

1þ e� 1
2
z

ð11Þ

Sig4ðzÞ ¼
1

1þ e� 1
3
z

ð12Þ

Plots drawn from the outputs of functions detailed in Eqs 9–12 are shown in Fig 2. Using

these four functions, we propose a novel Binary SSA (BSSA) optimizer for DKP01 which has

four variants being BSSA1, BSSA2, BSSA3, and BSSA4, respectively. In particular, BSSA1 will

take advantage of Sig1(�), BSSA2 utilizes Sig2(�), BSSA3 implements Sig3(�), and BSSA4 makes

use of Sig4(�). Our new algorithm will also use modified versions of Eqs 5 and 7 which will use

the transformation functions given in Eqs 9–12.

Firstly, we define z1 and z2 as:

z1 ¼
Fj þ c1ððubj � lbjÞc2 þ lbjÞ; with probability

1

2

Fj � c1ððubj � lbjÞc2 þ lbjÞ; otherwise

8
><

>:
ð13Þ

Fig 1. Change in value of c1 during iteration.

https://doi.org/10.1371/journal.pone.0266537.g001
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z2 ¼
1

2
posij þ posi� 1

j

� �
ð14Þ

As a result, we have new expressions for salp position manipulation as follows:

pos1
j ¼

0; r � Sigpðz1Þ

1; r < Sigpðz1Þ

8
<

:
ð15Þ

posij ¼
0; r � Sigpðz2Þ

1; r < Sigpðz2Þ

8
<

:
ð16Þ

where p 2 {1, 2, 3, 4}, and r is a randomized value, r 2 [0, 1].

Solution presentation

The traditional approach to encode a solution of a {0, 1} optimization problem is using a

binary vector whose length is the number of dimensions of the search space:

T ¼ ft1; t2; . . . ; t3ng 2 f0; 1g
3n ð17Þ

Each three-bit binary number represents three items in a group. If a bit is set to 1, the item at

Fig 2. Curves of sigmoid functions used in our proposed algorithm.

https://doi.org/10.1371/journal.pone.0266537.g002
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the related spot is selected. Otherwise, value 0 at a given bit means that the item is not chosen

to be in the knapsack.

In this paper, we use a binary encoding scheme as shown in Table 1, with two-bit binary

numbers used for solution presentation, as described in Eq 18.

Y ¼ fy1; y2; . . . ; y2ng 2 f0; 1g
2n ð18Þ

For binary solutions of length 3n, the search space has 23n possible cases, while a binary

solution of length 2n has a much smaller search space: 22n potential cases. The representation

of the 2n solution allows the search for candidate solutions in a much smaller space. Besides,

the representation of the 2n solution also helps them to automatically satisfy the constraint

specified in Eq 2, which we do not have when using the 3n representation. 3n solutions need to

be checked to ensure that a specific three-bit binary number does not violate Eq 2. In the worst

case, when a violation occurs, another value needs to be assigned to that number. These actions

are not necessary with binary solutions of length 2n.

When considering the constraint of Eq 2, all random solutions in the 2n search space are

possible solutions, while the 3n search space contains non-viable solutions. Therefore, repre-

senting a solution of length 2n reduces the computation time.

Repair operator

To deal with the restriction in Eq 3 and enhance the solution, we use a repair operator based

on the functions used in [6, 14]. With n groups, we have a total of 3n candidate items to be put

into the knapsack, including the combined items. Note that when the mentioned functions

only support the 3n solution, we design our operator so that the 2n solution is supported while

3n items are still in consideration.

In short, the repair operator does the job of manipulating the selected set based on the

value-to-cost ratio values vi, j/ci, j, (i 2 {0, 1, . . ., n − 1}, j 2 {1, 2, 3}) to reduce CPU usage and

improve local optimum avoidance capability.

Since choosing which items to remove from or to add to the knapsack is not simply a matter

of prioritizing combined items (a particular combined item is not necessarily better than a sin-

gle item), we decide to sort all items and put them into a deterministic process. Thus, before

the repair operator execution, all the items, including the combined ones, are sorted decreasing

by the value-to-cost ratio values. The indexes of the items in this order are kept in the ID vector

of length 3n. Using the ID vector, the items with more priority will be processed first. Then,

the steps which this operator will do are as follows.

The repair operator has two phases: the repair and optimization phases. The repair phase is

designed to fix a solution to become a feasible one from an impracticable state. Meanwhile, the

optimization phase will enhance the fitness of a viable solution. If the current total cost is

greater than C, the repair phase will remove items from the knapsack until the condition given

Table 1. Binary encoding scheme.

No. Binary value Description

1 00 No item in the group is selected

2 01 The first item in the group is selected

3 10 The second item in the group is selected

4 11 The third item in the group is selected

https://doi.org/10.1371/journal.pone.0266537.t001
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by Eq 3 is met. After that, the optimization phase adds items to the knapsack provided that the

total cost does not exceed C.

The inputs of the operator include the solution Y of length 2n, the cost vector of length 3n,

the index vector ID, and the knapsack capacity C.

Algorithm 2 shows the pseudo-code of the related repair operator. Note that the operator’s

computational complexity is O(n).

