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Abstract

The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants.
Although many genes involved in Arabidopsis cuticle development have been identified,
the transcriptional regulation of these genes is largely unknown. Previously, we demon-
strated that AtCFL1 negatively regulates cuticle development by interacting with the HD-
ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors,
AtCFL1 associated protein 1 (CFLAP1) and CFLAP2, are also involved in AtCFL1-mediated
regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro
and in vivo. Overexpression of either CFLAP1 or CFLAPZ2 led to expressional changes of
genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple
cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and
decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2
by chimeric repression technology caused opposite phenotypes to the CFLAPT overexpres-
sor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of
CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore,
both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of
AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1
may serve as a master regulator in the transcriptional regulation of cuticle development,

and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway,
probably through competing with HDG1 to bind to AtCFL1.
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Author Summary

The cuticle is a continuous lipid layer covering the aerial parts of land plants. It is very
important for the plants, especially for those in the drought area. The biosynthesis of cuti-
cle have been studied well in past decades, however, the transcriptional regulation is still
largely unknown. Here we found two new bHLH transcription factors, AtCFL1 associated
protein 1 (CFLAP1) and its homolog CFLAP2, which could interact with AtCFL1, a previ-
ously identified negative regulator of Arabidopsis cuticle formation. Overexpression of
CFLAPI and CFLAP?2 caused cuticle developmental defects, which are similar to the phe-
notypes of AtCFL1 overexpression plants. Functional inactivation of CFLAP1 in Arabi-
dopsis presents opposite phenotypes to those of its overexpressor. Interestingly, the
function of CFLAP1 is dependent on the presence of AtCFL1. These results suggest that
CFLAP1 and CFLAP?2 regulate cuticle development by interacting with AtCFL1, and that
AtCFL1 may work as a master regulator in the transcriptional regulation network.

Introduction

All primary aerial surfaces of land plants are covered by a continuous hydrophobic layer, the
cuticle, which is synthesized in the epidermal cells [1-4]. The cuticle layer has multiple func-
tions, such as protecting plants against biotic and abiotic stresses, preventing postgenital organ
fusion, and, as a crucial adaptive characteristic for terrestrial plants, preventing excessive non-
stomatal water loss [3, 5]. The cuticle is mainly composed of cutin and waxes [3]. Cutin con-
sists of C16 and C18 fatty acids cross-linked by ester bonds to form a porous three-dimensional
net [6]. Waxes are mainly composed of very-long-chain fatty acids (VLCFAs) and their deriva-
tives, such as aldehydes, alcohols, alkanes, ketones, and esters, with predominant carbon chain
length ranging from C24 to C34 [3]. Waxes are embedded in the cutin polyester net and depos-
ited on the aerial surface. The precursors for the biosynthesis of cutin and waxes are derived
from C16 and C18 fatty acids, which are produced in the plastids via the de novo fatty acids
biosynthesis pathway.

Although cutin is one of the most abundant lipid polymers in plants and forms the skeleton
of the cuticle, its biosynthesis is not well understood. In Arabidopsis, glycerol-3-phosphate
acyltransferases (GPATSs), which catalyze the transfer of acyl groups from acyl-CoAs to glyc-
erol-3-phosphate to form cutin monomers, were reported to play important roles in cutin bio-
synthesis. The cutin production in these loss-of-GPAT-function mutants was severely
compromised [7-9]. The cutin monomers were polymerized to form cuticle by polymerases
called cutin synthases. The cutin synthases, cutin deficient 1 (CD1) and Gly-Asp-Ser-Leu lipase
1 (GDSL1), were first identified in tomato [10, 11], and they seemed to have conserved func-
tion in land plants [12]. BODYGUARD (BDG), a member of the 0/B-hydrolase fold protein
superfamily expressed in epidermal cells, is also involved in cuticle proper formation, since loss
of BDG function resulted in cuticle defects and wax accumulation in rosette leaves [13]. Other
proteins, such as cytochrome P450 monooxygenases, were also found important for the bio-
synthesis of cutin and very long fatty acid derivatives [14-17]. For instance, loss-of-function of
the LCR, the gene encoding cytochrome P450 monooxygenase CYP86AS that catalyzes w-
hydroxylation of fatty acids for the cross-linking of cutin monomers, caused cuticle defects and
organ fusion in Arabidopsis [18].

In contrast to cutin biosynthesis, the biosynthesis of waxes in plants has been studied inten-
sively in the past decade and the two major biosynthetic pathways, the acyl reduction pathway
and the decarbonylation pathway, are well defined [1, 2, 4]. Many wax defective mutants have
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been identified in different plant species, such as Arabidopsis eceriferum (cer) mutants and
maize glossy mutants [19-21]. Many of the CER genes encode enzymes involved in biosynthesis
and derivatization of VLCFAs [22-28]. For example, CER6/CUT1 encodes an enzyme required
for the elongation of C24 VLCFAs [29-31]. In addition to the CER genes, some other genes
encoding enzymes involved in the elongation and derivatization of VLCFAs have been charac-
terized, such as KCS1, KCS2/DAISY, KCS10/FDH, WAX2 and KCS20 [32-39]. In addition,
ATP-binding cassette (ABC) transporters are required for transport of VLCFAs and their
derivatives [40-44].

The transcriptional regulation of the genes involved in cuticle formation has been the focus
of research and some transcription factors have been reported recently. WIN1 (wax inducer 1),
also known as SHN1, an AP2 domain containing transcription factor, was identified as a posi-
tive regulator of cuticle development, possibly by directly binding to the promoter of the long-
chain acyl-CoA synthetase 2 (LACS2) gene and regulating its transcription [5, 45-47]. Further-
more, heterologous expression of two other AP2 transcription factors, WXP1 (wax production
1) and WXP2 from alfalfa (Medicago sativa), also led to wax accumulation in Arabidopsis
leaves [48, 49], suggesting that AP2 transcription factors play important roles in wax biosyn-
thesis. MYB proteins were also demonstrated to be involved in the regulation of cuticle devel-
opment in Arabidopsis [50-52]. For instance, two MIXTA-like MYB transcription factors,
MYB106 and MYB16, were recently found to regulate the transcription of WINI1/SHNI [53].
Furthermore, two homeodomain transcription factors, i.e., tomato CD2 (cutin deficient 2) and
rice OCL1 (outer cell layer 1), were also reported to participate in the regulation of cuticle for-
mation [54, 55]. In addition, other proteins, e.g., CER7 and CERY, could regulate cuticle devel-
opment in the post-transcriptional level [56, 57]. Although several transcription factors and
regulating proteins have been identified, what the transcriptional regulation networks of cuticle
development are and how these transcription factors cooperate are far from clear.

