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Dietary protein is effective for body-weight management, in that it promotes satiety,

energy expenditure, and changes body-composition in favor of fat-free body mass.

With respect to body-weight management, the effects of diets varying in protein differ

according to energy balance. During energy restriction, sustaining protein intake at the

level of requirement appears to be sufficient to aid body weight loss and fat loss. An

additional increase of protein intake does not induce a larger loss of body weight, but

can be effective to maintain a larger amount of fat-free mass. Protein induced satiety is

likely a combined expression with direct and indirect effects of elevated plasma amino

acid and anorexigenic hormone concentrations, increased diet-induced thermogenesis,

and ketogenic state, all feed-back on the central nervous system. The decline in energy

expenditure and sleeping metabolic rate as a result of body weight loss is less on a high-

protein than on a medium-protein diet. In addition, higher rates of energy expenditure

have been observed as acute responses to energy-balanced high-protein diets. In

energy balance, high protein diets may be beneficial to prevent the development of

a positive energy balance, whereas low-protein diets may facilitate this. High protein-

low carbohydrate diets may be favorable for the control of intrahepatic triglyceride

IHTG in healthy humans, likely as a result of combined effects involving changes in

protein and carbohydrate intake. Body weight loss and subsequent weight maintenance

usually shows favorable effects in relation to insulin sensitivity, although some risks may

be present. Promotion of insulin sensitivity beyond its effect on body-weight loss and

subsequent body-weight maintenance seems unlikely. In conclusion, higher-protein diets

may reduce overweight and obesity, yet whether high-protein diets, beyond their effect

on body-weight management, contribute to prevention of increases in non-alcoholic fatty

liver disease NAFLD, type 2 diabetes and cardiovascular diseases is inconclusive.
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INTRODUCTION

The prevalence of obesity and its associated co-morbidities,
such as non-alcoholic fatty liver disease (NAFLD), type 2
diabetes and cardiovascular diseases, has increased in a growing
number of countries (1, 2). Energy intake exceeding energy
expenditure results in a chronic positive energy balance, storage
of excess energy, and subsequent body weight gain (3). Treatment
of obesity requires a negative energy balance, which most
efficiently and effectively is achieved by applying an energy-
restricted diet (4). However, this usually results in increased
feelings of hunger and desire to eat, and in a decrease of
the feeling of fullness, implying a risk for sustaining a lower
energy intake. Body weight loss consists of loss of fat mass
and of fat-free mass (FFM); the latter causes a reduction in
energy expenditure and a decrease in energy requirement. This
vicious cycle may counteract the negative energy balance induced
by the energy-restricted diet. Consequently, body weight loss
should be paralleled by a reduction in energy intake without
changing appetite, and maintenance of energy expenditure by
preserving FFM. Both goals can be achieved through an energy-
restricted, relatively high-protein diet (5–8). In this review the
mechanisms of protein-induced appetite modulation, reward
homeostasis, and energy expenditure are highlighted, including
possible adverse effects of protein-diets. Finally, the relevance
of relatively high-protein diets for treatment or prevention of
NAFLD, cardiovascular diseases and type 2 diabetes apart from
weight-loss and subsequent weight maintenance are discussed.

SHORT-TERM DIETARY
PROTEIN-INDUCED ENERGY
HOMEOSTASIS - SATIETY

Short-term intervention studies using energy-balanced diets
with large contrasts in relative protein content have shown
that high-protein diets are more satiating than diets lower
in protein (9–15). Furthermore, subjects consumed less food
during an ad libitum high-protein diet relative to baseline (16),
while being similarly satiated and satisfied (16–18) Dietary
proteins exert a high satiating effect via different pathways
including stimulation of gut hormone secretion, digestion effects,
circulating amino-acid levels, energy expenditure, a ketogenic
state, and possibly gluconeogenesis. Here the gut-brain axis,
encompassing signaling from gastrointestinal hormones released
in the blood and acting at their brain receptors, conducts
signals to the brain deriving from the gastrointestinal system
contributing to control of energy intake.

Aminostatic Theory
Elevated blood concentrations of amino acids may stimulate
satiety signaling in the brain (13, 19–23). According to
the “aminostatic theory,” serum amino acids that cannot be
channeled into protein synthesis directly serve as satiety signals
(24). However, the aminostatic theory failed to gain strong
support because fasting circulating amino acid levels do not
correlate with appetitive sensations and there are non-congruent

appetitive responses to protein sources varying in the rate of
amino acid appearance. Indirectly, dietary amino acids may act
on satiety signaling via receptors in the duodeno-intestinal and
hepatoportal regions (25). Depending on the type of amino acid,
they increase or decrease the activity of hepatic vagal afferent
fibers, innervating satiety centers in the brain (25). The branched-
chain amino acids leucine, isoleucine and valine reportedly
contribute to satiety, following these mechanisms (13, 19–21, 23,
25).

