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Meta-analysis of the microbial biomarkers in the gut–lung
crosstalk in COVID-19, community-acquired pneumonia and
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Significance and Impact of the study: The human microbiota is emerging as an influential key player
engaged in the onset and progression of pathogenic diseases. The post-genomic era evidently unravels
the little known indispensable microbiota profiles of the lung infections and their influence on the gut.
Integration of machine learning concepts with the genomics complements successful and crucial evalua-
tion of serious infectious disease treatment and prevention options. The current study of microbial pro-
files of gut–lung axis when extended to the brain, skin, oral, liver, faecal, vaginal and secretion fluids
would offer incredible information of well-established microbial interplay involved in health and well-
ness of humans.

Keywords

diversity, gut–lung axis, interplay, microbiota,

random forest classifier.

Correspondence

S. Aishwarya, Department of Bioinformatics,

Stella Maris College (Autonomous), Chennai

600086, India.

E-mail: aishwarya@stellamariscollege.edu.in

2022/LAMICRO-2022-0246.R1: received 2

May 2022, revised 3 July 2022 and accepted

26 July 2022

doi:10.1111/lam.13798

Abstract

Respiratory infections are the leading causes of mortality and the current

pandemic COVID-19 is one such trauma that imposed catastrophic

devastation to the health and economy of the world. Unravelling the

correlations and interplay of the human microbiota in the gut–lung axis would

offer incredible solutions to the underlying mystery of the disease progression.

The study compared the microbiota profiles of six samples namely healthy gut,

healthy lung, COVID-19 infected gut, COVID-19 infected lungs, Clostridium

difficile infected gut and community-acquired pneumonia infected lungs. The

metagenome data sets were processed, normalized, classified and the

rarefaction curves were plotted. The microbial biomarkers for COVID-19

infections were identified as the abundance of Candida and Escherichia in lungs

with Ruminococcus in the gut. Candida and Staphylococcus could play a vital

role as putative prognostic biomarkers of community-acquired pneumonia

whereas abundance of Faecalibacterium and Clostridium is associated with the

C. difficile infections in gut. A machine learning random forest classifier

applied to the data sets efficiently classified the biomarkers. The study offers an

extensive and incredible understanding of the existence of gut–lung axis during

dysbiosis of two anatomically different organs.

Introduction

Microbiome research in the current scenario has explored

the understanding of the structure, functional and

immunological benefits of the microbial communities in

human health and disease (Enaud and Prevel 2020). The

microbiome composed of bacteria, fungi, virus, archaea

and phages is found to be involved in the human

pathologies and disruption of homeostasis (Ning and

Yang 2020). Under normal conditions of healthy individ-

uals, a balanced homeostasis, crosstalk and cross-

regulation of the microbiome is established. They con-

tribute to various health benefits, offer a commensal rela-

tionship to the host and avoid the overgrowth of

potentially harmful microbes. A disturbance in the struc-

ture and function of the microbiome over prolonged
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years would result in dysbiosis (Kim and Womble 2021).

Multitude of factors including the diet, intake of antibi-

otics, chronic inflammations, stress, environmental fac-

tors, immune suppression etc. influences dysbiosis which

in turn can pose a threat to the distant organs as well Li

et al. 2021.

Respiratory disorders that affect the lungs and airways

throw a global burden resulting in one-sixth of all mortal-

ity across the world. The “Big five” respiratory disorders

constituting chronic obstructive pulmonary disorders

(COPD), asthma, tuberculosis, acute respiratory infections

and lung cancer are more lethal (Kogan et al. 2019).

Lungs have been a home to abundant noncultivable bac-

teria that are disrupted during the respiratory disorders

that have been reported in COPD (Wang and Bafad-

hel 2016), asthma (Loverdos and Bellos 2019), lung can-

cer (Liu and Ma 2020), respiratory viral infections

(Hanada and Pirzadeh 2018), bronchiectasis (Richardson

and Dicker 2019), pneumonia (Hong et al. 2021) and

cystic fibrosis (Faner and Sibila 2017). The lungs were

believed to be sterile for a long time until recently

emerged culture independent metagenomics studies

reported the coexistence of microbes in the lung (Hilty

and Burke 2010). Off late, the little available knowledge

of the lung microbiome is being enhanced and evidence

suggests the presence of Firmicutes, Bacteroidetes and

Proteobacteria in the lower respiratory tract (Faner and

Sibila 2017). Several pieces of evidence in recent years

have confirmed the existence of diverse, both known and

novel microbial communities in various human organs

including skin, mouth, gastrointestinal tract, lung, faeces,

urine, vagina and nasopharyngeal tracts. Although lung

microbiome and their functions are being tapped recently,

there is still a significant lag in comparison to the gut

microbiome studies.

The two anatomically distinct organs—the gut and the

lung exhibit complex and potential communication

through their microbiome that reinforces the evidence of

the gut–lung axis (GLA) crosstalk. There has been proven

evidence of gut dysbiosis in case or respiratory infections

and reverse is possible too where the dysbiosis of the gut

possibly influences the respiratory infections. The dysbio-

sis of gut and the role of gut microbes in various ailments

have been extensively studied but the inter organ crosstalk

such as GLA, gut–brain–lung axis (GBLA) and gut–skin
axis (GSA) of the microbiome have not been studied well

and should not be overlooked (DeGruttola et al. 2016).