We previously demonstrated that AtCFL1 played an important role in regulating cuticle
development by interacting with a HD-ZIP IV transcription factor, HDG1, and modulating its
function [58]. Here, we report the identification of two new AtCFL1-interacting proteins,
AtCFLI1 associated protein 1 (CFLAP1) and CFLAP2. CFLAPI and CFLAP2 are bHLH tran-
scription factors, the overexpression of which resulted in similar phenotypes to AtCFLI overex-
pressor plants. The CFLAPI overexpressor plants were defective in cuticle development in
their rosette leaves and inflorescence stems. Inactivation of CFLAPI function by chimeric
repression technology caused opposite phenotypes to the CFLAPI overexpressor plants. Inter-
estingly, similar to HDG1, the proper function of CFLAP1 was AtCFL1-dependent. Further-
more, CFLAP1 and CFLAP?2 interact with AtCFL1 through the C4 zinc finger domain at the
C-terminus of AtCFL1, the same domain that HDG1 binds to. This C4 zinc finger domain is
essential for AtCFL1 function. These results suggest that AtCFL1 may serve as the master regu-
lator of cuticle development, and that CFLAP1 and CFLAP2 are involved in this AtCFL1-me-
diated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

Results
CFLAP1 Interacts with AtCFL1

In our previous report, AtCFL1 is a negative regulator of cuticle development in Arabidopsis,
since overexpression of AtCFLI caused serious cuticle-defective phenotypes. AtCFL1 could
interact with and negatively modulate the function of a HD-ZIP transcription factor, HDGI.
We found that 35S:HDG1SRDX plants, in which HDG1 was functionally inactivated by an
SRDX repression motif fused to its C-terminus, had similar but weaker phenotypes to AtCFL]I
overexpressor plants [58], which suggests that there might be other factors involved in
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AtCFL1-mediated regulation of cuticle development. We used AtCFL1 as a bait to screen the
Arabidopsis transcription factor library, which includes 1598 transcription factors [59], by
yeast two-hybrid (YTH) assay. A putative basic helix-loop-helix (bHLH) transcription factor,
encoded by At1g51140, later designated CFLAP1, was found to interact with AtCFL1. We
made two truncated versions of AtCFL1, i.e., the N-terminal 70-aa region and the C-terminal
119-aa region (Fig 1A), and found that only the C-terminal region was able to interact with
both HDG1 and CFLAP1 (Fig 1B), suggesting that the C-terminus of AtCFL1 is responsible for
protein-protein interactions. The in vivo interaction between AtCFL1 and CFLAP1 was con-
firmed by the firefly luciferase complementation imaging assay (Fig 1C).

To further confirm the interaction between AtCFL1 and CFLAP1, we conducted a co-
immunoprecipitation (co-IP) experiment in tobacco (Nicotiana benthamiana) leaves. We gen-
erated two constructs of the fusion proteins AtCFL1-myc and GFP-CFLAP1 (S1 Fig) and tran-
siently co-expressed them in tobacco leaves. The results showed that GFP-CFLAP1 was co-
immunoprecipitated with AtCFL1-myc (Fig 1D). These results demonstrate that CFLAP1
indeed interacts with AtCFLI.

Overexpression of CFLAP1 Caused Cuticle Defects

CFLAP1, also designated FBH3, and its three homologs work as transcriptional activators by
binding to the E-box cis-element in the CONSTANS (CO) promoter to regulate flowering in
Arabidopsis [60]. To investigate the AtCFL1-associated function of CFLAP1, we first overex-
pressed CFLAPI in wild-type Arabidopsis. The T2 progenies of CFLAPI overexpressor plants
exhibited multiple phenotypes, such as early flowering, dwarfism, rough siliques (S2A to S2D
Fig), and in particular, postgenital organ fusion (Fig 2A to 2C), similar to AtCFL1 overexpres-
sor plants. To test whether cuticle development was abnormal in CFLAPI overexpressor plants,
we performed toluidine-blue (TB) staining assay [61] on the fifth leaves of two independent
transgenic lines, 35S:CFLAPI-1 and 35S:CFLAPI-3. We found that the leaves of both trans-
genic plants were stained by TB, suggesting that overexpression of CFLAP] caused cuticle
defects in Arabidopsis (Fig 2D). To quantify the TB staining, we measured the Ag3:A435 ratio
of the leaves. The Ag30:A 435 ratio, in which TB absorbance is at Ag3, and plant material absor-
bance is at A5, represents the relative amount of bound TB dye. We found that the expression
level of CFLAPI was positively correlated with the severity of the TB staining phenotypes in
the CFLAPI overexpressor plants (Fig 2E to 2G and S2E Fig). These results suggest that over-
expression of CFLAP] affects cuticle development in Arabidopsis.

To confirm the cuticle defective phenotypes in 35S:CFLAP]I plants, we performed a pollen
germination assay. The rationale was that fragmentation of the hydrophobic layer of the plant
leaves, due to cuticle defects, would nullify the prohibition of pollen germination on the leaf
surfaces [13, 18, 32, 62, 63]. The results showed that, whereas only about 0.62% of pollen grains
germinated on the leaf surfaces of wild-type plants (Fig 2H and 2]), 44.16% and 19.65% of pol-
len grains germinated on the adaxial and abaxial leaf surfaces of 35S:CFLAP]I plants, respec-
tively (Fig 21 and 2K and Table 1). This suggests that cuticle development is indeed
compromised in CFLAPI overexpressor plants.

To further investigate the cuticle development defects in CFLAPI overexpressor plants, we
conducted scanning electron microscopy (SEM) analysis on rosette leaves and inflorescence
stems. We found that the epicuticular wax crystals covering the epidermal surface of the leaf
were changed in the 35S:CFLAPI plants. The gap between the two epidermal cells was larger
than that in the wild type (Fig 2L and 2M). Prominently, the crystals in the stems of 35S:
CFLAPI plants are less and smaller than those of wild type (Fig 2N and 20), suggesting that the
cuticle development in this transgenic line might be compromised. Meanwhile, transmission
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Fig 1. CFLAP1 interacts with AtCFL1 in vitro and in vivo. (A) Schematic diagram of AtCFL1 and its truncated proteins for yeast two-hybrid assay. AtCFL1,
full length; AtCFL1N, N-terminal of AtCFL1 with 70 amino acid residues; AtCFL1C, C-terminal of AtCFL1 with 119 amino acid residues. (B) The results of
yeast two-hybrid assay for the interactions of AtCFL1, AtCFL1N, and AtCFL1C with CFLAP1 respectively. The co-transformed yeast strains were plated on
the control medium SD-Leu-Trp (SD-LW) and selective medium SD-Leu-Trp-His (SD-LWH) plus 3-amino-1, 2, 4-triazole (3-AT). HDG1 was used as a
positive control and the empty plasmid pDEST22 as a negative control. The yeast co-transformed with empty plasmid pDEST32 together with HDG1 or
CFLAP1 exhibited no auto-activation activities. (C) The result of the firefly luciferase complementation imaging assay. The CFLAP1-nLUC and cLUC-AtCFLA1
were transiently expressed in the leaf of tobacco (Nicotiana benthamiana). CFLAP1-nLUC plus cLUC, nLUC plus cLUC-AtCFL1, and nLUC plus cLUC were
used as three negative controls. (D) The immunoprecipitation assay. Lane 1, GFP-CFLAP1; Lane 2, co-expressed AtCFL1-myc and GFP-CFLAP1.