Role of Anorexigenic and Orexigenic Gut
Hormones
The satiety-stimulating effect of protein is partly related to
increases in anorexigenic gut hormones, produced in response
to peripheral and central detection of amino acids (23, 26–
30). They react to elevated protein intake and stimulate vagal
activity in brain areas involved in the control of food intake
(23, 31, 32). Concentrations of glucagon-like peptide 1 (GLP-
1), cholecystokinin (CCK), and peptide YY (PYY) consistently
increase in response to high protein intakes (23, 26–30). Apart
from its effect on anorexigenic hormones, protein intake can also
influence orexigenic tone. Therefore, dietary protein consumed
in liquid preloads prolongs the postprandial suppression of
ghrelin (33, 34). This response was not affected by the type
of protein consumed (soy, whey, or gluten) and was similarly
observed in lean and overweight subject. The ghrelin decrease
was also shown during a whey-protein infusion intraduodenally
administered with a dose dependent effect (35, 36).

Cortisol response has also been studied after protein ingestion
with a significant decline of serum cortisol within 30min after
amino-acid ingestion (37). This underlines the general view
that amino-acids also stimulate catabolic pathways. In addition,
effects of protein on the orexigenic endocannabinoids have to be
investigated (38).

Possible Relations of Changes in
Amino-Acid Concentrations or Gut
Hormones With Satiety
Acute amino acid-related effects on satiety, depending on
the quality proteins, have been reported. The digestion of
“fast” proteins, such as whey, results in high and early rises
of plasma amino acids and appetite hormones (23). The
slower digestion and absorption rates of casein result in more
prolonged and maintained plasma amino acid and hormone
concentrations than those of whey (13, 22, 39, 40). However,
at high concentrations, no clear evidence exists for differences
in satiating capacity between different types of protein, (11,
21–23, 28, 33, 41–43). The concentrations of certain amino
acids have to be above a particular minimum threshold to
promote a relatively stronger hunger suppression or greater
fullness (23). Indispensible or complete proteins reach these
thresholds at lower concentrations than other, dispensible or
incomplete proteins. Deficiency of essential amino-acids may
lead to suppression of intake of food consisting of incomplete
proteins (44). A chemosensor for essential amino acid deficiency
is present in the anterior periform cortex (45), signaling brain
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areas that control food intake (44). Likewise, consumption of an
incomplete protein may be detected and result in a signal to stop
eating in humans (46). The signal of incomplete proteins is rather
a signal of hunger suppression than of satiation or satiety (23, 46).

Protein-Induced Satiety and Diet-Induced
Thermogenesis
The relationship between protein-induced satiety and diet-
induced thermogenesis, or DIT, is explained by increased energy
expenditure at rest implying increases in oxygen consumption
and body temperature. The feeling of oxygen deprivation is
translated into satiety feelings (12, 47). A positive relationship
between an increase in satiety and at the same time an increase
in 24-h DIT has been observed with an energy-balanced high-
protein diet (12, 48).

High-Protein Low-Carbohydrate Induced
Ketogenic Effect and Gluconeogenesis
Fasting β-hydroxybutyrate concentrations increase in response
to a ketogenic high-protein, “low-carb” diet compared with an
isoenergetic medium-protein, medium-carbohydrate diet (49–
51). Increased concentrations of β-hydroxybutyrate directly
affected satiety in a 36 h study (52). Gluconeogenesis and
satiety were increased at a zero carbohydrate, high-protein diet,
however, these were unrelated to each other, yet the increased
concentration of β-hydroxybutyrate contributed to satiety in the
high-protein diet (53).

In general, in short-term experiments, ad libitum high-
protein diets have been observed to sustain appetite at a level
comparable to the original diet, despite a lower energy intake.
Energy-restricted, high-protein diets produce a sustained lower
energy intake compared to diets with lower protein content,
without altered appetite and satiety scores (17, 54). Consequently,
individuals who consume a high-protein diet in combination
with energy-restriction are more satiated and potentially less
likely to consume additional calories from foods extraneous to
dietary prescription (10).

From short-term experiments we conclude that relatively
high-protein diets have the potential to maintain a negative
energy balance by sustaining satiety at the level of the original
diet (9, 16). This strong satiety effect depends partly on the
type of dietary protein, and is elicited by a mixture of gut-
brain axis effects, such as anorexigenic gut hormones, digestion,
amino-acids, ketogenesis, and the increase in diet-induced
thermogenesis. Gluconeogenesis did not show a relation with
satiety (53).