Algorithm 2: Repair operator
Input: Solution Y = (y1, y2, . . ., y2n) 2 {0, 1}2n, cost vector c, index
vector

ID = (id1, id2, . . ., id3n), and knapsack capacity C.
Output: Solution after repair Y
% Repair phase
fc  0
for k  1 to 3 � n do
i  floor((idk − 1)/3)
j  mod(idk − 1, 3) + 1
if y2i+1 = 0 ^ y2i+2 = 1 ^ j = 1 then
if fc þ cidk

� C then
fc  fc þ cidk

else
y2i+1  0; y2i+2  0

if y2i+1 = 1 ^ y2i+2 = 0 ^ j = 2 then
if fc þ cidk

� C then
fc  fc þ cidk

else
y2i+1  0; y2i+2  0

if y2i+1 = 1 ^ y2i+2 = 1 ^ j = 3 then
if fc þ cidk

� C then
fc  fc þ cidk

else
y2i+1  0; y2i+2  0

% Optimization phase
for k  1 to 3 � n do
i  floor((idk − 1)/3)
j  mod(idk − 1, 3) + 1
if y2iþ1 ¼ 0 ^ y2iþ2 ¼ 0 ^ fc þ cidk

� C then
fc  fc þ cidk

if j = 1 then
y2i+1  0; y2i+2  1

if j = 2 then
y2i+1  1; y2i+2  0

if j = 3 then
y2i+1  1; y2i+2  1

return Y

To sum up, the pseudo-code of our proposed BSSA algorithms for DKP01 is detailed in

Algorithm 3.

Algorithm 3: Pseudo-code for BSSA algorithms for DKP01
Input: Initial parameters
Output: Optimal solution
Initialize salp population considering upper bound and lower bound
while end condition is not met do
for each salp do
Converting real position values of the current salp into binary
numbers using Eqs 15 or 16
Calculate the fitness of the current salp using the repair operator
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F  the best salp
Generate c1 using Eq 6
for each salp do

if the salp is the leader then
Update the position of the leading salp by Eq 5

else
Update the position of the current salp by Eq 7

Amend the salps based on the upper and lower bounds of variables

Results and discussion

The simulations used for this paper are for these goals:

• Compare four variants of our proposed BSSA to determine the best ones for DKP01. This is

an internal test only. Thus, only the algorithms proposed by this paper are included in

related tests, diagrams, and tables.

• Then, our best BSSA variants for DKP01 will be compared to selected algorithms proposed

by other scientific works to see which one performs best in various aspects through statistical

calculations. The chosen algorithms are the best we could find in recent publications.

Firstly, we choose two revised versions of genetic algorithm (GA) [36] and particle swarm

optimization (PSO) [15] to include in the comparison. In the case of the GA variant for

DKP01, we choose FirEGA, which is introduced in [7]. The PSO version to be tested is the best

one from [14], BPSO8. We also include the results of MS1, which is designed based on the

moth search algorithm and is the best algorithm for DKP01 proposed in [12], and MMBO, a

multi-strategy monarch butterfly optimization algorithm for DKP01 introduced by [10]. The

authors of this paper propose many variants of their algorithm, and we choose the best one of

them. In [19], the authors have tested their algorithm on selected instances of the DKP01 prob-

lem. Since this is a promising algorithm and a recently published work, we also decided to

include the experimental results of this algorithm for comparison.

The parameters used for testing are shown in Table 2. For a fair comparison, we set the pop-

ulation sizes (the number of particles in case of the PSO variant) at the same value, 50.

Table 2. Simulation parameters.

Algorithm Parameter Variable Name Value

FirEGA Probability of crossover pc 0.8

Probability of mutation pm 0.01

BPSO8 Learning factors c1 and c2 2

Inertia weight w 0.9,. . .,0.4

IHHO Population size N 50

MS1 Maximum step Smax 1

Acceleration factor φ 0.618

Index β 1.5

MMBO Neighborhood size m 5

Migration ratio p 5/12

Butterfly adjusting rate BAR 5/12

Maximum step Smax 1

BSSA Lower bound lb 1

Upper bound ub 10

https://doi.org/10.1371/journal.pone.0266537.t002

PLOS ONE BSSA for DKP01

PLOS ONE | https://doi.org/10.1371/journal.pone.0266537 April 7, 2022 11 / 28

https://doi.org/10.1371/journal.pone.0266537.t002
https://doi.org/10.1371/journal.pone.0266537


Furthermore, the maximum iterations of all algorithms are set to the number of dimensions of

DKP01, 2n, for the same reason.

We use 40 DKP01 instances proposed by [7] and available at https://www.doi.org/10.6084/

m9.figshare.19416857.v2 to test all algorithms. They include 10 strongly correlated instances

(SDKP1-SDKP10), 10 inverse strongly correlated instances (IDKP1- IDKP10), 10 uncorrelated

instances (UDKP1- UDKP10), and 10 weakly correlated instances (WDKP1- WDKP10). The

correlation is considered strong when cost and value are closely related and highly dependent

on each other. Contrarily, the correlation is considered weak when cost and value are loosely

related. The number of items in each instance is 3n, n 2 {100, 200, . . ., 1000}. The mentioned

instances are also used in [37].

All related algorithms, coded on MATLAB R2018a, run on an ASUS laptop, equipped with

an Intel Core i5-8250u 1.6 GHz CPU, 8 GB DDR3 SDRAM, and uses Microsoft Windows 10

as the operating system.

Convergence behaviour

Our first concern is the convergence speed towards the optimal solution of the algorithms. We

recorded the degree of convergence by running four versions of our proposed algorithm on

different data set files, each algorithm being run once. After each iteration, the resulting best-

so-far total value is saved. This set of values is fed into a graph showing the convergence

behaviour.

In fact, the four data set types of the DKP01 problem have quite different characteristics.

However, we found that the convergence behavior of these algorithms on problems of different

sizes on the same data set type is not significantly different. Therefore, we decided to choose

two typical cases to describe the convergence of the algorithms for each type of data set. Fig 3

summarizes the converging curves for these types of data sets.

In the test with all data sets, BSSA1 and BSSA2 proved their superiority over the other two

versions of the algorithm. They achieve better solution quality and higher fitness value from

the first iterations. The early convergence behaviour also suggests that BSSA1 and BSSA2 can

be further improved to take advantage of later iterations. Fig 3 also shows that while BSSA3

and BSSA4 can perform closer to the performances of BSSA1 and BSSA2 in case of smaller

problems, it can be concluded that BSSA3 and BSSA4 are not appropriate to be used for larger

problems.