There is an intelligible interplay of gut–lung microbes that

plays a vital role in maintaining homeostasis and

immunomodulatory regulations. Hence, there is a press-

ing need to understand the effect of pathologies in both

gut and lung simultaneously in cases of respiratory infec-

tions. In the current study, we aimed at inferring the

microbial biomarkers for both lung and gut dysbiosis due

to the pathologies—COVID-19, community-acquired

pneumonia and Clostridium difficile infections. The study

is first of its kind where the microbiome of lung and gut

has been extensively investigated to unravel the gut–lung
intermodulation during lung and gut ailments both indi-

vidually and collectively.

Results and discussion

Taxonomic classification of the microbiota

Meta-analysis of metagenomic data sets was performed

from multiple projects with integration of samples under

six categories CG (Control gut), CL (Control Lung),

CVIG (COVID-19 infected gut), CVIL (COVID-19

infected lungs), CDIG (C. difficile infected gut) and CAPL

(community-acquired pneumonia infected lung). The

data sets individually were processed, quality checked and

the adapters were trimmed. The data sets of the same

sample category were pooled after a second quality check

and the total number of classified reads was identified

using MG-RAST and QIIME2. The data sets were pooled

with respect to sample categories due to two reasons: (1)

some of the data sets were quite smaller with few samples

and (2) very few data sets were available under some cate-

gories in the public access database. The pooled in data

of sample categories CG, CL, CVIG, CVIL, CDIG and

CAPL resulted in an average classification of 74�076,
98�11, 100, 99�1, 49�95 and 69�12% reads respectively.

Phylum level classification of the gut and lung

microbiome samples

Phylum level classification in the three gut sample cate-

gories—CG, CVIG and CDIG as shown in TableS1

revealed two phylum Bacteroidetes and Firmicutes as pre-

dominant and the other phylum were negligible in all

three samples. The percentage of Bacteroidetes and Firmi-

cutes in CG was 55�37 and 34�58% which showed signifi-

cant difference in CVIG and CDIG. In comparison with

CG, the Bacteroidetes were higher with 72�33% and Fir-

micutes were lesser with 23�60% in CVIG, whereas lesser

occurrence of Bacteroidetes with 37�41% and higher

occurrence of Firmicutes with 56�35%. Increase in the

occurrence of Fusobacteria was observed in CDIG which

was not seen in the other two.

Phylum classification of microbiota in the lung cate-

gories such as CL, CVIL and CDIL as shown in Table S2,

the occurrence of Actinobacteria, Firmicutes, Fusobacteria

and Bacteroidetes was seen. Higher percentages of Firmi-

cutes (41�59%) were seen in CL along with 26�13% of

Fusobacteria and 16�01% of Actinobacteria. In contrast,
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CVIL had a significantly higher percentage of Proteobacte-

ria (22�31%) which was very meagre (0�029%) in CL and

11�34% in CAPL. Similar significant enrichment of 30�98%
of Ascomycota was seen in CVIL and 35�97% in CAPL

which was not at all observed in the control lung. A drastic

reduction of 15�22% of Firmicutes was seen in CVIL in

contrast to CL and CAPL which showed 41�59 and 37�91%
respectively. A very significant deterioration of Fusobacteria

was seen in CVIL and CAPL while a dominant percentage

of 26�13% was seen in CL. In lung infections like COVID-

19 and community-acquired pneumonia, significant

enrichment of Ascomycota and Proteobacteria was seen

which were not present in the control lung while reduced

occurrence of Fusobacteria and Firmicutes was observed.

Hence, overexpression of Ascomycota and Proteobacteria,

and reduction of Fusobacteria and Firmicutes can be puta-

tive prognostic microbial biomarkers in cases of COVID-19

and pneumonia.

Relative abundance of gut and lung microbiome at the

genus level

Relative abundance of CG, CVIG and CDIG at the genus

levels had a total number of 474215, 1440701 and 309107

classified reads respectively. The Prevotella and Bacteroides

were predominant in CG with 36�80 and 35�80% respec-

tively. A drastic reduction of Prevotella was seen in both

CVIG and CDIG with 1�1 and 5�1%, respectively, while

the occurrence of Bacteroides was reduced in CDIG with

21�31% with a more or less similar percentage in CVIG

with 29�65%. A prominent increase in the presence of

Ruminococcus (12�79%) was seen in CVIG against 3�10%
in CG and 1�13% in CDIG. A rise in the growth of Fae-

calibacterium (9�83%) and Enterococcus (9�20%) was also

seen in CVIG in contrast to respective 2�68 and 1�15% in

CG. A significant rise in the presence of Faecalibacterium

with 23�90% and Clostridium 29�79% was seen in CDIG

in contrast to respective 6�7 and 2�60% in CG. Hence,

Prevotella and Bacteroides are characteristic microbes of

control gut with their reduction in COVID-19 infected

gut with abundance of Ruminococcus. Characteristic

microbes in CDI was increased levels of Faecalibacterium

and Clostridium with the reduction in Prevotella and Bac-

teroides. The relative abundance of the gut microbiota

CG, CVIG and CDIG at the genus level classification can

be seen in Fig. 1a.

A total of 687 738, 426 970 and 413 309 reads were

classified at the genus level for the lung microbiota of CL,

CVIL and CAPL. The relative abundance of lung micro-

biota at the genus level for the three sample categories

CL, CVIL and CAPL was shown in Fig. 1b. One predomi-

nant control lung microbiota was Leptotrichia with 62�2%
or classified reads followed by two genus Megasphaera

with 12�84% and with 16�26% abundance. In a strange

contrast, the CVIL had three abundant Candida, Acineto-

bacter and Corynebacterium with 35�37, 14�10 and

12�10%, respectively, against their absence in the healthy

lung with the absence of Leptotrichia. CAPL exhibited

abundance of two genuses Candida and Staphylococcus

with 38�78 and 28�50%, respectively, along with noted

absence of Leptotrichia. Hence, Leptotrichia was found to

be characteristic microbiota of control lung with Candida,

Acinetobacter and Corynebacterium of COVID-19 infected

lungs while Candida and Staphylococcus in case of pneu-

monia infected lungs. The absence of Leptotrichia was a

striking feature of the infected lungs.