doi:10.1371/journal.pgen.1005744.g001

electron microscope (TEM) analysis revealed that the continuity of cutin layer was slightly
affected, and the density of cutin was decreased in 35S:CFLAPI plants (S2F and S2G Fig). These
results suggest that cuticle development is affected in the CFLAPI overexpressor plants, and
that CFLAPI, similar to AtCFL1, negatively regulates cuticle development in Arabidopsis.

Epicuticular Wax Components Were Changed in 35S:CFLAP1 Plants

To further investigate how cuticle development was affected in CFLAPI overexpressor plants,
we analyzed the epicuticular wax composition by gas chromatography-mass spectrometry
(GC-MS). The results showed that the total amount of waxes in the inflorescence stems of 35S:
CFLAPI plants was reduced to two-thirds of the wild type (5.50 + 0.51 pg/cm? vs.

8.47 + 0.88 ug/cm?, Fig 3A), consistent with the phenotype of decreased crystal observed by
SEM. The C24-and-above components, such as C24 fatty acids, C28, C30 and C32 aldehydes,
C26, C28 and C30 alcohols, and C32 alkanes, were significantly reduced in the CFLAPI overex-
pressor plants (Fig 3A). The epicuticular waxes, however, were increased in the leaves of 35S:
CFLAPI plants (Fig 3B). For instance, the amounts of C30 and C32 aldehydes, and C30 alkane
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CFLAP1-1 and 35S:CFLAP1-3, respectively. (E) to (G) Quantificational analysis on the intensity of TB staining. The number of horizontal axis is Agz0:A435
ratio (a quantification of TB staining intensity, the higher the ratio, the higher intensity of TB absorption). From (H) to (J), wild type, 35S:CFLAP1-1, and 35S:
CFLAP1-3, respectively. (H) to (K) The results of pollen germination assay. (H) and (I), adaxial surfaces of wild type and 35S:CFLAPT; (J) and (K), abaxial
surfaces of wild type and 35S:CFLAP1; arrowheads indicate germinated pollen gains. Bar = 50 ym. (L) and (M) Cryo-SEM images of adaxial surface of wild-
type and 35S:CFLAP1 rosette leaves. Bar =10 ym. (N) and (O) SEM images of the epicuticular wax crystals on the stem of wild type and 35S:CFLAP1.
Bar=2pum.

doi:10.1371/journal.pgen.1005744.9002

were increased by 13.9-, 6.8- and 18.9-fold, respectively (Fig 3B). The C25, C27 and C29
alkanes were also obviously increased. This was similar to the observations of other cuticle-
defective mutants, fdh and lcr [18, 32, 64]. These data indicate that the epicuticular wax compo-
sition is altered by CFLAPI overexpression.

Table 1. Rate of pollen germination on rosette leaf surfaces.

Genotype Leaf surface Number of pollen grains counted Number of pollen grains germinated Germination rate %
Wild type Adaxial 1764 11 0.62
35S:CFLAP1 Adaxial 1413 624 44.16 ***

Wild type Abaxial 1454 9 0.62
35S:CFLAP1 Abaxial 982 193 19.65 ***

doi:10.1371/journal.pgen.1005744.t1001
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doi:10.1371/journal.pgen.1005744.9003

CFLAP2, A Homolog of CFLAP1, Also Interacts with AtCLF1

There are three homolog genes of CFLAP1/FBH3 in Arabidopsis [60]. We found that, in addi-
tion to CFLAP1/FBH3, another homolog FBH1, but not FBH2 or FBH4, also interacted with
AtCFL1 (Fig 4A and S3A Fig). We designated FBH1 as CFLAP2. The firefly luciferase comple-
mentation imaging assay confirmed the in vivo interaction between CFLAP2 and AtCFL1 in
tobacco leaves (Fig 4B). Overexpression of CFLAP2 in Arabidopsis produced cuticle defective
phenotypes similar to those in 35S:CFLAPI plants (Fig 4C). TB staining analysis on two inde-
pendent lines, 355:CFLAP2-7 and 35S:CFLAP2-27, showed that the staining intensity in 35S:
CFLAP2-27 leaves was higher than in 35S:CFLAP2-7 leaves (Fig 4C), and was positively corre-
lated with the expression levels of CFLAP2 in these two lines (Fig 4D). In comparison, over-
expression of either FBH2 or FBH4 did not produce a cuticle defective phenotype (S3B to S3F
Fig). These data suggest that CFLAP1 and CFLAP2 have overlapping functions in regulating
cuticle development, most likely through interacting with AtCFL1.
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Chimeric Repression of CFLAP1 Produced Opposite Phenotypes to
Those of 35S:CFLAP1 Plants

The single loss-of-function mutant cflapl (SALK_049022c) had no obvious phenotype in cuti-
cle development or flowering time, consistent with the previous report [60]. We also analyzed
the epicuticular wax compositions of the previously reported quadruple mutant fbh1 fbh2 foh3
fbh4 [60] by GC-MS. The results showed that, in the inflorescence stems, the total amount of
waxes was increased in the quadruple mutant compared to that in wild type, especially for the
amount of several alkanes including C30, C31, C32 and C33, which were significantly accumu-
lated, whereas in the rosette leaves, however, the amount of wax was decreased, especially for
the amount of C32 and C34 fatty acids (S4 Fig). These wax compositions were slightly opposite
to those in 35S:CFLAPI plants (Fig 3). The phenotype of this fbh1 fbh2 fbh3 fbh4 quadruple
mutant was also relatively weak (i.e., slightly later flowering [60]), possibly due to incomplete
knock-out of the three CFLAP1-homologous genes in the quadruple mutant (S4 Fig). There-
fore, to elucidate the function of CFLAP] and its homologous genes, we used chimeric repres-
sor technology [65-67] to further knock down the activities of CFLAP1 and its homologs by
overexpressing an ethylene response factor (ERF)-associated amphiphilic repression (EAR)
motif-fused CFLAPI construct, 35S:CFLAPISRDX, in wild-type Arabidopsis (Fig 5A).