SHORT-TERM DIETARY
PROTEIN-INDUCED REWARD
HOMEOSTASIS

Although dietary protein-induced satiety affects energy intake,
it may be dominated by reward-driven eating behavior (20,
31, 55–57). Several brain areas that are involved in food
reward link high-protein intake with reduced food wanting
and thereby act as a mechanism involved in the reduced

energy intake following high protein intake (20, 31, 55–57). A
mechanism through which protein acts on brain reward centers
involves direct effects of certain amino acids as precursors of
the neuropeptides serotonin and dopamine (31, 55). A high-
protein, low-carbohydrate breakfast vs. a medium-protein, high-
carbohydrate breakfast led to reduced reward-related activation
in the hippocampus and parahippocampus before dinner (20,
32). Furthermore, acute food-choice compensation changed
the macronutrient composition of a subsequent meal to offset
the protein intervention (56). A compensatory increase in
carbohydrate intake was related to a decrease in liking and
task-related signaling in the hypothalamus after a high-protein
breakfast. After a lower-protein breakfast, an increase in wanting
and task-related signaling in the hypothalamus was related
to a relative increase in protein intake in a subsequent meal
(56). Protein intake may directly affect the rewarding value of
this macronutrient (56, 58). Thus limited protein-induced food
reward may affect compliance to a long-term protein-diet.

SHORT-TERM DIETARY
PROTEIN-INDUCED ENERGY
EXPENDITURE—EFFECTS AND
MECHANISMS

With respect to dietary protein-induced energy expenditure,
short-term effects of energy-balanced high-protein diets showed
higher rates of energy expenditure, especially diet-induced
thermogenesis (DIT) (59, 60). Mechanisms encompass the ATP
required for the initial steps of metabolism, such as protein
breakdown, synthesis and storage, and oxidation including urea
synthesis. Also gluconeogenesis may take place. Protein storage
capacity of the body is limited. Therefore readily metabolic
processing is necessary. The magnitude of DIT is determined by
the level of energy intake in relation to energy requirement and
the type of protein, and is illustrated by the difference between
the gross energy value of 22–25 kJ/g and the net metabolizable
energy of 13 kJ/g. DIT values for separate proteins are 20–30% of
energy intake from protein (61).

Significantly higher dietary protein induced DIT (59),
subsequently Sleeping Metabolic Rate (SMR) and Basal
Metabolic Rate (BMR) (12, 60) was shown in 36 h respiration
chamber studies, in comparison to iso-energetic, iso-volumetric,
dietary carbohydrate, or fat, composed of normal food items and
matched organoleptic properties. Short-term protein- induced
increase in DIT is explained by the ATP required for the initial
steps of metabolism and oxidation including urea synthesis,
while subsequent protein induced increase of SMR is explained
by stimulation of protein synthesis and protein turnover. The
metabolic efficacy of protein oxidation largely depends on the
amino acid composition of the protein (62). A well-balanced
amino acid mixture produces a higher thermogenic response
than does an amino acid mixture with a lower biological
value, explaining why intake of plant proteins or incomplete
proteins results in less protein synthesis than does intake of
animal protein. Based upon the stoichiometry of amino acid
catabolism and urea synthesis, the calculated energy expenditure
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to produce ATP is ranging from 153 kJ/ATP for cysteine, to 99
kJ/ATP for glutamate (63). This relative metabolic inefficiency
contributes to the higher diet-induced energy expenditure of a
high protein meal, which, in turn, has shown to be related to
subjective feelings of satiety (48). Gluconeogenesis, as a result
of further postprandial amino-acid metabolism also contributes
to the protein induced energy expenditure. De novo synthesis
of glucose in the liver from gluconeogenic precursors including
amino acids is stimulated by a high protein diet in the fed state
(64, 65), and is an alternative biochemical pathway to cope with
postprandial amino acid excess (66). When the protein content
of the diet is increased, Phosphoenolpyruvate Carboxylase
(PEPCK) that catalyzes the initial conversion of oxaloacetate to
phosphoenolpyruvate is up-regulated either in the fasted and
in the fed state, whereas glucose 6-phosphatase (G6Pase), that
catalyzes the last step of gluconeogenesis is up-regulated in the
fasted state and down-regulated in the fed state (64). Although
hepatic glycogen stores as well as hepatic gluconeogenesis have
been suggested to play a role in the regulation of satiety (67, 68),
this was not confirmed by a study by Veldhorst et al. (49)
However, they showed that gluconeogenesis strongly increased
energy expenditure, in that 42% of the increase in energy
expenditure after the high-protein diet was explained by the
increase in gluconeogenesis. The cost of gluconeogenesis was
33% of the energy content of the produced glucose (49).