Stability and solution quality

This subsection focuses on examining the stability and quality of the solutions returned by our

proposed algorithms. For demonstration, we use box plots whose data are the best values

achieved after each algorithm run. To obtain a series of best values that will be used to create

the box plot, we run each algorithm 30 times and get 30 best results.

In descriptive statistics, a box plot [38] is a graphical tool to demonstrate the data distribu-

tion using a five-number summary of that data set. Those five numbers are the minimum, the

first quartile, the median, the third quartile, and the maximum values. A box plot will occupy

the space from the first quartile to the third quartile, and as a result, it will span approximately

50 percent of the data range from the minimum value to the maximum one. The lowest 25 per-

cent and the highest 25 percent spaces are not in the box. The horizontal line in the box stands

for the median. The higher this line is, the better the quality will be. Moreover, the more flat-

tened the box, the more consistent the values.

We use the same approach as in the analysis of the convergence curves, which means that

we choose two typical cases for each data set type. Fig 4 shows these charts. It is easy to see that
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BSSA3 and BSSA4 cannot compete with BSSA1 and BSSA2. Their boxes are thicker, which

means the outputs are not stable. In other words, the differences among best total values

obtained after 30 runs of these algorithms are significant. In most cases, even the maximum

best value after 30 runs achieved by BSSA3 and BSSA4 is not close to the minimum best value

obtained by BSSA1 and BSSA2. This magnifies the preeminence of BSSA1 and BSSA2. The

same goes for other tests. If we have a closer look at the boxes provided by BSSA1 and BSSA2,

it is fair to conclude that BSSA2 is slightly better than BSSA1 in terms of stability and solution

quality.

Wilcoxon rank sum test

The Wilcoxon rank-sum test [39] is a non-parametric hypothesis test that is used to evaluate

whether the distributions of populations obtained from two separate sources are with the same

Fig 3. Convergence curves.

https://doi.org/10.1371/journal.pone.0266537.g003
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medians or not. In this subsection, Wilcoxon rank-sum tests are implemented to assess the dif-

ferences among the solutions returned by our proposed algorithms. Specifically, Table 3 dis-

plays the p values we obtained when testing the solution sets given by BSSA1 against those of

BSSA2, BSSA2, and BSSA4, respectively. Note that there exists a default significance level α =

0.05. In case p� α, there is not enough statistical evidence to confirm that the difference

between the compared populations is significant. Otherwise, it can be concluded that the dis-

similarity among the two related sets of values is notable.

Based on the statistical results in Table 3, we can conclude that the solutions given by

BSSA1 are significantly different from the solutions returned by BSSA3 and BSSA4. The situa-

tion between BSSA1 and BSSA2 is more complicated. There are 21 times p exceeds the 0.05

Fig 4. Box plots.

https://doi.org/10.1371/journal.pone.0266537.g004
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threshold, while in the remaining 19 times, p is less than 0.05. In another word, in 52.5 percent

of the tests, the difference among the solutions given by BSSA1 and BSSA2 is clear, while we

can not statistically differentiate them in 47.5 percent cases. In short, Wilcoxon rank sum tests

reaffirm what we have observed in previous subsections: BSSA1 and BSSA2 are at the same

level and both of them are superior to BSSA3 and BSSA4.

Table 3. p-values returned from the Wilcoxon rank sum test among BSSA1 with other proposed algorithms.

Instance BSSA2 BSSA3 BSSA4

IDKP1 0.001953 3.81e-07 3.02e-11

IDKP2 0.07483 9.06e-08 3.02e-11

IDKP3 0.03644 3.02e-11 3.02e-11

IDKP4 0.05746 3.02e-11 3.02e-11

IDKP5 0.652 5.08e-03 3.02e-11

IDKP6 0.4035 3.02e-11 3.02e-11

IDKP7 0.7283 3.02e-11 3.02e-11

IDKP8 0.9823 3.02e-11 3.02e-11

IDKP9 0.3112 3.02e-11 3.02e-11

IDKP10 0.1669 3.02e-11 3.02e-11

SDKP1 0.01441 6.70e-11 3.02e-11

SDKP2 0.2707 3.02e-11 3.02e-11

SDKP3 6.20e-04 3.02e-11 3.02e-11

SDKP4 0.4119 3.02e-11 3.02e-11

SDKP5 0.3478 3.02e-11 3.02e-11

SDKP6 0.04207 3.02e-11 3.02e-11

SDKP7 1.07e-07 3.02e-11 3.02e-11

SDKP8 7.74e-06 3.02e-11 3.02e-11

SDKP9 3.57e-06 3.02e-11 3.02e-11

SDKP10 1.70e-08 3.02e-11 3.02e-11

UDKP1 0.00238 4.20e-10 3.02e-11

UDKP2 0.32550 4.08e-11 3.02e-11

UDKP3 0.87660 3.02e-11 3.02e-11

UDKP4 0.46430 3.02e-11 3.02e-11

UDKP5 0.13730 3.02e-11 3.02e-11

UDKP6 0.002755 3.02e-11 3.02e-11

UDKP7 0.08771 3.02e-11 3.02e-11

UDKP8 0.011230 3.02e-11 3.02e-11

UDKP9 1.53e-05 3.02e-11 3.02e-11

UDKP10 9.21e-05 3.02e-11 3.02e-11

WDKP1 0.122400 1.46e-10 3.02e-11

WDKP2 0.004226 3.02e-11 3.02e-11

WDKP3 0.17610 3.02e-11 3.02e-11

WDKP4 0.04207 3.02e-11 3.02e-11

WDKP5 0.9705 3.02e-11 3.02e-11

WDKP6 0.4553 3.02e-11 3.02e-11

WDKP7 0.1023 3.02e-11 3.02e-11

WDKP8 0.001058 3.02e-11 3.02e-11

WDKP9 7.09e-08 3.02e-11 3.02e-11

WDKP10 9.83e-08 3.02e-11 3.02e-11

https://doi.org/10.1371/journal.pone.0266537.t003
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Friedman test and Nemenyi post-hoc test

This subsection presents the results of the Friedman test [40–42] to provide an additional sta-

tistical perspective. Friedman test is a non-parametric test to replace the Repeated Measures

ANOVA test [43]. The input parameters for this test are three or more populations, and the

test will return a single conclusion after comparing these populations in its way. The null and

alternative hypotheses of this test are:

• H0: The mean values of the populations are similar.