Because CFLAP1/FBH3 was reported to directly bind to the promoter of CO to control
flowering time [60], we used the CO promoter to drive the luciferase (LUC) reporter gene to
test whether the CFLAP1 activity is compromised by the 35S:CFLAPISRDX construct in vivo.
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doi:10.1371/journal.pgen.1005744.9005
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The result showed that co-filtration of ProCO:LUC and 35S:CFLAPI into tobacco leaves gener-
ated much stronger luminescence signal than infiltration with ProCO:LUC alone (Fig 5B and
5C), suggesting that CFLAP1 activates CO in tobacco, consistent with the previous report [54].
However, when ProCO:LUC and 35S:CFLAPISRDX were co-infiltrated, the luminescence sig-
nal was significantly reduced (Fig 5B and 5C). These results suggest 35S:CFLAPISRDX greatly
represses CFLAP1 function in vivo.

Fifty 35S:CFLAPISRDX independent transgenic lines were obtained and the expression
level of the modified CFLAPI was examined in four lines (Fig 5D), among which the 35S:
CFLAPISRDX-48 was used for further analysis. The T2 progeny of 355:CFLAPISRDX-48 was
apparently late-flowering (S5A and S5B Fig). We investigated the cuticle composition of these
plants by GC-MS. In contrast to the CFLAPI overexpressor plants, we found that the inflores-
cence stems of 35S:CFLAPISRDX-48 had 29.38 + 1.50 pg/cm” epicuticular wax, a slight (not
significant) increase compared with the wild type (25.5 + 1.41 pug/cm?, Fig 5E), although crystal
loading was no obviously increased on the stem of the transgenic plants compared with wild
type under SEM observation (S5C and S5D Fig). Furthermore, the C28 and C30 aldehydes,
C30 and C31 alkanes, C31 alcohols and C29 ketones were significantly increased (Fig 5E).
Interestingly, the wax in the leaves of 35S:CFLAP1SRDX-48 plants was reduced compared with
the wild type (Fig 5F), which was exactly the opposite of 355:CFLAPI plants. Similar change
trends were observed in another independent transgenic line (S6 Fig). These results indicated
that CFLAP1 negatively regulates cuticle development in Arabidopsis.

High-Throughput Transcriptome Analysis Revealed Significant Changes
in Expression of Lipid Related Genes in 35S:CFLAP1 and 35S:
CFLAP1SRDX Plants

To investigate the CFLAP1-affected genes in the CFLAP] overexpressor (35S:CFLAPI) and
suppressor (35S:CFLAP1SRDX) plants, we adopted the high-throughput RNA sequencing
technology to compare the transcriptome profiles of either the 35S:CFLAPI or 35S:
CFLAPISRDX plants with wild type (S1 and S2 Tables). In the 35S:CFLAPI plants, 2576 genes
were up-regulated and 1505 genes down-regulated by twofold and above. In the 35S:
CFLAPISRDX plants, 748 up-regulated genes and 862 down-regulated genes were identified.
KOBAS pathway analysis [68] showed that, in the 35S:CFLAPI plants, the genes involved in
cutin, suberin and wax biosynthesis were enriched in the up-regulated genes (Fig 6A and
Table 2), while the genes involved in fatty acid elongation and fatty acid biosynthesis were
enriched in the down-regulated genes (Fig 6A and Table 3). Interestingly, in the 35S:
CFLAPISRDX plants, we found that the genes enriched in up-regulated category were involved
in fatty acids elongation and metabolism genes (Fig 6A and Table 2), while the genes enriched
in the down-regulated category were involved in cutin, suberin and wax biosynthesis genes
(Fig 6A and Table 3), opposite to those in 35S:CFLAPI plants. These results suggest that
CFLAP1 participates cuticle development through specifically regulating the transcription of
those genes involved in lipid-related metabolism.

We further adopted qRT-PCR to confirm the RNA-seq results. We found that, in 35S:
CFLAP]I plants, the transcription levels of several key genes involved in cuticle development
were disturbed, among which FDH, BDG and DEWAX [69] were up-regulated and KCS8 was
down-regulated. Meanwhile, the changes of these gene expressions exhibited opposite patterns
to those in the 35S:CFLAP1-SRDX plants (Fig 6B), consistent with the phenotypic changes in
35S:CFLAPI and 35S:CFLAPI-SRDX plants.
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doi:10.1371/journal.pgen.1005744.9006

Regulation of Cuticle Development by CFLAP1 Is AtCFL1-Dependent

To clarify the genetic relationship between AtCFLI and CFLAPI, we overexpressed CFLAPI in
the loss-of-function mutant atcfl1 background. In the TB staining assay, the staining intensity
of 35S:CFLAP]I leaves in the atcfll mutant background was dramatically decreased compared
with those in the wild type background (Fig 7A to 7F), even when the expression level of
CFLAPI was comparable to that in the 35S:CFLAPI-3 plant (Fig 7K). While the Ag30:A435 ratio
ranged from 0.3 to 5.0 in 35S:CFLAPI-3 compared with a ratio below 1.0 in the wild type, the
ratio of 35:CFLAPI-14 and 35:CFLAPI-19 in the atcfl] mutant background was significantly
decreased with most plants below 1.0, which was close to the wild type ratio (Fig 7G to 7]).
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Table 2. KEGG pathways in which genes up-regulated by more than 2-fold in these transgenic plants.

Plants
35S:CFLAP1

35S:CFLAP1SRDX

doi:10.1371/journal.pgen.1005744.t002

Term

Phenylpropanoid biosynthesis
Phenylalanine metabolism
Plant-pathogen interaction

Plant hormone signal transduction
Cyanoamino acid metabolism
Biosynthesis of secondary metabolites
Cutin, suberin and wax biosynthesis
Tryptophan metabolism
Glucosinolate biosynthesis

Starch and sucrose metabolism
Zeatin biosynthesis

ABC transporters

Tryptophan metabolism

Plant hormone signal transduction
Phenylalanine metabolism

Fatty acid elongation

Fatty acid metabolism
Phenylpropanoid biosynthesis
Glucosinolate biosynthesis

P-value

0
4.219E-15
1.478E-4
0.001
0.001
0.002
0.004
0.007
0.016
0.016
0.030
0.042
0.0006
0.0017
0.006
0.011
0.021
0.022
0.033

These results suggested that AtCFL1 and CFLAP1 worked in the same genetic pathway to regu-

late cuticle development, and that CFLAP1 worked in an AtCFL1-dependent manner.