Protein Turnover, Protein Breakdown, and
Protein Synthesis
Also protein turnover contributes to the high energetic costs
of protein metabolism, and protein synthesis. The daily protein
turnover of a healthy adult - defined as synthesis plus breakdown-
, 300 gram/day, depends on the type of protein, and age. It is
high in children, and decreases with older age. Increasing protein
intake increases protein turnover by increasing protein synthesis
and protein breakdown, and does not necessarily affect protein
balance (69, 70). Rapidly digested dietary protein results in a
stronger increase in postprandial protein synthesis and amino
acid oxidation than slowly digested protein (39, 40, 71).

Acutely, high protein intake stimulates protein synthesis and
turnover, and induces a small suppression of protein breakdown
(72–74). Prolonged low protein intake may lead to muscle loss
due to the lack of precursor amino acid availability for de novo
muscle protein synthesis (75, 76). Hursel et al. (70) observed that
protein turnover was significantly higher after a 12-week high-
protein vs. low-protein diet, with significant increases in protein
synthesis, protein breakdown, and protein oxidation. Notably,
in the fasted state net protein balance was less negative after
the low-protein diet compared with the high-protein diet, while
in the fed state, protein balance was positive with the high-
protein diet, and negative with the low-protein diet (70). Thus
protein turnover in the fasted state needs to be distinguished
from that in the fed state. The role of protein synthesis and
protein breakdown in FFM accretion was discussed by Deutz
and Wolfe (77), and Symons et al. (76). The observed maximum
response of protein synthesis after a single serving of 20–30 g
of dietary protein suggests that additional effects of protein

intake on FFM accretion are accounted for by the inhibition of
protein breakdown. However, a beneficial reduction of protein
breakdown only occurs with acute ingestion of protein (70, 76,
78–80). The positive protein balance observed at a high-protein
diet is due to acute postprandial responses, rather than to the
postabsorptive state.

Consumption of a low-protein diet for 12 weeks was not
detrimental to young healthy individuals who might have the
ability to adapt acutely to this condition (70). The Adaptive
Demands model developed by Millward may provide an
explanation for the observation that the human body is able
to show physiological adaptations to changes in protein intake
(81). The model proposes that the metabolic demand for amino
acids comprises a fixed component and a variable adaptive
component (81). Short-term changes in protein intake are likely
within the adaptive range. Adaptations in protein and amino
acid metabolism to changes in protein intake largely occur
via changes in whole-body protein turnover and amino acid
oxidation (82). Changes in amino acid oxidation were reflected
as decreased and increased nitrogen excretion in response to
the low- and high-protein diets respectively. The activity of
enzymes that regulate: (1) transamination, (2) the disposal of
the carbon skeletons in intermediary metabolism, and (3) the
disposal of nitrogen through the urea cycle increased in response
to high protein intake (83, 84). Nevertheless, a positive nitrogen
balance following high protein intake (69, 82, 85, 86) does
not automatically reflect an increase in protein anabolism (87).
The capacity of the body to increase amino acid anabolism
through an increase in lean body mass is limited (87). Only
interventions using diets high in specific indispensable amino
acids, such as leucine, might be able to stimulate protein
synthesis in specific target groups (73, 88). Therefore, transient
retention or loss of body nitrogen because of a labile pool of
body nitrogen may contribute to adaptations in amino acid
metabolism in response to changes in protein intake (89).
Transient adaptive mechanisms may be distinguished from
mechanisms that maintain homeostasis in the body in the longer-
term.

LONG-TERM DIETARY PROTEIN EFFECTS
DURING ENERGY RESTRICTION,
BODY-WEIGHT LOSS, AND BODY-WEIGHT
MAINTENANCE

Most long-term studies comparing energy-restricted diets with
a relatively high protein content and diets with a normal protein
content, within a large range of fat contents, showed independent
effects of a high protein intake on body weight reduction (7, 90–
93, 93–110), while in other studies the opposite has been observed
(111–121). From these studies, a larger reduction in fat mass
following relatively high-protein diets was reported by Wycherly
et al. (7), Soenen et al. (90), Brinkworth et al. (93), Brinkworth
et al. (94), Due et al. (96), Gardner et al. (98), Jesudason et al.
(101), Layman et al. (102), Das et al. (112), Foster et al. (115, 122),
Frisch et al. (97), Brinkworth et al. (123), Keogh et al. (121), Krebs
et al. (104, 119), while less reduction in fat mass was reported
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by Clifton et al. (113). An energy-restricted high-protein diet
in combination with exercise can even increase muscle mass
(124). The main reason behind the differences in outcomes of the
studies cited, is the difference in dosage of dietary protein (125).
If the control, implying an adequate protein intake is sufficiently
high, i.e., 0.66 g/kg body weight daily, then no differences in body
weight effects are expected. In case the relatively high protein diet
is higher than 1.2 g/kg body weight daily, then a fat free mass
sparing effect can be expected.