• Ha: At least one population mean is different from the mean values of the rest.

Again, the significance level α = 0.05 is applied. Suppose the p-value returned by the Fried-

man test is less than or equal to α. In that case, the conclusion will be that the null hypothesis is

rejected and the alternative hypothesis is confirmed. Otherwise, the null hypothesis will be

accepted.

We perform the Friedman test based on the mean fitness values obtained from 30 runs on

each instance. Thus, for each in the algorithms BSSA1, BSSA2, BSSA3, BSSA4, we have a popu-

lation of 40 mean values. These four populations are input parameters for the Friedman test.

The returned results of Friedman’s test are as follows:

• Test statistic: 108.66

• p-value: 2.1281E-023

The results show that at least one population mean is significantly different from the rest. To

clarify which algorithm’s solution population this conclusion is for, we perform the Nemenyi

post-hoc test [44]. This test will help answer the question of which population is genuinely distinct.

This test returns a table containing the results of pairwise tests. Table 4 shows p-values of this test.

The results in Table 4 show that, when comparing BSSA1 with BSSA2, the p-value is 0.9.

When comparing BSSA1 with BSSA3, the p-value is 0.001. The result is the same when com-

paring BSSA1 with BSSA4. When comparing BSSA2 with BSSA3 and BSSA4, the p-values are

the same and equal to 0.001. The p-value when comparing BSSA3 with BSSA4 is 0.00299.

When assessing these values with a significance level of 0.05, it can be seen that BSSA1 and

BSSA2 have similar populations of mean total values, and they are significantly different from

those of BSSA3 and BSSA4. If we consider the case of BSSA3 and BSSA4, they are also consid-

erably different, although this difference is not as significant as the difference when compared

with BSSA1 and BSSA2.

In summary, the Friedman and Nemenyi tests show that the results of BSSA1 and BSSA2

are not significantly different, while they are substantially different from those of BSSA3 and

BSSA4.

Comparison to other algorithms

In this subsection, we compare BSSA1 and BSSA2 with five other algorithms for DKP01. The

first is an evolutionary algorithm, FirEGA [8], the second is a swarm intelligence-based one,

Table 4. p-values from Nemenyi post-hoc test.

BSSA1 BSSA2 BSSA3 BSSA4

BSSA1 1 0.9 0.001 0.001

BSSA2 0.9 1 0.001 0.001

BSSA3 0.001 0.001 1 0.00299

BSSA4 0.001 0.001 0.00299 1

https://doi.org/10.1371/journal.pone.0266537.t004
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BPSO8 [14]. Additionally, the best algorithms proposed in [12] and [10], MS1 and MMBO,

are also included in the comparison. Note that the two latter algorithms were not tested in

inverse correlated data sets, and the related papers did not provide data in some criteria. Any-

way, the most important results are available, and they help us in this comparison phase. The

results from Improved Harris hawk optimizer (IHHO) [19], a recently published work, are

also included in the statistical tables. Although the authors of this algorithm only tested on

some representative data sets, we believe that their results help further clarify where our algo-

rithm stands.

Tables 5–8 are used to show the test results. These tables include the statistical calculation

results of the total values of the solutions returned after 30 runs of each algorithm. Specifically,

column Instance shows the name of the instance tested. Column OPT stores the optimum

value, and column Algorithm specifies the algorithm name. At the same time, Best, Average,

and Worst present the best, average, and worst values. Meanwhile, Stdev indicates the standard

deviation, and Gap reveals the gap between the average and optimum values. Specifically, the

Gap value is calculated as specified in the below expression:

Gap ¼
jOPT � AVEj

OPT
� 100% ð19Þ

where AVE stands for the average result.

Table 5 shows the superiority of our proposed algorithms over other candidate solutions

when they are tested with inverse strongly correlated instances. They lead the ranking table in

almost all of the cases. The only circumstances when other algorithms raise their voices are the

case of IDKP1 when FirEGA has the same best value as our algorithms, and the case of IDKP3

when IHHO has the best results in Best and Average categories. In general, BSSA1 takes the

top place 27 times, while BSSA2 has 36 times on this aspect. It is also worth mentioning that

there are 14 times when BSSA1 and BSSA2 share the top rank. Generally, our proposed algo-

rithms lead comfortably in the tests using this instance type.

In the case of strongly correlated instances, the situation has changed. Table 6 stores data

related to these tests. BPSO8 proves that it adapts very well to this test by leading the ranking

table 19 times in total. The results also show that BSSA1 leads 14 times, BSSA2 does the same 7

times, while IHHO, MS1 and FirEGA step aside in every aspect. It is necessary to note that

while there are 10 strongly correlated instances, BPSO8 leads on the gap value in all these 10

times. Their average fitness value is closer to the optimum value than that of the opponents. It

also means that, with the remaining 9 times claiming the top place, BPSO8 is not superior to

BSSA1 and MMBO, whose numbers are 14 and 8, respectively. Another interesting fact is that

no top spot is shared among the tested algorithms in this type of instance.