The Expression Patterns of CFLAP1 and CFLAP2 Were Partially

Overlapped with That of AtCFL1

To investigate the gene expression patterns of CFLAPI and CFLAP2, we first analyzed the
expression level of these two genes in wild type using qRT-PCR. The transcripts of CFLAP1
and CFLAP2 were ubiquitously detected in 14-day-old seedlings and in all the tissues of mature
plants (Fig 8A). We then fused a 4.5-kb fragment including genomic sequence of CFLAPI to

Table 3. KEGG pathways in which genes down-regulated by more than 2-fold in these transgenic

plants.

Plants Term P-value

35S:CFLAP1 Ribosome 6.766E-11
Ribosome biogenesis in eukaryotes 9.836E-4
Fatty acid elongation 0.004
Phenylpropanoid biosynthesis 0.012
Fatty acid biosynthesis 0.024
Lysine biosynthesis 0.029

35S:CFLAP1SRDX Cutin, suberin and wax biosynthesis 0.0007
Phenylalanine metabolism 0.0024
Phenylpropanoid biosynthesis 0.011
Protein processing in endoplasmic reticulum 0.023
Plant hormone signal transduction 0.027
Alanine, aspartate and glutamate metabolism 0.042

doi:10.1371/journal.pgen.1005744.t003
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Fig 7. TB staining assay on the plants overexpressing CFLAP1 in the atcfl1 background. (A) to (F) TB
staining assay of 14-day-old seedlings. (A), wild type; (B), 35S: CFLAP1-1; (C), 35S:CFLAP1-3; (D) and (E),
35S:CFLAP1-14 and 35S:CFLAP1-19 in the background of atcf/T mutant respectively, (F), atcflT mutant. Top,
before TB staining; bottom, after TB staining. Bar = 2 mm. (G) to (J) Quantification of the TB staining intensity,
the number of horizontal axis is Agsg:A43s ratio. (G) wild type, (H) 35S:CFLAP1-3, (1) and (J) 35S:CFLAP1-14
and 35S:CFLAP1-19 in the background of atcfl7 mutant respectively. (K) Relative expression level of
CFLAP1 in the wild type, 35S:CFLAP1-3, 35S:CFLAP1-14 and 35S:CFLAP1-19 in the background of atcfl1
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mutant. The expression level in the wild type is set to 1.0, and error bars represent the SD of three biological
replicates.

doi:10.1371/journal.pgen.1005744.g007

Escherichia coli B-glucuronidase (GUS) reporter gene and transformed it into wild-type Arabi-
dopsis. The GUS activities were observed in root, young leaf and trichomes (Fig 8B to 8F). Fur-
thermore, the GUS signal displayed a spotted pattern in the root tip (Fig 8D), suggesting that
CFLAP1 protein localizes in the nuclei, consistent with the observation of 35S:GFP-CFLAPI
plant (S7 Fig) and the previous report [70]. In the ProCFLAP2:GUS transgenic plants, the GUS
activity was observed in cotyledon, leaf veins, trichomes and flowers (Fig 8G to 8]). Strong
GUS signal was also observed in the abscission zone at the bottom of young siliques (Fig 8K),
but not in the mature siliques (Fig 8L). Since AtCFL1 is reported expressed in the trichomes,
guard cells, root endodermis and stigmatic papillar cells [58], our results suggest that the
expression patterns of CFLAPI1 and CFLAP2 are partially overlapped with that of AtCFLI, pro-
viding the base for the interaction of AtCFL1 with CFLAP1/2.

A Putative Zinc Finger Domain in the C-Terminus of AtCFL1 Is
Necessary for the Interactions between AtCFL1 and Transcription
Factors

Because AtCFLI interacted with HDG1 [58], CFLAP1 and CFLAP2, we would like to know
which domain of AtCFL1 was responsible for these protein-protein interactions. We generated
a series of truncated AtCFL1-GAL4 DNA binding domain constructs to test their interaction
with GAL4 activation domain-fused CFLAP1 in YTH assay. As shown in Fig 9A, the full-
length AtCFL1 protein and all of the truncated proteins including the C-terminal 50 amino
acid residues could interact with CFLAP1, whereas that lacking the C-terminal 20 amino acid
residues could not. This result suggested that the C-terminal 50 amino acid residues of AtCFL1
were required for AtCFL1-CFLAPI interaction. Similar results were also obtained in the
AtCFL1-HDG] interaction (Fig 9A).

Within the sequence of the C-terminal 50 amino acid residues we found a putative C4 zinc
finger domain (Fig 9B), which was reported to be important for protein—protein interaction
[71, 72]. We made point mutations of the four cysteine residues, i.e., Cys'>>, Cys'*®, Cys'”" and
Cys'”*, into alanine and found that simultaneous loss of two adjacent zinc-interacting cysteine
residues disrupted both the AtCFL1-CFLAP1 interaction and the AtCFL1-HDGI interaction
(Fig 9C), suggesting that these cysteine residues are necessary for these interactions. Similar
results were also observed in the AtCFL1-CFLAP?2 interaction (S8 Fig). Moreover, overexpres-
sion of cysteine-mutated AtCFL1, i.e., 35S:AtCFL1C155AC158A, 35S:AtCFL1C171ACI74A and
358:C155AC1581C171AC174A (35S:AtCFL1C4m), in wild-type Arabidopsis did not produce
organ-fusion or TB staining phenotypes (Fig 9D to 9H), even though similar expression levels
of 35S:AtCFL1-myc-7 (S1 Fig) were observed in these transgenic plants (Fig 9I). These data sug-
gested that the C-terminal C4 zinc finger domain was crucial for AtCFL1 to interact with dif-
ferent transcription factors and for its proper function in regulation of cuticle development in
Arabidopsis.

In summary, as shown in the working model (Fig 10), AtCFL1 regulates Arabidopsis cuticle
development by interacting with transcription factors HDG1 and/or CFLAP1/2 via the same
C-terminal zinc finger domain. HDG1 and CFLAP1/2 function in a synergistic but AtCFL1-de-
pendent manner to maintain the balance of the expression of those genes involved in cuticle
development.