Conclusions from long-term studies comparing relatively
high-protein with normal-protein diets differ from those testing
relatively high-protein and low-protein diets (5). In the following
studies compliance was monitored and confirmed with a
quantitative biomarker, such as urinary nitrogen (5, 7, 91). A
relatively high protein diet (in % of energy) implies a restriction
in carbohydrate and fat intake, but no restriction of protein
intake (in g/d), thus a protein intake comparable to the original
diet. During energy restriction, sustaining protein intake at the
level of the minimal requirement (0.66 g/kg body weight daily)
appears not to hinder body weight loss and fat loss (7, 91, 126).
An additional increase of protein intake may not induce a larger
loss of body weight, but can be effective to maintain a larger
amount of FFM (7, 91, 126) and limits the reduction of energy
expenditure through sparing of FFM (91, 127). For example, a 6-
month energy restricted diet with a daily protein intake just above
the minimal requirement (0.8 g/kg body weight daily) induced a
comparable reduction in body weight to an energy-restricted diet
with a daily protein intake well above the minimal requirement
(1.2 g/kg body weight daily) (91). Interestingly, a protein intake
of 1.2 g/kg body weight daily resulted in a stronger decrease in
fat mass and preservation of FFM (91). Dietary protein intake
below requirements could lead to less weight loss and a higher
risk for body weight regain (6). Increasing the relative protein
content of a diet automatically results in a decrease in the relative
content of carbohydrate and/or fat, which theoretically could be
a factor in triggering the described effects. However, a study by
Soenen et al. demonstrated that the effects of a relatively high
protein intake on body weight loss and weight maintenance were
present independent of a low carbohydrate intake (90), and that
low carbohydrate alone, without high protein did not trigger the
described effects.

Protein diets could have resulted in stronger effects with
respect to body weight management, if compliance would have
been larger (see section Short-term Dietary Protein-Induced
Reward Homeostasis). To counteract poor compliance, dietary
restraint is necessary (128). In several long term clinical trials
with dietary protein, cognitive dietary restraint had increased,
implying greater conscious control over food intake (68, 90, 91).
Post hoc analysis of those data shows that the change in the
cognitive dietary restraint score was inversely related to the
change in body weight. Dietary restraint is associated with brain
signaling for reward, indicating a greater control over food intake
and implying a greater control over reward as well (129). In
general dietary restraint is associated with long-term weight
maintenance (130, 131).

Taken together, Clifton et al. (125) conclude from a recent
meta-analysis that the short-term benefit of higher protein diets

persists to a small degree over the long term, depending on
dietary compliance.

Body Composition
Older studies, in the perspective of composing meal replacers
to be used as energy restricted diets showed strong energy
restriction effects on body composition, in relation to the
percentage from dietary protein. The protein content of a
formula diet was varied from 0 to 50 g/d resulting in a protein loss
of between 1202 and 91 grams, respectively, over 28 days (132).
Loss of fat mass (FM) as a percentage of body weight loss was 43%
with 0 g/d protein, and up to 79% with 50 g/d protein, indicating
a change in body composition including sparing of fat free mass
(FFM), due to the amount of protein intake. Similarly, during
weight maintenance following weight loss, FFM was preserved,
while FM was reduced. Since weight maintenance after weight
loss usually implies a slight weight regain, Stock’s model can be
applied (133). The greatest metabolic efficiency of weight gain is
shown when protein intake is 10–15% of energy and inefficiency
is shown with <5 and >20% of energy from protein. The latter
metabolic inefficiency is related to body composition. For 1 kg
of body mass with 60% FM and 40% FFM, an additional 30 MJ
needs to be ingested, whereas for 1 kg of only FFM, an additional
50–70 MJ is needed (133, 134). This metabolic inefficiency,
partly due to sparing FFM promotes dietary protein induced
weight maintenance. In addition, preserving FFM, being the
main determinant of basal energy expenditure, limits a possible
reduction in energy expenditure during weight maintenance.
Whitehead et al. showed that during energy-restriction, the
decline in total energy expenditure and SMR as a result of body
weight loss is less on a high-protein than on a medium-protein
diet (135). Even an increase in FFM during a high-protein diet in
negative energy balance has been observed (124), although these
changes may partly be ascribed to a high protein intake combined
with physical activity.