Moreover, BPSO8 seems to be truly better in attaining the best solution, with 5 times at the

top of the table, while the remaining 5 times are taken by MMBO and BSSA1 (3 for MMBO

and 2 for BSSA1). It is rather equal when we find the best one in terms of the best average

result, when BPSO8, MMBO, and BSSA1 reach the first position 3 times each. When searching

for the best candidate by comparing the worst outputs of the tested algorithms after 30 runs,

our proposed BSSA1 finishes top 4 times while the closest opponents, MMBO and BSSA2,

another variant of our algorithm, reach the top spot 2 times. For MS1 and MMBO have no

data on Stdev and Gap, if we exclude rankings on these columns, BSSA1 and BPSO8 have simi-

lar overall performance in strongly correlated instances, while MMBO finishes third, not so far

behind. In terms of standard deviation, our proposed algorithms lead in all 10 instances,

which proves that their returned solutions are more consistent than those from the others. In

another approach, BPSO8 has the best average ranking in the Best and Gap categories, and

BSSA1 comes out on top in the Average, Worst, and Stdev categories.
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Table 5. Test results with inverse strongly correlated instances.

Instance OPT Algorithm Best Average Worst Stdev Gap

IDKP1 70106 FirEGA 70106 70099.00 70090 7.23 0.01

BPSO8 69950 69760.97 69521 109.15 0.49

IHHO 70079 70037.00 - 39.84 -

BSSA1 70106 70098.20 70052 12.27 0.01

BSSA2 70106 70106.00 70106 0.00 0.00

IDKP2 118268 FirEGA 118169 117869.00 117625 102.59 0.34

IHHO 118256 118240.00 - 20.78 -

BPSO8 118000 117418.00 117040 228.83 0.72

BSSA1 118268 118259.33 118230 16.80 0.01

BSSA2 118268 118260.00 118240 5.48 0.00

IDKP3 234804 FirEGA 234497 233997.00 233666 175.42 0.34

BPSO8 234540 234253.67 233800 192.52 0.23

IHHO 234769 234760.00 - 14.43 -

BSSA1 234750 234739.33 234730 6.91 0.03

BSSA2 234760 234743.67 234730 7.65 0.03

IDKP4 282591 FirEGA 282148 280695.00 278881 827.63 0.67

BPSO8 281560 280953.33 280220 328.28 0.58

BSSA1 282590 282585.33 282570 7.30 0.00

BSSA2 282590 282589.67 282580 1.83 0.00

IDKP5 335584 FirEGA 335004 333484.00 329621 1173.90 0.63

BPSO8 334330 333380.67 332480 479.64 0.66

BSSA1 335580 335580.00 335580 0.00 0.00

BSSA2 335580 335580.00 335580 0.00 0.00

IDKP6 452463 FirEGA 451680 449863.00 446704 1161.52 0.58

BPSO8 451390 450455.00 448980 563.12 0.44

BSSA1 452430 452411.00 452380 12.42 0.01

BSSA2 452420 452410.67 452390 10.81 0.01

IDKP7 489149 FirEGA 488009 485592.00 476385 2294.28 0.73

BPSO8 485920 484205.67 482400 879.02 1.01

BSSA1 489150 489130.67 489100 11.43 0.00

BSSA2 489140 489130.33 489110 11.29 0.00

IDKP8 533841 FirEGA 533035 529984.00 514196 2308.11 0.72

BPSO8 528450 526356.67 524150 1268.72 1.40

BSSA1 533840 533824.67 533820 5.71 0.00

BSSA2 533840 533825.00 533820 6.82 0.00

IDKP9 528144 FirEGA 526410 523982.00 511651 2216.13 0.79

BPSO8 522140 518834.67 515480 1726.89 1.76

BSSA1 528140 528138.33 528110 5.92 0.00

BSSA2 528140 528138.33 528130 3.79 0.00

IDKP10 581244 FirEGA 578903 576772.00 568903 1905.18 0.77

BPSO8 572260 569364.67 566140 1446.41 2.04

BSSA1 581240 581237.33 581230 4.50 0.00

BSSA2 581240 581232.00 581130 20.41 0.00

https://doi.org/10.1371/journal.pone.0266537.t005
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Table 6. Test results with strongly correlated instances.