PLOS Genetics | DOI:10.1371/journal.pgen.1005744  January 8,2016 14/27
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doi:10.1371/journal.pgen.1005744.9008
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setto 1.0. The error bars represent the SD of three biological replicates.

doi:10.1371/journal.pgen.1005744.9009

Discussion

In this study, we have provided evidence to show that two bHLH transcription factors,
CFLAP1 and CFLAP2, participate in synergistic regulation of AtCFL1-mediated cuticle devel-
opment in Arabidopsis. First, both CFLAP1 and CFLAP?2 interact with AtCFL1, a reported neg-
ative regulator of cuticle development in Arabidopsis, both in vitro and in vivo. Second,
overexpression of either CFLAPI or CFLAP2 causes cuticle defective phenotypes, including
organ fusion, reduced epicuticular wax crystals in stems and wax accumulation in rosette
leaves. Loss-of-function of CFLAPI and its homologs leads to opposite phenotypes. Third, the
proper function of CFLAP1 is dependent on the presence of AtCFL1. Fourth, the C4 zinc finger
domain of AtCFL1, the same domain responsible for interacting with HDG1, is also responsi-
ble for the interaction of AtCFL1 with CFLAP1/2. These results suggest that CFLAP1 and
CFLAP2 represent two important transcription factors that are involved in synergistic regula-
tion of AtCFL1-mediated cuticle development in Arabidopsis.
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AtCFL1-dependent manner to maintain the balance of the expression of those genes involved in cuticle
development.

doi:10.1371/journal.pgen.1005744.g010

Different types of transcription factors have been reported to participate in the transcrip-
tional regulation of cuticle development, e.g., AP2, MYB and HD-ZIP transcription factors [5,
45-55, 58, 73]. Now, a group of bHLH transcription factors can be added to this complex regu-
lation network. Differing from those reported transcription factors that positively regulate cuti-
cle development, these bHLH transcription factors are negative regulators, adding a new
dimension to the regulatory network. Although, CFLAP1 and CFLAP2 are negative regulators
of cuticle development in terms of genetics, this does not necessarily mean that they are direct
repressors for cuticle development. Because CFLAP1 and CFLAP2 directly bind to the pro-
moter region and activate the transcription of CO [60], it is plausible to hypothesize that the
downstream target genes of CFLAP1 are probably negative regulators in cuticle development.
We found from our RNA sequencing data that the transcriptional level of DEWAX, an AP2/
ERF-type transcription factor gene recently identified as a repressor of wax biosynthesis [69],
was increased in 35S:CFLAPI plants (Fig 6B). This suggests that DEWAX could be a candidate
downstream target gene for CFLAP1, which will be verified in the future. The finding of oppo-
site phenotypes in leaf and stem of both 35S:CFLAPI and 35S:CFLAP1SRDX plants was sur-
prising, but not one of a kind: previously reported lcr and fdh mutants also exhibited different
phenotypes in these two regions [18, 32, 64], suggesting that the molecular mechanism regulat-
ing the cuticle development might be not only complex but also organ-specific. Since CFLAPI,
CFLAP2 and AtCFLI are all expressed in vascular tissues, the possibility exists that they are
involved in preventing cuticle formation within internal tissues of the plant, which needs to be
investigated in the future.
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It was reported that CFLAP1 and its homologs were phosphorylated under abscisic acid
(ABA) treatment [70], suggesting a role for CFLAP1 in the ABA response. Phosphorylated
CFLAP1 is released from the promoter of the down-stream gene KAT1, which encodes a K*
channel in guard cells. Previous reports showed that cuticular wax biosynthesis was activated
under drought and ABA treatment [53]. Considering that CFLAP1 is a negative regulator of
cuticle development, it is reasonable to predict that ABA, a signal in drought stress, possibly
leads to phosphorylation of CFLAPI, which in turn disrupts the repressor genes and activates
cuticle formation. Further investigation on whether the phosphorylation of CFLAP1 affects the
CFLAP1-AtCFLI interaction and/or the function of CFLAP1 in regulating cuticle develop-
ment will help in elucidating how CFLAP1 works in the complex cuticle-regulating network.

Our study showed that the proper function of CFLAP1 was AtCFL1-dependent. AtCFL1 is
a protein of 189 amino acid residues with a WW domain in the N-terminus and a C4 zinc fin-
ger domain in the C-terminus. Mutant analysis showed that the N-terminal WW domain is
not important for the function of AtCFL1 in cuticle development. However, the C-terminal C4
zinc finger domain is responsible for AtCFL1-CFLAPs and AtCFL1-HDGT] interactions, and
critical for AtCFL1 function, because overexpression of AtCFL1 with a mutated C4 zinc finger
resulted in no obvious cuticle defective phenotypes. Zinc finger domains have been reported to
be involved in transcriptional activation, DNA recognition, regulation of apoptosis and lipid
binding [71, 72, 74, 75]. For instance, Ikaros, an essential regulator of lymphocyte differentia-
tion, possesses a C-terminal zinc finger domain that is essential for its interaction with other
proteins and for its DNA binding and transcriptional activation ability [71]. The fact that the
C-terminal zinc finger domain of AtCFLI interacted with both the negative regulators CFLAPs
and the positive regulator HDG1 suggests that the regulation of cuticle development is proba-
bly temporal- and spatial-specific, or that the binding of different transcription factors to the
zinc finger domain may be accomplished through binding competition. It also implies that
AtCFLI plays a central role in the transcriptional regulation network for cuticle development,
by interacting with different types of transcription factors (i.e., HDG1 and CFLAPs). It will be
interesting to clarify the biochemical nature of AtCFL1 and how it regulates the expression of
downstream target genes during cuticle development.

Methods
Plant Materials and Growth Conditions

The Arabidopsis thaliana T-DNA insertion mutant SALK_074277 was described as atcfl1-1
[58] and SALK_049022¢ was obtained from the ABRC. Arabidopsis plants ecotype Columbia-0
(Col-0) were used as wild type. The plants were grown on half-strength Murashige and Skoog
(MS) medium containing 1% sucrose and 0.6% (w/v) phytoagar adjusted to pH5.7 using 1 M
KOH, or in soil in greenhouse under long day condition with 16 hours light/ 8 hours dark cycle
at 22+2°C. For the luciferase complementation assay and co-IP assay, Nicotiana benthamiana
was grown in soil at 22 + 2°C under long day condition.

Vector Construction and Transformation

The coding region of AtCFLI was cloned into pENTR/D-TOPO (Invitrogen) using the primers
AtCFL1-TOPO-F and AtCFL1-TOPO-R to generate pENTR-AtCFL1. pENTR-AtCFL1 was
cloned into pDEST32 (Invitrogen) by LR reaction, generating plasmid pDEST32-AtCFL1 as
bait in yeast two-hybrid assay. The coding region of CFLAP1 was cloned into pENTR/
D-TOPO using the primers CFLAP1-TOPO-F and CFLAP1-TOPO-R to form pENTR-C-
FLAPI. The prey construct of pDEST22-CFLAP1 was generated by LR reaction between
pENTR-CFLAP1 and pDEST22 (Invitrogen). For the constructs for firefly luciferase
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complementation imaging assay, the Kpn I-Sal I fragment of AtCFL1 was ligated into Kpn I-Sal
I fragment of plasmid pCAMBIA-CLuc [76] to generate AtCFL1-cLUC plasmid. The BamH I-
Sal I fragment of CFLAPI and BamH I-Sal I fragment form pCAMBIA-NLuc [76] were ligated
to form plasmid CFLAP1-nLUC. For the co-IP experiment, construct of AtCFLI-myc was gen-
erated from LR reaction between pENTR-AtCFL1 without stop codon and pK7MYCGW2
(from Li-Jia Qu lab). The plasmid GFP-CFLAP1 was generated from LR reaction between
PENTR-CFLAP1 and pK7WGF2.