Relative abundance of species in gut–lung crosstalk

Species level identification of microbiome is restricted to

16S rRNA amplicon sequencing, yet a small percentage of

predominant species were inferred from the classified

reads. Total normalized species count accounted for 79,

80, 65, 63, 42 and 43% in CG, CVIG, CDIG, CL, CVIL

and CAPL respectively. The abundant species that were

observed in the CG were Prevotella copri (28%), Bac-

teroides stercoris (16%), Chryseobacterium oncorhynchi

(5�2%), Bacteroides vulgatus (14�1%) and Paraprovotella

capra (3�2%), while CL had predominantly Leptotrichia

goodfellowii (21%), Streptococcus pneumoniae (12%), Lep-

totrichia sp. Oral taxon 212 (15%), Klebsiella pneumoniae

(7%), Acinetobacter baumannii (6%) and Lautropia mir-

abilis (5�3%). The relatively abundant species of CVIG

were found to be Chryseobacterium viscerum (9�2%), S.

pneumoniae (5�2%), Chryseobacterium sp. (6%), Provotel-

lamassillia timonensis (5�1%), Escherichia coli (18�1%),

Faecalibacterium prausnitzii (5�4%), Staphylococcus aureus

(9�2%) and Bacteroides stercoris (4�3%) whereas CVIL

exhibited abundance of E. coli (24%) also called an

intestinal microbe. Streptococcus pneumoniae (8�2%), K.

pneumoniae (4�7%), Salmonella enterica (5�6%), Neisseria

meningitidis (3�3%) and Dialister succinatiphllus (2�1%)

were the successively abundant microbiota of COVID-19

infected lung. CDIG samples showed abundance in

Ruthenibacterium lactatiformans (18%), Parabacteroides

distasonis (13%), E. coli (5�2%), Bacteroides dorei (8�2%),

C. difficile (9�9%) and Clostridium symbiosum (3�9%)

whereas in cases of CAPL, E. coli (14%), S. aureus (12%),

S. pneumoniae (5�7%) and K. pneumonia (5�8%) were

seen. Figure 2a shows the comparison of normalized spe-

cies across all the six samples.

Gut–lung axis microbial crosstalk

In the identification of microbial biomarkers across the

categories of samples, top 41, 40, 45, 34, 45 and 46
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Figure 1 (a) Relative abundance of genus in the gut microbiome in three categories—control gut (CG in blue), COVID-19 infected gut (CVIG in

yellow) and Clostridium difficile infected gut (CDIG in pink). (b) Relative abundance of genus in the lung microbiome in three categories—control

lung (CL in blue), COVID-19 infected lung (CVIL in yellow) and community-associated pneumonia infected lung (CAPL in pink).

Figure 2 (a) Relative abundance of species in all six sample categories—CG, CVIG, CDIG, CL, CVIL and CAPL. (b) Five mutual microbiota occur-

ring in all six categories of samples. A total of 251 microbial genus were compared that included 41 from CG, 40 from CVIG, 45 from CDIG, 34

from CL, 45 from CVIL and 46 from CAPL.
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abundant microbes in categories CG, CVIG, CDIG, CL,

CVIl and CAPL, respectively, were filtered (>20%) and a

comparison of mutual microbes as shown in Fig. 2b, was

performed to infer the presence of Prevotella, Enterococ-

cus, Veillonella, Corynebacterium, Actinomyces in all six

samples. In a healthy gut and lung axis, the organisms

such as Prevotella, Bacteroides, Rothia, Enterococcus,

Clostridium, Actinomyces, Alkaliphilus, Corynebacterium,

Eubacterium, Bacillus, Megasphaera, Bifidobacterium and

Veillonella were possibly common. Microbes that were

present in CVIG and CVIL were found to be Enterococcus,

Streptococcus, Oribacterium, Veillonella, Gemella, Actino-

myces, Corynebacterium, Bacteroides, Ruminococcus, Atopo-

bium, Fusobacterium, Eubacterium, Lactobacillus, Prevotella.

Although Prevotella and Bacteroides were less abundant,

they still occur during the COVID-19 infections in both

gut and lung. Enterococcus, Streptococcus, Oribacterium,

Gemella, Ruminococcus, Atopobium, Fusobacterium, Eubac-

terium and Lactobacillus occurrence were noted only dur-

ing the COVID-19 infections and can be considered

putative microbial biomarkers. In cases of lung infections

both in COVID-19 and pneumonia, Candida and Escheri-

chia were predominant followed by Pseudomonas, Staphy-

lococcus, Acinetobacter, Stenotrophomonas, Enterobacter,

Klebsiella and Nakaseomyces. Significant occurrences of

Candida and Escherichia might be probable diagnostic

microbial biomarkers of lung infections. Occurrence of Bifi-

dobacterium, Veillonella, Gemella, Actinomyces, Corynebac-

terium, Enterococcus, Prevotella, Clostridium, Escherichia,

Atopobium, Klebsiella, Porphyromonas and Lactobacillus was

possible in cases of CDI infections in gut and CAP infec-

tions in lung which elicits the role of gut–lung crosstalk of

microbiome. COVID-19 and CDI infections together can

elicit the occurrence of Gemella, Actinomyces, Barnesiella,

Corynebacterium, Fusobacterium, Eggerthella and Butyricicoc-

cus in the gut. The list of overlapping microbes between the

sample categories is listed in Table S3.