Instance OPT Algorithm Best Average Worst Stdev Gap

SDKP1 94459 FirEGA 93235 93171.00 93070 42.15 1.36

BPSO8 94363 94181.63 93897 113.74 0.29

IHHO 93296 93212.00 - 42.03

MS1 94030 93695.00 93376 - -

MMBO 93686 93222.00 92371 - -

BSSA1 94286 94238.13 94140 36.95 34.42

BSSA2 94286 94265.27 94224 16.37 34.46

SDKP2 160805 FirEGA 159159 159004.00 158859 61.54 1.12

BPSO8 160570 160136.00 159780 182.33 0.42

IHHO 159548 159529.50 - 68.59 -

MS1 159019 158082.00 155574 - -

MMBO 159881 159442.00 158433 - -

BSSA1 159980 159837.67 159690 70.55 35.15

BSSA2 159980 159851.33 159720 58.88 35.16

SDKP3 238248 FirEGA 235454 235241.00 235043 79.86 1.26

BPSO8 237370 236778.33 235960 314.48 0.62

IHHO 235608 235478.00 - 0.00 -

MS1 236634 236070.00 235765 - -

MMBO 236896 236208.00 232114 - -

BSSA1 236420 236329.67 236190 50.82 0.65

BSSA2 236510 236379.33 236210 56.75 0.67

SDKP4 340027 FirEGA 336353 335963.00 335709 122.41 1.20

BPSO8 338240 337433.00 336210 495.98 0.76

MS1 337954 337248.00 336834 - -

MMBO 338392 337522.00 336733 - -

BSSA1 336980 336833.33 336700 65.04 19.19

BSSA2 336940 336839.00 336690 50.67 19.20

SDKP5 463033 FirEGA 452900 447587.00 444255 1974.99 3.34

BPSO8 459970 458292.00 457130 802.76 1.02

MS1 455491 454026.00 452553 - -

MMBO 457678 454344.00 452356 - -

BSSA1 460240 460072.67 459920 79.13 37.10

BSSA2 460150 460051.33 459910 56.86 37.09

SDKP6 466097 FirEGA 459254 458893.00 458584 162.94 1.55

BPSO8 462650 461310.67 459880 680.64 1.03

MS1 461242 460729.00 460178 - -

MMBO 462237 460603.00 457323 - -

BSSA1 461020 460871.67 460780 55.53 1.86

BSSA2 461030 460831.67 460590 94.03 1.85

SDKP7 620446 FirEGA 599361 592279.00 579673 3949.03 4.54

BPSO8 614830 613182.67 610700 984.83 1.17

MS1 609852 608712.00 604763 - -

MMBO 614167 610971.00 606124 - -

BSSA1 615960 615810.33 615720 63.71 25.89

BSSA2 615850 615686.00 615410 90.12 25.87

(Continued)
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Uncorrelated data sets are where the values and the costs are not related much, and it is

interesting to see how tested algorithms perform in this type of distribution. Table 7 gives data

on the performances of the algorithms in solving these instances. It is a rather equal perfor-

mance when BPSO8 and BSSA1 take the top rank 23 times each. Interestingly, while BPSO8 is

unbeatable in all 10 instances when we look at the gap values, its standard deviation perfor-

mance is not that great. Furthermore, the Stdev values of our proposed BSSA1 and BSSA2 are

much lower than those from BPSO8. Hence, since the returned solutions are concentrated

close to the expected value, we can conclude that BSSA1 and BSSA2 are more stable than

BPSO8, whose solutions are more dispersed. Finally, IHHO, FirEGA, MS1, and MMBO are

not really in good form with this type of DKP01 problem with no wins. In terms of average

ranking, it is interesting that BPSO8 and BSSA1 lead in the same categories as in the case of

strongly correlated instances.

Weakly correlated instances are where MMBO has its voice. Table 8 shows that MMBO

gets the first rank in terms of best solutions 5 times. These tests also prove the solid perfor-

mance of our proposed algorithms. BPSO8 performs best on gap values with 10 wins, while

IHHO and FirEGA struggle with every aspect of the tests with zero wins. If we count only the

total times claiming the winner spot in the Best, Average, and Worst categories, MMBO has 9

times, BPSO8 has 4 times, BSSA2 has 6 times while BSSA1 is the winner with 10 first places.

Our BSSA1 variant dominates most of the categories in terms of average rankings.

Table 9 summarizes the performance of the tested algorithms through their average rank-

ings. Note that because the results of IHHO are available just for 3 instances for each data set

type, their average ranking values are calculated by total ranking value divided by 3 for each

data set type. Additionally, because the data sets used in the experiments are very different, we

provide the statistical results by data set type to see how algorithms perform with each of them.

The lower the average rank is, the better the algorithm operates. Our proposed algorithms,

BSSA1 and BSSA2, outperform other algorithms in inverse strongly correlated instances. In

Table 6. (Continued)

Instance OPT Algorithm Best Average Worst Stdev Gap

SDKP8 670697 FirEGA 661276 660104.00 659367 426.06 1.58

BPSO8 665230 663681.67 661500 925.22 1.05

MS1 663804 663103.00 662574 - -

MMBO 665183 663766.00 649495 - -

BSSA1 664800 664666.67 664540 69.30 24.51

BSSA2 664710 664527.00 664130 134.94 24.48

SDKP9 739121 FirEGA 729135 727544.00 727064 343.67 1.57

BPSO8 732910 730950.33 728990 1024.07 1.11

MS1 731439 730654.00 730204 - -

MMBO 734825 733517.00 732477 - -

BSSA1 731800 731600.33 731440 79.85 38.52

BSSA2 731640 731449.33 731070 148.97 38.49

SDKP10 765317 FirEGA 756205 753394.00 750757 985.46 1.56

BPSO8 758110 756337.33 753730 1038.86 1.17

MS1 757821 757466.00 757158 - -

MMBO 760814 759625.00 757750 - -

BSSA1 756250 756100.33 755900 85.16 30.08

BSSA2 756140 755840.67 755340 191.08 30.04

https://doi.org/10.1371/journal.pone.0266537.t006

PLOS ONE BSSA for DKP01

PLOS ONE | https://doi.org/10.1371/journal.pone.0266537 April 7, 2022 20 / 28

https://doi.org/10.1371/journal.pone.0266537.t006
https://doi.org/10.1371/journal.pone.0266537


Table 7. Test results with uncorrelated instances.