For the plasmids with truncated AtCFL1 proteins used in yeast two-hybrid assay, the differ-
ent fragments of AtCFL1 were cloned into pENTR/D-TOPO at first, using the primers combi-
nations as follow: AtCFL1 TOPO-F/ AtCFL1 N70 TOPO-R, AtCFL1 C119 TOPO-F/ AtCFL1
TOPO-R, AtCFL1 C98 TOPO-F/ AtCFL1 TOPO-R, AtCFL1 C77 TOPO-F/ AtCFL1 TOPO-R,
AtCFL1 C50 TOPO-F/ AtCFL1 TOPO-R and AtCFL1 TOPO-F/ AtCFL1 AC20 TOPO-R.
These pENTR plasmids were cloned into pDEST32 by LR reactions. The point mutants of
AtCFL1 were made by using the Easy Mutagenesis System (TransGen Biotech).

CFLAPI overexpression construct was generated by LR reaction between pENRT-CFLAPI
and pB2GW?7. For the chimeric repressor construct, the CFLAPI coding sequence was ampli-
tied from Arabidopsis cDNA by RT-PCR used the primers CFLAP1 SRDX-F and CFLAP1
SRDX-R. This Bgl II-Spe I fragment was ligated into pC35SSRDX Bgl II-Spe I plasmid to gener-
ate CFLAP1-SRDX construct.

Constructs were transformed into Agrobacterium tumefaciens GV3101 using the freeze-
thaw procedure and then into Arabidopsis as described previously [77].

All primers used in this study are listed in S3 Table.

Yeast Two-Hybrid Assay

The bait plasmid pDEST32-AtCFL1 was transformed into yeast train AH109. The resulting
yeast was used for a mating-based yeast two-hybrid screening for a transcription factors library
of Arabidopsis as described [59].

For the interaction of AtCFL1 and CFLAPI homologs, the coding regions of CFLAP2/
FBH1, FBH2 and FBH4 were amplified from Arabidopsis cDNA by RT-PCR, and cloned into
pDEST22 as preys respectively. Bait plasmid pDEST32-AtCFL1 and preys or the blank
pDEST22 were co-transformed into yeast strain AH109, respectively.

Medium supplemented with SD-Leu-Trp-His and SD-Leu-Trp-His add 5 mM 3-amino-
1,2,4 triazole were used for selection. Three biological replicates of all experiments were
conducted.

Firefly Luciferase Complementation Imaging Assay and Co-IP Assay

The firefly luciferase complementation imaging assay was conducted according to the protocol
by Chen et al. [76]. The different plasmid combinations, e.g., AtCFL1-cLUC and CFLAP1-n-
LUC, AtCFL1-cLUC and nLUC, cLUC and CFLAP1-nLUC, cLUC and nLUC, were co-infil-
trated into tobacco (Nicotiana benthamiana) leaves as described by Wu et al. [58]. The tobacco
plants were incubated in dark for 24 hours and then put back in green house for 24-48 hours
in normal long-day light condition. The leaves were cut and sprayed with luciferin (100 mM)
and then kept in the dark for 15 min, then observed under a low-light cooled charge-coupled
device (CCD) imaging apparatus Lumazone 1300B (Roper Bioscience).

For the co-IP experiment, the constructs AtCFLI-myc and GFP-CFLAPI were infiltrated
into tobacco leaves. The following experiment was performed as described previously [58].
Two biological replicates of the experiments were conducted.
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Microscopy

For the pollen germination assay, wild-type pollen was applied to abaxial and adaxial surfaces
of 4-week-old rosette leaves of wild type and 35S:CFLAPI plants respectively. The plants were
grown in green house for 24 hours and the leaves were removed and fixed in the FAA buffer
containing 50% ethanol, 6% glacial acetic acid, and 5% formaldehyde for 4 hours at room tem-
perature. Serial ethanol dehydration was performed. Then samples were dried at critical point
in liquid CO, and coated with gold powder. The inflorescence stems were dried in incubator
and mounted directly. These samples were analyzed using a scanning electron microscope
(JEOL JSM-6610LV) as described in the user manual. For the Cryo-SEM, samples were glued
on a sample holder of cryo-transfer system (ALTO 1000, Gatan UK) and frozen in liquid nitro-
gen. The samples were transferred under vacuum and incubated in cryo-preparation chamber,
stay in -90°C for 5 min. Then the sample surface was sputter coated and observed under cold
stage (-150°C).

Total RNA Isolation and Quantitative RT-PCR Analysis

Total RNA was extracted from frozen material using TRIzol reagent (Invitrogen) and then
treated with RNase-free DNase (TaKaRa) to remove the genomic DNA. Five micrograms of
total RN A was reversely transcribed using the M-MLYV kit (Invitrogen) for each sample. The
cDNA was diluted and used as template for RT-PCR or quantitative RT-PCR. Quantitative
RT-PCR was performed using SYBR Green real-time PCR Master Mix (Toyobo) as described
previously [78]. The relative expression level of each gene was calculated using the 2 -4
(cycle threshold) method [79], and TUB2 was used as an internal control. At least three repeats

were performed for each sample.

Toluidine Blue Staining Test and Quantificational Analysis

The 14-day-old seedlings or the 3-week-old rosette leaves of Arabidopsis were used for the TB
staining as described [61]. The plant materials were immersed in 0.05% solution of TB at room
temperature for 2 minutes, and then washed with water for three times.

The quantificational analysis of TB staining was performed as described by Tanaka et al.
[80] with slight modification. The aerial parts of 14-day-old seedlings were cut after TB stain-
ing, and ground in 200 pL buffer [200 mM Tris-HCI (pH8.0), 250 mM NaCl, 25 mM EDTA]
and 400 pL ethanol was added. After vortex mixing and centrifugation, the supernatant was
examined by spectrophotometer for the absorbance at 630 nm (Ag30) and 435 nm (A43s). Rela-
tive levels of absorbed TB were calculated as the ratio of Agzg:A4ss.