Differential abundance of microbiota in the gut–lung
axis

From the mutually existing microbiota, differential abun-

dances of microbiota at the genus level were identified

from their log2FC and P < 0�05 using the DESeq2 with

logCPM normalization. There were 3, 5 and 3 significant

differentially overlapping microbiota filtered for CL versus

CG, CVIL versus CVIG and CAPL versus CDIG. The

differentially expressed overlapping microbiota of CL ver-

sus CG was Prevotella, Veillonella and Eubacterium with

their respective log2FC values of �6�28, �0�99 and

�1�54. Occurrence of Prevotella and Eubacterium was

abundant in the gut whereas they were reduced in lungs

while occurrence of Veillonella is not very different. Com-

parison of CVIL versus CVIG revealed the overlapping

occurrences of Prevotella, Veillonella, Actinomyces, Entero-

coccus and Lactobacillus with the log2FC values of �1�51,
�1�82, �2�49, �2�06 and �2�86 respectively. Actinomyces,

Enterococcus and Lactobacillus originally seen in the gut

were now seen in COVID-19 infected lungs while the

occurrence of Prevotella and Veillonella also increased in

lungs. This presumes the movement of micorbiota to

lungs during infections. Comparison of CAPL and CDIG

showed the abundance of Prevotella, Clostridium and

Enterococcus with log2FC ratio being 0�03, �4�29 and

�0�43 respectively. During CAP conditions, the lung

acquires more Prevotella which is almost equal in abun-

dance with the gut. Enterococcus, pathogenic bacteria of

the gut, also shows an increase in CAPL. The overlapping

differentially significant microbiota of the gut and lungs

is shown in Fig. S1.

Corynebacterium, Dietzia, Anoxybacillus, Trichosporon,

Lactobacillus, Bacillus, Pseudomonas, Nocardiopsis and

Escherichia were significantly upregulated only during

COVID-19 with significant fold changes of 15�65, 13�23,
12�91, 12�89, 12�74, 12�62, 12�51, 11�87 and 11�7 respec-

tively. They are not seen in CL and CAPL. Lactobacillus

and Veillonella were seen upregulated in CVIG than CG

while in contrast, Escherichia a gut bacterium was not

seen in CVIG but was upregulated in CVIL. Paenibacillus,

Mitsuokella, Paraprevotella and Catenibacterium were

completely lost in both CDIG and CVIG but were abun-

dant only in CG. Actinomyces, Alistipes, Dorea, Eggerthella,

Collinsella and Butyricicoccus were abundant only in the

CVIG but not in CDIG and CG. Actinomyces, Eubac-

terium, Carnobacterium, Rothia, Atopobium, Butyrivibrio,

Megasphaera and Leptotrichia were abundant in CL and

absent in CVIL and CAPL. Candida, Acinetobacter and

Enterococcus were abundant in CVIL and CAPL. Differen-

tially abundant microbiota of gut and lungs has been

depicted in Fig. 3. Thus, upregulated microbial biomarker

for COVID-19 infection in lungs are Corynebacterium,

Dietzia, Anoxybacillus, Trichosporon, Lactobacillus, Bacillus,

Pseudomonas, Nocardiopsis and Escherichia while in the

gut were Collinsella, Rothia, Blautia, Actinomyces, Dorea,

Figure 3 Differentially abundant genus with P < 0�05 identified between lungs and gut. Green bars represent differential abundance of CVIG to

CG, pink bars represent the differential microbial abundance of CDIG to CG, yellow bars represent differential microbial abundance of CVIL to CL

and blue bars represent differential microbial abundance of CAPL to CL.
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Eggerthella and Butyricicoccus. The downregulated

biomarkers of COVID-19 in gut were Catenibacterium,

Paraprevotella, Dialister, Mitsuokella, Paenibacillus and

Escherichia with significant fold changes of �11�53,
�11�79, �12�42, �13�29, �13�85 and �15�06 respectively.

Predominant dysbiosis of lungs and gut was observed

during COVID-19 and there was drastic abundance of

gut microbes in the lungs and vice versa seen both in

lungs and gut. During C. difficile infections, the Fusobac-

terium (log2FC = 13�22) is the significantly upregulated

microbial marker while Bifidobacterium (log2FC = �13�29),
Lactobacillus (log2FC = �12�06) and Veillonella

(log2FC = �12�92) were the most promising downregu-

lated biomarkers. Finally during CAPL, significantly

upregulated biomarkers were Alternaria, Yarrowia,

Peptostreptococcus, Clostridium and Gemella with log2FC

of 13�93, 13�35, 13�23, 12�19 and 1�95, respectively, and
one downregulated biomarker was Actinomyces (log2FC =
�13�44). The core microbiome of all the six categories

was clustered based on average clustering and Euclidean

distance matrix as seen in Fig. S2.

Diversity of microbiota—alpha diversity

The biodiversity of the microbiota across various sample

categories was inferred from the rarefaction curves plot.

The plot represents a varying number of individual OTUs

identified with a depth of 2000 rarified reads. Alpha

diversity is a metric that measures the rarefied samples

specific to the richness and evenness of the species. Simp-

son index that ranges from 0 to 1 signifies species diver-

sity, higher the range, diverse are the species. Accordingly

as shown in Table 1, the values of all six samples were in

the range of 0�79–0�87 that showed greater diversity of

species. The Shannon index that measures evenness of the

species was in the range of 1�5–3�5. For the current cate-

gories, the Shannon index ranged between 2�0 and 2�6 in

all the six samples confirming the evenness of the sample.