Instance OPT Algorithm Best Average Worst Stdev Gap

UDKP1 85740 FirEGA 80593 79103.00 77935 690.01 7.74

BPSO8 85740 85590.03 85347 102.30 0.17

IHHO 79302 78521.00 - 1060.36 -

MS1 84200 82763.00 81131 - -

MMBO 82703 79406.00 76453 - -

BSSA1 85186 85036.47 84883 73.00 21.30

BSSA2 85346 85099.07 84983 78.00 21.39

UDKP2 163744 FirEGA 155039 151662.00 149875 1044.95 7.38

BPSO8 163560 163061.67 162260 314.45 0.42

IHHO 149905 149477.67 - 1630.47 -

MS1 161133 158503.00 155911 - -

MMBO 158465 155976.00 153570 - -

BSSA1 161390 160900.33 160550 184.14 36.05

BSSA2 161140 160914.67 160700 112.36 36.06

UDKP3 269393 FirEGA 246698 240886.00 237980 1491.97 10.58

BPSO8 268430 267008.67 265560 681.78 0.89

IHHO 237418 234706.00 - 4317.54 -

MS1 251954 249646.00 244938 - -

MMBO 253629 246651.00 242352 - -

BSSA1 266810 266517.33 266270 135.92 13.51

BSSA2 266700 266505.67 266280 100.85 13.50

UDKP4 347599 FirEGA 321605 317319.00 314486 1426.85 8.71

BPSO8 346120 343789.00 341800 924.93 1.10

MS1 332554 320776.00 315150 - -

MMBO 333253 329155.00 315914 - -

BSSA1 343620 343400.33 343160 136.95 21.52

BSSA2 343630 343423.33 343070 138.27 21.53

UDKP5 442644 FirEGA 405409 399620.00 395367 1692.23 9.72

BPSO8 437870 435053.00 431500 1572.94 1.71

MS1 405222 400653.00 395533 - -

MMBO 414526 403898.00 395473 - -

BSSA1 435470 435173.00 434850 128.17 29.68

BSSA2 435490 435113.00 434750 167.40 29.66

UDKP6 536578 FirEGA 486556 478726.00 474015 2233.61 10.78

BPSO8 530600 527004.67 523880 1877.81 1.78

MS1 487014 481401.00 476628 - -

MMBO 486156 480552.00 474406 - -

BSSA1 529070 528514.00 528190 183.48 16.81

BSSA2 528740 528375.67 528150 148.99 16.78

UDKP7 635860 FirEGA 568119 560948.00 556938 2441.80 11.78

BPSO8 627350 621875.33 617290 2120.14 2.20

MS1 618146 604287.00 588175 - -

MMBO 615617 608351.00 599086 - -

BSSA1 628920 628517.33 628220 146.94 28.49

BSSA2 628750 628432.33 627950 177.39 28.47

(Continued)
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the case of strongly correlated and uncorrelated instances, although BPSO8 has the best aver-

age best ranks, it cannot repeat that performance level in other factors. After analyzing all the

factors, it can be seen that BSSA1 achieves the best average rankings in these two data sets.

What happens with the weakly correlated data sets is the repetition of what can be seen with

inverse strongly correlated instances, where our algorithms have a big difference compared to

others in terms of average rankings. In summary, even though the data sets have significant

differences, our proposed algorithms still have good adaptability and give higher quality solu-

tions than other algorithms.

Computational cost

In this subsection, we will provide an overview of our proposed algorithm’s running time com-

pared to BPSO8. Since PSO is very popular and widely used, we decided to use it as the bench-

mark algorithm in this test. This comparison allows us to see the computational time of our

BSSA2 algorithm compared to a widely recognized optimization algorithm. To perform this

assessment, we run the algorithms on uncorrelated instances (UDKP1-UDKP10). Each algo-

rithm will run 30 times on each instance, then the average running time of 30 runs is calcu-

lated. Test results show that our algorithm needs more time to finish a run. This could be due

to the differences in the operations of the global search algorithm. Anyway, the time required

is still acceptable.

Table 10 provides the results of this test.

Conclusions and future work

Discounted {0-1} knapsack problem (DKP01) is not just a theoretical problem but also a prin-

ciple widely applied in real life. Therefore, finding an effective way to solve this problem will

help in real-world business and real-time decision-making systems. Using metaheuristics to

solve NP-hard problems, our paper proposes and evaluates a new optimization algorithm with

Table 7. (Continued)

Instance OPT Algorithm Best Average Worst Stdev Gap

UDKP8 650206 FirEGA 590137 585286.00 580684 2078.87 9.99

BPSO8 637900 634388.33 629600 2121.45 2.43

MS1 596452 581196.00 575279 - -

MMBO 617036 610379.00 603906 - -

BSSA1 639890 639421.00 639190 154.75 19.78

BSSA2 639840 639288.67 638810 225.81 19.75

UDKP9 718532 FirEGA 655172 649636.00 645012 2023.64 9.59

BPSO8 704350 699156.33 693320 3132.54 2.70

MS1 661984 652572.00 644955 - -

MMBO 687790 683032.00 677702 - -

BSSA1 708650 708300.00 707930 147.86 34.11

BSSA2 708570 708091.67 707690 201.70 34.07

UDKP10 779460 FirEGA 712270 706575.00 701545 2013.43 9.35

BPSO8 767550 756768.33 749330 3865.48 2.91

MS1 719003 713858.00 706131 - -

MMBO 755675 748568.00 739292 - -

BSSA1 763570 763253.67 762900 193.27 31.31

BSSA2 763390 762995.00 762570 217.55 31.27

https://doi.org/10.1371/journal.pone.0266537.t007
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Table 8. Test results with weakly correlated instances.