PREVENTION OF OVERWEIGHT: ROLE OF
DIETARY PROTEIN IN NEUTRAL ENERGY
BALANCE

If the protein-induced effects on appetite and energy expenditure
observed during energy restriction also hold under non-
restricted conditions, then, increasing protein intake with a usual
diet may prevent overweight and obesity. A 12-week intervention
study was performed comparing high-protein (30% of energy
from protein) and low-protein (5% of energy from protein) diets,
in weight stable individuals (136). In this controlled situation,
participants were able to sustain the high- and low-protein diets.
The low-protein diet facilitated the development of positive
energy balance, while the high-protein diet was beneficial to
prevent this (136). Correspondingly, small increases in fullness
and satiety ratings were observed as acute responses to a high-
protein diet in neutral energy balance (136). In this situation,
translation into large changes in energy intake was not possible,
because subjects had to maintain their body weight. In the
longer term, appetite ratings were returned to the level of the
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original diet, which suggests that the human body habituates to
the satiating effects of high protein intake (136). FFM showed
small increases and decreases after a 12-week intervention with
high-protein and low-protein diets in energy balance (136). As
a consequence, SMR, DIT, and total energy expenditure was
maintained at the high-protein diet, while it was significantly
decreased at the low protein diet. Thus, at a constant body weight,
a high-protein diet may protect against the development of a
positive energy balance. The consumption of a low-protein diet
may increase the risk for the development of a positive energy
balance through adaptive thermogenesis (136).

DIETARY PROTEIN AND OVERWEIGHT
RELATED CO-MORBIDITIES

Humans with overweight or obesity may show co-morbidities,
such as a nonalcoholic fatty liver disease, type 2 diabetes, or
cardiovascular diseases. Whether a high-protein diet may be
protective against these co-morbidities, independent of, or in
addition to effects of weight loss is still under debate.

Nonalcoholic Fatty Liver Disease (NAFLD)
In general, weight loss improves metabolic function (6, 7), yet
a high protein intake may modulate intrahepatic triglyceride
(IHTG) content as well (137–139). In short-term studies, protein
supplementation was shown to be associated with reduced
hepatic fat (137–139). High ectopic lipid content, especially
IHTG content, and not visceral adipose tissue (VAT) volume,
is an independent risk factor for these metabolic disturbances
(140–142). A 12-week intervention study showed that effects
of high- and low-protein diets on IHTG content in weight-
stable individuals tended to lower IHTG content after the high
protein-low carbohydrate diet compared with the low protein-
high carbohydrate diet (127). This suggests that high protein-low
carbohydrate diets may be favorable for the control of IHTG
in healthy humans. High protein intake stimulates hepatic lipid
oxidation due to the high energetic demand for amino acid
catabolism and ketogenesis (5, 49). Furthermore, hepatic lipid
oxidationmay be stimulated by an increased bile acid production,
a process that may also inhibit lipogenesis (143). Protein-
induced glucagon secretion inhibits de novo lipogenesis and
stimulates hepatic ketogenesis (144, 145). High protein intake
may blunt the increase of very low density lipoprotein (VLDL)-
TG concentrations induced by carbohydrate intake (146–148).
High VLDL-TG concentrations may increase hepatic TG, and
subsequently IHTG content (148). The observed trend for a
difference in IHTG content between the diets likely is the result of
combined effects involving changes in protein and carbohydrate
intake.

Type 2 Diabetes
Relevant diets possibly contributing to the management of type
2 diabetes are low-carbohydrate diets. Those diets often are
high-protein diets. A recent systematic review explored the
interpretation and effectiveness of a low-carbohydrate diet in
the management of type 2 diabetes (149). They suggest that
low-carbohydrate diets may improve HbA1c, HDL cholesterol,