Observed species metric deciphers the number of unique

OTUs in the sample. It inferred that a wide range of

unique OTUs—69 for CG, 369 for CVIG, 64 for CDIG,

70 for CL, 839 for CVIL and 113 for CAPL. The total

number of abundant species occurring in the sample was

107 for CG, 242 for CVIG, 45 for CDIG, 49 for CL, 118

for CVIL and 47 for CAPL. Thus, based on the abundant

species per the given sample size, a rarefaction curve for

the six samples was plotted and shown in Fig. S3a. From

the inferred values, there is a greater diversity, evenness

and richness of species in all six sample categories.

Beta diversity

Beta diversity is the degree of difference in the microbial

community in relation to the environment gradients or

pattern of environments. The range of beta diversity met-

ric lies between 0 and 1 that corresponds, respectively, to

similarity and diversity among the samples. Vegan R

package deduced the beta diversity by Bray–Curtis from

the genera of samples and the values are shown in

Table S4. A Euclidean space matrix was created that mea-

sured the pairwise distance between the samples’ abun-

dant OTUs. A pairwise dissimilarity matrix was calculated

for the six samples and a nonlinear dimensionality reduc-

tion ordination was plotted with a principal coordinate

analysis (PCoA) as shown in Fig. S3b. The ordination of

the diseased lung samples is farther to the control lung,

and hence, the microbiota is more diverse between each

other in gut and lungs.

Machine learning and ROC curve

An additional machine learning strategy was applied to val-

idate the OTUs using a supervised random forest classifier

approach. The ROC curve is a measure of specificity and

sensitivity of the microbial diversity. From the OTU table,

the ROC curve was plotted for true positives (specificity)

against false positives (sensitivity) on X and Y axis respec-

tively. As seen in the Fig. S4, AUC was 0�9028 and 0�9381
for CG versus CVIG and CG versus CDIG respectively. The

AUC scores for CL versus CVIL and CL versus CAPL,

respectively, were 0�9653 and 0�9382. Bacteroides and Prevo-

tella were associated with a healthy gut and Leptotrichia

with a healthy lung while signifying that the predicted

model was reliable and accurate. Ruminococcus, Collinsella,

Table 1 Alpha diversity of the microbiota

Categories Simpson Index (0–1) Shannon Index (1�5–3�5)
Observed unique

species

Number of abundant

species

CG 0�875119543891432 2�60045768532565 69 107

CVIG 0�876555953648081 2�50674071849006 369 242

CDIG 0�808983186590101 2�00752693166077 64 45

CL 0�812674010654916 2�24456436175542 70 49

CVIL 0�855636744533066 2�69800679243509 839 118

CAPL 0�791916215737391 2�22549046479948 113 47
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Rothia and Blautia were associated with COVID-19 gut

while Corynebacterium, Lactobacillus and Escherichia with

COVID-19 lungs. Fusobacterium and Candida, Clostridium

were associated with Clostridium infections and

community-acquired pneumonia respectively.

Discussion

The synergies of host–microbiota interactions have been

widely explored and understanding of the symbiotic rela-

tionships has brought various underlying pathological

mechanisms to the limelight. Microbiome, be it in the

gut, skin, lung or any other organ has a tremendous role

to play in the maintenance of homeostasis, immune mod-

ulations, gene expressions and regulation of pathological

imbalance in the host (Anand and Mande 2018). The

current study probed a meta-analysis approach to under-

stand the interplay of gut–lung microbiota in healthy and

pathological states by analysing the microbiome of

healthy gut, healthy lung, COVID-19 infected lung,

COVID-19 infected gut, community-acquired pneumonia

and C. difficile infected gut. The publicly available ampli-

con metagenome data sets from NCBI-SRA were retrieved

and processed to infer the abundant OTUs in both nor-

mal and diseased states under six categories as CG, CVIG,

CDIG, CL, CVIL and CAPL.

The abundant phylum classified at CG was Bacteroide-

tes and Firmicutes. In contrast, CVIG had a higher per-

centage of Bacteroidetes and lesser abundant Firmicutes

while CDIG showed lesser percentage of Bacteroidetes

and more abundant Firmicutes as compared to CG. This

is an iconic feature that reveals the state of gut dysbiosis

during respiratory infections like COVID-19. Fusobacteria

abundance was only observed in CDI gut and not in

other two states. A simultaneous investigation of lung

dysbiosis revealed a significant abundance of Proteobacte-

ria in COVID-19 infections which was strikingly lower in

the control lung and can be a probable microbial biomar-

ker phylum candidate of COVID-19. Similarly, highly

abundant Ascomycota was also observed in both CVIL

and CAPL which proves a characteristic feature of lung

dysbiosis due to respiratory infections. A drastic reduction

of Fusobacteria and Firmicutes was observed in both

infections when compared to the healthy lung. Scarcity of

Firmicutes in COVID-19 infections in both gut and lung

might possibly indicate the existence of GLA crosstalk.

Firmicutes were found to be generally abundant in both

the healthy gut and lungs. The genus level classification of

the samples resulted in more meaningful interpretations.

Significant paucity of Prevotella was seen in both CVIG

and CDIG when compared to the healthy gut while

Ruminococcus was on a rise in CVIG along with Faecal-

ibacterium and Enterococcus with possibilities of being

microbial biomarkers of COVID-19 infection in the gut.