Instance OPT Algorithm Best Average Worst Stdev Gap

WDKP1 83098 FirEGA 82803 82693.00 82592 52.04 0.49

BPSO8 83090 83014.10 82649 82.14 0.10

IHHO 82782 82733.50 - 98.29 -

MS1 83074 82947.00 82800 - -

MMBO 83024 82524.00 80568 - -

BSSA1 82943 82852.20 82732 40.48 18.18

BSSA2 82924 82865.63 82789 25.44 18.20

WDKP2 138215 FirEGA 137704 137584.00 137356 63.23 0.46

BPSO8 138110 137830.00 137270 161.59 0.28

IHHO 137753 137722.00 - 57.28 -

MS1 138143 137989.00 137840 - -

MMBO 138004 137747.00 137275 - -

BSSA1 137900 137836.00 137750 31.25 16.55

BSSA2 137920 137861.67 137840 23.65 16.57

WDKP3 256616 FirEGA 254120 253657.00 253307 173.01 1.15

BPSO8 256360 255778.67 254850 325.67 0.33

IHHO 254302 254278.00 - 33.23 -

MS1 248982 248318.00 247714 - -

MMBO 255687 254214.00 249695 - -

BSSA1 255950 255880.67 255820 36.95 8.98

BSSA2 255930 255889.00 255840 19.71 8.98

WDKP4 315657 FirEGA 313966 312849.00 311998 484.76 0.89

BPSO8 315040 314340.67 313360 471.89 0.42

MS1 314905 314612.00 314321 - -

MMBO 315007 314621.00 313880 - -

BSSA1 315040 314967.00 314930 31.31 11.46

BSSA2 315030 314980.67 314930 24.63 11.46

WDKP5 428490 FirEGA 426311 424548.00 423058 798.53 0.92

BPSO8 427390 426349.67 424950 640.64 0.50

MS1 427530 427173.00 426876 - -

MMBO 427666 427038.00 425553 - -

BSSA1 427760 427662.33 427590 32.77 27.44

BSSA2 427720 427659.33 427560 31.62 27.44

WDKP6 466050 FirEGA 463185 461672.00 457718 1107.57 0.94

BPSO8 464040 463228.33 461980 487.82 0.61

MS1 464993 464701.00 464383 - -

MMBO 465222 464299.00 461746 - -

BSSA1 464890 464816.00 464750 40.22 2.73

BSSA2 464870 464819.33 464740 32.26 2.73

WDKP7 547683 FirEGA 544019 541949.00 538126 1224.68 1.05

BPSO8 545270 544006.67 542140 779.24 0.67

MS1 545607 545241.00 544912 - -

MMBO 546716 545823.00 544933 - -

BSSA1 546500 546438.00 546360 37.08 11.71

BSSA2 546490 546416.67 546240 53.33 11.71
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Table 8. (Continued)

Instance OPT Algorithm Best Average Worst Stdev Gap

WDKP8 576959 FirEGA 573427 571559.00 563253 1495.36 0.94

BPSO8 574290 572652.67 571520 693.20 0.75

MS1 575387 575126.00 574920 - -

MMBO 575850 575297.00 573694 - -

BSSA1 575550 575474.00 575400 36.82 7.80

BSSA2 575600 575432.67 575320 55.39 7.79

WDKP9 650660 FirEGA 647477 644820.00 630086 2056.06 0.90

BPSO8 646910 645133.00 642980 923.83 0.85

MS1 649059 648813.00 648611 - -

MMBO 649871 649600.00 649135 - -

BSSA1 648840 648712.33 648630 44.00 22.83

BSSA2 648700 648620.00 648390 77.99 22.81

WDKP10 678947 FirEGA 675452 673008.00 668239 1441.96 0.88

BPSO8 675460 673135.33 670990 1171.04 0.86

MS1 677817 677581.00 677401 - -

MMBO 678464 678216.00 677800 - -

BSSA1 677500 677428.67 677360 35.60 16.55

BSSA2 677440 677357.00 677290 43.64 16.54

https://doi.org/10.1371/journal.pone.0266537.t008

Table 9. The average ranks of tested algorithms by data set type.

Data set Algorithm Average Best Rank Average AVG Rank Average Worst Rank Average Stdev Rank Average Gap Rank

IDKP FirEGA 3.1 3.4 3.6 3.8 3.2

BPSO8 4.2 4.0 3.3 3.6 3.7

IHHO 2.7 2.7 3.3

BSSA1 1.2 1.7 1.7 1.7 1.6

BSSA2 1.3 1.4 1.1 1.3 1.3

SDKP FirEGA 6.1 6.2 5.4 3.3 2.2

BPSO8 1.7 2.5 3.6 4.1 1.0

IHHO 5.7 5.3 2.3

MS1 4.3 4.5 3.6

MMBO 2.6 3.3 4.2

BSSA1 3.0 2.4 1.9 1.7 3.5

BSSA2 3.5 2.6 2.3 1.7 3.3

UDKP FirEGA 5.8 5.9 5.7 3.7 2.0

BPSO8 1.6 2.2 2.6 3.3 1.0

IHHO 7.0 7.0 5.0

MS1 4.7 4.7 4.7

MMBO 4.5 4.4 4.6

BSSA1 2.0 1.7 1.5 1.3 3.7

BSSA2 2.4 2.1 1.9 1.7 3.3

WDKP FirEGA 6.0 6.1 5.5 3.9 2.0

BPSO8 3.6 4.3 4.7 3.5 1.0

IHHO 6.0 5.0 3.3

MS1 3.3 3.2 2.9

MMBO 2.2 3.6 3.8

BSSA1 2.7 2.2 1.8 1.7 3.5

BSSA2 3.4 2.2 2.1 1.4 3.5

https://doi.org/10.1371/journal.pone.0266537.t009
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four variants based on the salp swarm algorithm that integrates many new techniques and

results in better solution quality. This quality is worth the additional computational cost. The

new algorithm is also more stable in producing good solutions than existing ones.

Although the performance of our algorithm is optimistic, some aspects can be further stud-

ied in the future. Firstly, in the current approach, while SSA is responsible for covering the

search space, the repair operator is responsible for correcting errors that the solutions provided

by SSA might make and optimizing it in a predetermined strategy. The problem is that SSA’s

exploration capability is somewhat limited, and tweaks are needed to make the global search

capacity stronger. Simply put, the current mechanism makes this algorithm very powerful in

exploiting a certain direction as well as searching the neighborhoods of the salps in the chain.

However, if the algorithm is modified and improved reasonably, later salps can significantly

contribute to the exploration process. Improving this property will make the algorithm more

powerful and flexible. Next, the repair operator can also be improved. We will be testing vari-

ous options to make the repair operator work even better, such as defining a new item parti-

tioning scheme. It is also important to note that the sizes of the problem instances in the test

data sets are only from 100 to 1,000 dimensions. In the case of more complex data sets, such as

10,000 or 100,000 dimensions or even more, current algorithms for DKP01 will reveal their

weakness in terms of computational cost. That’s also an approach we plan to focus on, specifi-

cally developing parallel versions of the algorithm that take advantage of the computing power

of next-generation CPUs and GPUs and reduce the computational cost.
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