and triglyceride levels. The meta-analyses confirmed statistically
significant superiority of the low-carbohydrate intervention
arm in improving HbA1c, HDL cholesterol, triglyceride, and
systolic blood pressure levels at 1 year. Reducing carbohydrate
intake demonstrated a strong superiority over control diets in
reducing diabetes medication, which may have diminished the
observed effects of a reduced-carbohydrate intake on HbA1c.
This review concludes that reducing carbohydrate intake may
promote favorable health outcomes in the management of type
2 diabetes in the context of a healthy diet (149). The relation
between high-protein intake and type 2 diabetes is still under
debate, and results differ depending on study duration and source
of protein. Short-term studies have reported favorable effects on
glucose homeostasis (21, 150, 151), while an epidemiological and
a long-term studies reported an increased risk for type 2 diabetes
with increased protein intake (152–154). The increased risk may
be dependent on the source of protein. Tian et al. conducted
a systematic review and meta-analysis of cohort studies to
investigate the association between protein consumption and the
risk for type 2 diabetes (155). In this review, they reported an
increased relative risk of type 2 diabetes for total protein and
animal protein in men and women and a reduced relative risk
for plant protein in women.

However, high-protein diets may have some risk regarding
insulin sensitivity. An increase in Branched-Chain Amino Acids
(BCAAs) seems to be a marker of type 2 diabetes (156, 157).
Newgard et al. observed in rodents that in the context of
a dietary pattern that includes high fat consumption BCAA
contributes to the development of obesity-associated insulin
resistance. Moreover, Pedersen et al. (158) showed that the serum
metabolome of insulin-resistant individuals is characterized by
increased levels of BCAAs, which correlate with a human gut
microbiome that has an enriched biosynthetic potential for
BCAA.

Taken together, when protein diets are applied during
energy restriction aiming at weight loss and subsequent weight
maintenance, the latter usually shows favorable effects in relation
to insulin sensitivity, although some risks may be present. That
a higher protein diet would promote insulin sensitivity beyond
its effect on body-weight loss and subsequent body-weight
maintenance seems unlikely.

Cardiovascular Diseases
Parameters that indicate cardiovascular risks usually change in
a favorable direction during body weight loss. The question
remains whether the type of diet, especially a protein diet,
would affect favorable changes in cardiovascular parameters.
Atherosclerosis lies at the root of cardiovascular complications,
and the main indicators are the HDL- and LDL cholesterol.
Certain proteins may exert a greater effect on blood cholesterol
levels than other (159). Possible different effects from vegetable
vs. animal proteins have been tested. Sacks et al. (160) compared
diets enriched in casein for 20 days with diets enriched in soy for
20 days. They did not observe significant differences in LDL or
HDL cholesterol, neither between lipid profiles or lipid proteins.
Other studies, comparing casein and soy diets, did find significant
reductions in LDL with the soy diet, compared to the casein diets

Frontiers in Endocrinology | www.frontiersin.org 6 August 2018 | Volume 9 | Article 443

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Drummen et al. Dietary Protein and Energy Balance

FIGURE 1 | Summary of the observations on relatively high protein diets applied during energy restriction or weight maintenance (WM) thereafter. EB, energy balance;

T2D, type 2 Diabetes; NAFLD, non-alcoholic fatty liver disease; CV, cardiovascular diseases.

(161, 162), however this did not appear in volunteers with already
high cholesterol concentrations (163). In long term weight loss
and subsequent weight maintenance studies, it was shown that
individuals consuming soy meal replacements showed favorable
effects in their cardiovascular profile, e.g., lowering LDL, TG,
visceral fat, and systolic blood pressure (164). With respect
to blood pressure, a study by Teunissen-Beekman et al. (165)
compared postprandial blood pressure-related responses to the
ingestion of pea protein, milk protein, and egg-white protein.
They concluded that lower postprandial blood pressure is not
necessarily accompanied by higher NOx, insulin, glucagon or
GLP-1 responses, and that dietary protein, especially egg-white
protein, may induce a risk for elevated blood pressure (165). Yet,
it has been reported that effects of dietary protein depend on age.
Tielemans et al. (166), showed that intake of plant protein, but
not animal protein, was inversely associated with 5-year changes
in blood pressure level in elderly men. A critical evaluation of
the evidence for the effects of milk proteins and their associated
peptides on blood pressure and vascular dysfunction, showed
that results are inconclusive, while one study clearly reported
that main intact milk proteins reduced blood pressure, and
whey protein improved measures of arterial stiffness (167). Some
epidemiological studies based upon large community cohorts
report no overall relationship between protein type and dietary
protein sources on coronary heart diseases (168), while another
epidemiological study indicated that high red meat intake
increases risk for coronary heart disease and stroke, and that

poultry, fish, and nuts reduced these risks (169, 170). A general
systematic review on health effects of protein intake in healthy
adults reported that results are inconclusive for a relationship
between protein intake and cardiovascular diseases (171), while a
recent systematic review concluded that low-carbohydrate diets,
that often are high-protein diets may improve HDL cholesterol
and triglyceride levels and systolic blood pressure levels at 1
year (149). Taken together, more accurately designed randomized
control trials on dietary protein quality and quantity and possible
relations with cardiovascular risks are required.