Faecalibacterium and Clostridium were enriched in CDI

than the normal gut. Reduction of the Prevotella and Bac-

teroides in the gut dysbiosis was seen. Leptotrichia was

identified as the characteristic microbe of healthy lungs

which drastically vanished during COVID-19 and pneu-

monia infections. Abundance in Candida, Acinetobacter

and Corynebacterium and occurrence of Escherichia in the

CVIL were noted while abundant Candida and Staphylo-

coccus in CAPL indicated the lung dysbiosis due to lung

infections. Abundance of Candida and paucity of Lep-

totrichia seem to have significant chances of being consid-

ered a diagnostic microbial marker in cases of lung

infections. The normal gut and lung exhibit a rather dis-

tinct microbial population which is greatly altered in the

respiratory and gut infections. Species-level alteration was

seen in CVIG where a noticeable percentage of S. pneu-

moniae was seen, which is responsible for causing bacte-

rial pneumonia in lungs and leads to fatality.

CVIL had abundance of gut pathogens such as Sal-

monella enterica, known to cause typhoid salmonellosis

(Andino and Hanning 2015), K. pneumoniae, known to

cause liver abscess (Fung and Lin 2012) and E. coli known

to cause gastroenteritis (Kittana and Gomes-Neto 2018).

CVIL also showed the presence of A. baumannii (Kokko-

nouzis and Christou 2009) and S. pneumoniae that are

known to cause pneumonia of the lung. Escherichia coli

abundance was seen in CAPL samples as well. During the

COVID-19 infections, the presence of gut pathogens in

the lung and vice versa could possibly suggest the translo-

cation or interplay of the GLA microbiome. Prevotella,

Enterococcus, Veillonella, Corynebacterium and Actinomyces

were found to exist overlapping in all the six sample cate-

gories.

In an attempt to investigate the overlapping abundant

genus of the samples, top abundant microbes of each sam-

ple were compared. In the healthy gut and lung, the organ-

isms such as Prevotella, Bacteroides, Rothia, Enterococcus,

Clostridium, Actinomyces, Alkaliphilus, Corynebacterium,

Eubacterium, Bacillus, Megasphaera, Bifidobacterium and

Veillonella were common. During COVID-19 infections,

Enterococcus, Streptococcus, Oribacterium, Veillonella,

Gemella, Actinomyces, Corynebacterium, Bacteroides,

Ruminococcus, Atopobium, Fusobacterium, Eubacterium,

Lactobacillus and Prevotella were found common in both

the gut and lungs. This is a clear indication of the dysbiosis

happening in both organs and suggestive of the possible

GLA axis communications. Candida, a common microbial

fungus present in intestines in traces and Escherichia,

intestinal bacteria are relatively abundant in the lungs dur-

ing both COVID-19 and pneumonia infections thereby can

strongly be considered as putative diagnostic microbial

biomarkers of lung infections. Strikingly overlapping
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occurrence of Bifidobacterium, Veillonella, Gamella, Actino-

myces, Corynebacterium, Enterococcus, Prevotella, Clostrid-

ium, Escherichia, Atopobium, Klebsiella, Porphyromonas and

Lactobacillus in CD infections and CAPL indicate the sub-

sistence of GLA crosstalk. The presence of Gemella, Actino-

myces, Barnesiella, Corynebacterium, Fusobacterium,

Eggerthella and Butyricicoccus was observed in the gut dur-

ing COVID-19 and CDI from which it is evident that

COVID-19 induces gut dysbiosis thus proving the existence

of GLA intermodulation.

The microbiota diversity, species richness and evenness

metrics are significant in the microbiota comparison stud-

ies, and thus, alpha diversity within each sample and beta

diversity between the samples were calculated. Alpha

diversity of the individual samples was calculated based

on the SHE (Species richness, Shannon diversity and

Evenness) index (Anonye 2018). Simpson metrics for the

six samples were in the range of 0�79–0�87 that lies within

the accepted range of 0–1, indicating the greater diversity

of microbial taxa in each sample. Shannon diversity index

was measured between 2�0 and 2�6 that is suggestive of

the evenness of the samples. Richness of the species in the

samples were evident as measured by the number of

observed unique OTUs were 69 for CG, 364 for CVIG, 64

for CDIG, 70 for CL, 839 for CVIL and 113 for CAPL.

Thus, the microbiota of CG, CL, CVIG, CVIL, CDIG and

CAPL was all significantly diverse, rich and even. The spe-

cies diversity between the sample categories was revealed

by the mathematical Euclidean similarity matrix and a

successive Bray–Curtis algorithm that deciphered the

presence of greater diversity of microbes in all four sam-

ples except the COVID-19 and CAP infected lung. Statis-

tical significance of the OTU classification was performed

with Wilcoxon paired t-test, before assigning them to the

respective genus. A random classifier was generated using

Python modules (Ning and Yang 2020) that resulted in

an AUCs of 0�9028, 0�9381, 0�9653 and 0�9382 for CG

versus CVIG, CG versus CDIG, CL versus CVIL and CL

versus CAPL respectively. Faecalibacterium, Lactobacillus

and Bifidobacterium being deterministic of healthy gut

while Leptotrichia, Megasphaera and Gamella, of healthy

lung. The ROC curve obtained indicated that the classi-

fied genus was more accurate and valid (Chen 2021).

COVID-19 infection in lungs is associated with the modi-

fied microbial abundance in Corynebacterium, Dietzia,

Anoxybacillus, Trichosporon, Lactobacillus, Bacillus, Pseu-

domonas, Nocardiopsis and Escherichia while Collinsella,

Rothia, Blautia, Actinomyces, Dorea, Eggerthella and

Butyricicoccus in the gut. The downregulated biomarkers

of COVID-19 were Catenibacterium, Paraprevotella, Dial-

ister, Mitsuokella, Paenibacillus and Escherichia with signif-

icant fold changes of �11�53, �11�79, �12�42, �13�29,
�13�85 and �15�06 respectively. Predominant dysbiosis

of lungs and gut was observed during COVID-19 and

there were contrasting abundance and reduction of

microbiota seen both in lungs and gut than their normal

counterparts. During C. difficile infections, the Fusobac-

terium is the significantly enhanced microbial marker

while Bifidobacterium, Lactobacillus and Veillonella were

significantly diminished biomarkers. Promising abun-

dance of Alternaria, Yarrowia, Peptostreptococcus, Clostrid-

ium and Gemella was associated with community-

acquired pneumonia and Actinomyces was diminished

than the control lung.

There are very few previous research that has con-

firmed the microbial biomarkers such as Pseudomonas

spp., Enterobacteriaceae and Acinetobacter spp. in criti-

cally ill COVID-19 patients, whereas Burkholderia, Chry-

seobacterium and Enterobacteriaceae were biomarkers in

deceased patients with diminished Prevotella spp., Neisse-

ria spp., Veillonella spp. and Streptococcus spp. (Gaibani

and Viciani 2021). In a comparative metabolome, micro-

biome analysis of COVID-19, performed by Liu and

Liu (2021) Megasphaera micronuciformis, Prevotella histi-

cola, Streptococcus sanguinis, Veillonella dispar and Lautro-

pia mirabilis were found in abundance. In a study that

analysed gut microbiome of COVID-19 patients revealed

the abundance of Bifidobacterium adolescentis, Eubac-

terium rectale and F. prausnitzii (Patel and Roper 2021).

Significantly abundant bacteria such as Ruminococcus gna-

vus, Ruminococcus torques and B. dorei were observed dur-

ing antibiotic usage in COVID-19 patients and reduction

of B. adolescentis, F. prausnitzii and E. rectale was noted

during antibiotic intake (Yeoh et al. 2021). The current

study identified the higher rates of E. coli (24%), an

intestinal microbe in the lungs of COVID-19 samples and

presume that might be nosocomially acquired either by

aspiration or haematogenous dissemination from infected

GI tract to cause E.coli pneumonia (Jonas 1982). An

increase in S. pneumoniae in the lungs can elevate acute

lung infection, a scariest reason for 1 million deaths every

year and the increase is 12 lipoxygenase dependent. The

third abundant K. pneumoniae was also observed to cause

a nosocomial outbreak of pneumonia in lungs when there

is gastrointestinal disturbance (Ashurst and Daw-

son 2022). Salmonella enterica the enteropathogen has

been associated with gastroenteritis, bacteraemia, chole-

cystitis, endocarditis, meningitis etc. Its nosocomial pres-

ence in the lung causes pneumonia which is very rare and

has been attributed to prior lung infection and impaired

cellular immunity (Samonis and Maraki 2003). Abun-

dance of E. coli, S. pneumoniae and K. pneumonia was

also seen in CAPL. Hence, it is possible that a GLA exists

and whenever there is a lung infection, the possibilities of

a gastrointestinal infection rates are higher. Chryseobac-

terium indologenes was identified in COVID-19 associated
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bacteraemia with devastating co-harbouring antimicrobial

resistance genes blaND2, blaCIA and blaCcrA (Yeh and

Li 2022). In CDIG, apart from C. difficile and E. coli, three

other abundant bacteria—R. lactatiformans, Parabacteroides

distasonis and F. prausnitzii were frequently associated with

gut dysbiosis and severity of gastrointestinal pathologies

(Schult and Reitmeier 2022).

The current study is one of the first few studies to evalu-

ate the microbial biomarkers of lung and gut dysbiosis

simultaneously and unravelled novel microbial biomarkers

along with those already identified. The study throws light

on the intermodulation of GLA and signifies that a respira-

tory infection influences the gut alteration and vice versa to

disrupt the normal microbial balance both in lungs and

gut. The study confirms the microbial biomarkers as Can-

dida and Escherichia for respiratory infections in lung while

Ruminococcus for gut dysbiosis due to COVID-19.

Although the study is extensive and sheds crucial light on

the GLA intermodulation, suffers few limitations such as

(1) the absence of lung microbiome data during gut infec-

tions, limited the understanding of lung dysbiosis; (2) since

the study is computational, the alterations of microbiome

could not ascertain whether it was due to translocation; (3)

16s rRNA amplicon data, restricted the precise classifica-

tion of abundant species and statistically significant func-

tional annotation could not be achieved; and (4) the study

warrants further clinical research to validate the results.

Nevertheless, the choice of samples and the normalization

of read counts before assigning the taxonomy to avoid sam-

ple bias had achieved an extensive insight on GLA inter-

play. This study strongly envisages the higher possibilities

of GLA interplay existence during lung infections.

Materials and methods

Selection of data set

For the study, to compare the abundant microbiome in the

gut–lung axis, we chose publicly available data sets from SRA

that included—(1) gut metagenome data set of healthy con-

trol group; (2) gut metagenome of COVID-19-positive

patients; (3) gut metagenome of C. difficile infected patients

(Zhang et al. 2015); (4) lung metagenome data set of healthy

control group (Ekanayake and Madegedara 2020); (5) lung

metagenome of COVID-19 infected patients; and (6) lung

metagenome of community-acquired pneumonia patients.