ADVERSE EFFECTS OF PROTEIN-DIETS

There is a long-held view that high-protein intake might interfere
with calcium homeostasis by increasing the acid load. It is
hypothesized that this could be partially buffered by bone,
subsequently resulting in bone resorption and hypercalciuria
(172). In general, protein is a necessary nutrient for bone health
(173). Nitrogen intake seems to have a positive effect on calcium
balance and consequent preservation of bone mineral content
(174). With respect to renal issues, only patients with pre-
existing dysfunction appeared to have an increased risk for
the development of kidney stones and renal diseases (172). In
addition, Jesudason et al. (101) showed that both a medium or
higher protein energy restriction diet, inducing body weight loss,
normalized renal function in individuals with hyperfiltration.
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Similarly, (175) showed in a study in volunteers with overweight
or obesity and pre-diabetes on a higher protein diet, a significant
increase in urinary urea/creatinine ratio and serum urea after
1 year. There were no associations between increased protein
intake and creatinine clearance, estimated glomerular filtration
rate, urinary albumin/creatinine ratio, or serum creatinine. They
found no indication of impaired kidney function after 1 year with
a higher protein intake in pre-diabetic older adults. In the elderly,
beneficial health effects of higher-protein intake might outweigh
the adverse effects possibly because of the changes in protein
metabolism with aging. In contrast, persistent total protein and
amino acid intake below requirements impairs bodily functions
leading to higher disease and mortality risks across the lifespan
(176, 177). Taken together, application of relatively high-protein
diets, whereby protein intake is sustained at the original level,
does not seem to have any adverse effects in healthy individuals.
Although no clear recommendation exists that defines the safe
upper limit of protein intake, consumption of up to 1.66 g/kg
BW daily has not been associated with increased health risks (87,
122). This means that sustaining or slightly increasing protein
intake during energy restriction likely poses no adverse effects
in healthy individuals. However, protein intake can exceed the
suggested safe upper limit. The question arises whether and how
and over which time-frame these high intakes of protein would
negatively affect health. Recent studies applying medium-term,
high-protein interventions in neutral or positive energy balance
did not report any adverse effects (136, 178). However, the limits
of adaptation to high protein intake over the longer term remain
to be investigated.

DISCUSSION

With respect to body-weight management, the effects of diets
varying in protein differ according to energy balance. During
energy restriction, sustaining protein intake at the level of
requirement appears to be sufficient to aid body weight loss and
fat loss (Figure 1). An additional increase of protein intake does
not induce a larger loss of body weight, but can be effective to
maintain a larger amount of FFM (Figure 1). Protein induced
satiety is likely a combined expression with direct and indirect

effects of elevated plasma amino acid and anorexigenic hormone
concentrations, increased DIT, and a ketogenic state, which all
feed-back on the central nervous system (Figure 1). Changes in

appetite appear most clearly as short-term response to changes
in dietary protein content; the human body may habituate to
the satiating effects of protein intake in the longer-term. The
decline in energy expenditure and sleeping metabolic rate as
a result of body weight loss is less on a high-protein than
on a normal-protein diet. In addition, higher rates of energy
expenditure have been observed as acute responses to energy-
balanced high-protein diets (Figure 1). In energy balance, high
protein diets may be beneficial to prevent the development of a
positive energy balance, whereas low-protein diets may facilitate
this. Furthermore, high protein, low carbohydrate diets may be
favorable for the prevention of metabolic disturbances. During
positive energy balance, excess energy intake alone may account
for the increase in fat mass. Increases in energy expenditure and
FFMmay largely be predicted by protein intake.

High protein-low carbohydrate diets may be favorable for the
control of IHTG in healthy humans, likely as a result of combined
effects involving changes in protein and carbohydrate intake.
When protein diets are applied during energy restriction aiming
at weight loss and subsequent weight maintenance, the latter
usually shows favorable effects in relation to insulin sensitivity,
although some risks may be present. That a higher protein diet
would promote insulin sensitivity beyond its effect on body-
weight loss and subsequent body-weight maintenance seems
unlikely.

At least high-protein diets do not seem to have adverse
effects on these co-morbidities. In conclusion, higher-protein
diets may reduce overweight and obesity, yet whether high-
protein diets, beyond their effect on body-weight management,
contribute to prevention of increases in NAFLD, type 2 diabetes
and cardiovascular diseases is inconclusive (Figure 1).
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