The only criteria applied to include data sets were amplicon

metagenome sequencing strategy. Since the data were very

limited, we ended up taking all the available data sets with

different platforms and layouts. The source for gut samples

was stool and for lungs was nasopharyngeal swab/bron-

choalveolar lavage fluid or sputum. The raw reads of meta-

genome data sets as specified in Table S5 were retrieved

from the NCBI-SRA database using sra-toolkit. The data sets

that were chosen for the study differed in the number of

samples; read lengths and number were inferred to be rela-

tively negligible to impact the technical variation in contrast

to the biological variation (Nayfach and Pollard 2016).

Data processing

All the data sets were processed individually during the

initial validation. Quality check of the raw data was per-

formed by trimming out the low quality (<30 phred

score) and short read adapter sequences (<50 bp) using

FASTQC package and TRIMMOMATIC tools respec-

tively. Paired-end data sets were assembled into single-

end reads using FLASH (Magoc and Salzberg 2011) and

later integrated into six different classification such as

control gut (CG), COVID-19 infected gut (CVIG), C. dif-

ficile infected gut (CDIG), control lung (CL), COVID-19

infected lung (CVIL) and community-acquired pneumo-

nia infected lung (CAPL). Burrows-wheeler alignment

tool depleted the human genome by aligning the sequence

reads with human reference genome hg38 (Menzel

et al. 2016). The unassembled data were processed using

the Meta-Genome Rapid Annotation using Subsystems

Technology server (MG-RAST) v3.0. Gene calling of the

quality filtered reads was processed with 90% identity to

ribosomal sequences and was clustered at 97% identity.

The contigs with an average length of 350 bp were assem-

bled using Megahit software (Li and Luo 2016).

Relative abundance and taxonomic classification

The scaffolds of each sample were further classified by dis-

carding operational taxonomic units (OTU) <5 classified

reads (Johnson and Spakowicz 2019). Taxonomic classifi-

cation was obtained by clustering the OTU using BLAST with

>90% identity and an E-value of 1e-5 and compared with

Silva database (www.arb-silva.de). The reads were normal-

ized for all the six samples with read count normalization.

Relative abundance of the microbiota from all six samples

computed from the least common ancestor algorithm

(LCA) was plotted as stacked bar charts (Aishwarya and

Gunasekaran 2021) at both genus and species level.

Species-level classification was performed only for the

OTUs with greater than 80% identity to single species

mapped to the NCBI BLAST specific for 16srRNA.

Comparative analysis

Comparison of the microbial samples was conducted with

Vegan R package version 3.6.1 (Dixon 2003). Species

richness and evenness were calculated with alpha diversity

indices such as Shannon, Simpson index and observed
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taxa (Sato and Kakuta 2020). Alpha diversity measures

were calculated based on a rarefied abundant data equiva-

lent to 2000 reads/sample. Statistical t-tests were per-

formed to ensure the significant differences between alpha

diversity of the six categories. Beta diversity analysis esti-

mates the difference of species between samples and

PCoA was executed to estimate the dissimilarity of taxa

between the samples based on Bray–Curtis distance which

is a multidimensional scaling metric. It calculates the dis-

similarity matrix between the groups of samples based on

Euclidean distance and chi-squared distances (D’Argenio

et al. 2014; Sato and Kakuta 2020). The significant differ-

ence was confined to a P < 0�05. Rarefaction curves rep-

resent the species richness between the samples and were

plotted using ggplot2 of R package. Microbiota common

to the gut–lung axis was identified from Venn plots using

the Jvenn server (Bardou and Mariette 2014).

Statistical analysis and machine learning-based accuracy

prediction

The differential abundance at the genus level was per-

formed with the DESseq2 R package to infer log2FC and

the significance of difference was limited to p < 0�05 cor-

rected with multiple testing Benjamini Hochberg correc-

tion. The differences between the samples types were

calculated with Wilcoxon two-tailed t-test (Older and

Diesel 2017). The microbiota for the control versus dis-

eased was classified with a random forest (RF) classifier of

Scikit package of Python and a fivefold cross-validation was

performed with the decision tree classifier module. OTUs

that were rare and <20% of the samples were removed and

the remaining OTUs were transformed with standardized

techniques for each sample and together included in the

feature selection. The RF model was constructed with train-

ing sets from 70% of the OTUs and remaining 30% was

assigned as test sets. The training set was applied success-

fully to the test sets and a confusion matrix was created.

After a fivefold cross-validation, a successful area under

curve (AUC) for the receiver operating characteristic

(ROC) curve comparable between gut metagenome and

lung metagenomes was computed (Li and Chang 2020).
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Table S1 Taxonomic classification at phylum level of

the gut microbiome.

Table S2. Taxonomic classification at phylum level of

the lung microbiome

Table S3. Presence of mutual microbes across the dif-

ferent categories of samples used in the study.
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Table S4. Beta diversity calculation by Bray–Curtis
algorithm

Table S5. Data sets retrieved from the SRA database

for comparison

Figure S1. The significant overlapping microbiota seen

in lungs when compared to the gut. They are significant

with a P < 0�05.
Figure S2. Heat map of the significant core micro-

biome clustered according to their normalized abundance.

Figure S3. (A) Rarefaction plot depicting the alpha

diversity of samples in CG (site 1), CVIG (site 2), CDIG

(site 3), CL (site 4), CVIL (site 5) and CAPL (site 6). S

3B. Principal coordinate analysis plot that indicates the

beta diversity of the samples.

Figure S4. Receiver operating characteristic curve plot

obtained from random forest classifier of operational tax-

onomic unit classification of microbiota from six sample

categories.
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