Epicuticular Wax Analysis

The analysis was performed as described by Xia et al. [81] with some modification. Arabidopsis
stems or rosette leaves were immersed in 10 mL chloroform, adding 50 uL n-tetracosane

(20 pug/mL) as an internal standard, for 30 seconds at 60°C to extract epicuticular wax. Five
stems and seven rosette leaves were used for each replicate. The extract solution was evaporated
under a stream of nitrogen. By adding 30 uL pyridine and 50 pL N,O-bis (trimethylsilyl) fluor-
oacetamide (BSTFA), samples were incubated at 70°C for 1 hour. After derivatization, samples
were dissolved in 100 pL #n-hexane for GC-MS analysis. The 6-week-old 35S:CFLAPI plants,
12-week-old 35S:CFLAP1-SRDX plants and the contemporaneous wild-type plants were used
for the waxes extraction, respectively.
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RNA Sequencing Analysis

Total RNA was extracted from the aerial parts of 3-week-old wide-type and 35S:CFLAPI plants
using TRIzol reagent (Invitrogen). RNA sequencing was performed by Illumina HiSeq 2000 at
the Biodynamic Optical Imaging Center (BIOPIC) in Peking University. The resulting data
was analyzed according the procedures described previously [82]. In briefly, RNA-seq reads
generated by Illumina Hiseq 2000 for each library were mapped independently using TopHat
version 2.0.6 (http://ccb.jhu.edu/software/tophat/index.shtml) against Arabidopsis thaliana
genome sequence index (Ensembl, TAIR 10 version), downloaded from Illumina iGenome
(http://ccb.jhu.edu/software/tophat/igenomes.shtml). For differential gene analyses of two
samples, Cuftdiff version 2.0.1 was run by using the reference transcriptome along with the
BAM files resulting from Tophat for each sample. The gene_exp.diff file generated by cuffdiff
program lists the results of differential expression testing between the two samples at gene
level. For the selection of up-regulated genes in the transgenic plants, the criteria was set:
FPKM 1> = 0.2, 10g2 (FPKM 35.crLAPI (or 35:cFLAPISRDX) /FPKM wr) < = -1; while for select-
ing down-regulated genes, the criteria was set: FPKM35.crrap1 (or 35:CFLAPISRDX) > = 0.2, log2

(FPKM 35.cFLAPI (or 35:CFLAPISRDX) /FPKM wr) > = 1.

Accession Numbers

Sequence data referred in this study can be found in the Arabidopsis Genome Initiative, Gen-
Bank/EMBL/UniProtKB databases, or Rice Genome Annotation Project under the following
accession numbers: AtCFLI, At2g33510; CFLAPI, Atlg51140; CFLAP2, At1g35460; HDGI,
At3g61150; FBH2, At4g09180; FBH4, At2g42280; FDH, At2g26250; BDG, At1g64670; KCSS,
At2¢15090; DEWAX, At5¢61590; TUB2, At5¢62690; M4CMQ1; B9GZB4; K7TMVM7; D7U611;
B6TJV0; B7FMU4; CFL1, Os02¢31140.

Supporting Information

S1 Fig. The fusion proteins of AtCFL1-myc and GFP-CFLAP1 are functional. (A) TB stain-
ing assay of 14-day-old seedlings. Left, before TB staining; right, after TB staining for 2 min-
utes. From top to bottom, wild type, 35S:AtCFLI1-myc-1, 35S:AtCFL1-myc-7, respectively.

Bar = 1 mm. (B) TB staining assay of rosette leaf. Left, before TB staining; right, after TB stain-
ing for 2 minutes. From top to bottom, wild type, 35S:GFP-CFLAPI-1, 35S: GFP-CFLAPI-2,
respectively. Bar = 1 mm. (C) and (D) SEM images of the epicuticular wax crystals on the
stems of wild type and 35S:GFP-CFLAPI-1. Bar = 5 um.

(TTF)

S2 Fig. Other phenotypes of 35S:CFLAPI plants. (A) Early-flowering phenotype of the 35S:
CFLAPI plants. Left, wild type; right, 35S:CFLAPI plants. (B) Abnormal flowers in the 35S:
CFLAP] plants. Bar = 1 mm. (C) Abnormal siliques in the 35S:CFLAPI plants. Bar = 1 mm.
(D) Leaf numbers of flowering for wild type, 35S:CFLAPI-1 and 35S:CFLAPI-3 plants. Level of
significance obtained with a Student’s ¢ test indicated by ***, p<0.01. (E) Relative expression
level of CFLAPI in wild type, 35S:CFLAPI-1 and 35S:CFLAPI-3 plants. The expression level in
wild types is set to 1.0. The error bars represent the SD of three biological replicates. (F) and
(G) TEM images of rosette leaves of wild-type and 35S: CFLAPI respectively. Arrows indicate
the cutin layer. Bar = 200 nm.

(TIF)

$3 Fig. The overexpression of FBH2 and FBH4 did not cause cuticle defective phenotype.
(A) The result of yeast two-hybrid assay for the interactions of FBH2-AtCFL1 and
FBH4-AtCFL1. The co-transformed yeast was plated on the control medium SD-LW and
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selective medium SD-LWH plus 3-amino-1, 2, 4-triazole (3-AT). HDGI was used as a positive
control. (B) to (F) TB staining assay of 14-day-old seedlings. (B), wild type; (C), 35S:CFLAP2-
27; (D), 358:FBH2-3; (E), 35S:CFLAPI-3; (F), 35S:FBH4-7. The plants of 355:CFLAP2-27 and
35S:CFLAPI-3 could be stained to blue, while the plants of 35S:FBH2-3 and 35S:FBH4-7 could
not. Bar = Imm.

(TIF)

S4 Fig. The phenotypes of the fbh1 fbh2 fbh3 foh4 quatruple mutant. (A) The phylogenetic
tree of CFLAPI and its three homologous genes. (B) Relative expression levels of CFLAP1/FBH3,
CFLAP2/FBH1, FBH2 and FBH4 in the wild type and quadruple mutant. The expression level in
the wild type is set to 1.0, and error bars represent the SD of three biological replicates. (C) Epi-
cuticular wax components in stems of quadruple mutant and wild type. Numbers indicate the
main chain lengths of each constituent. Each value is the mean + SD of five biological replicates.
At least 4 independent stems were used for each replicate. (D) Epicuticular wax components in
rosette leaves of the fbh1 fbh2 fbh3 fbh4 quadruple mutant and wild type. Numbers indicate the
main chain lengths of each constituent. Each value is the mean + SD of five biological replicates.
At least 5 rosette leaves from different independent plants were used for each replicate. Level of
significance obtained with a Student’s ¢ test is marked by the following: *, p<0.05.

(JPG)

S5 Fig. Other phenotypes of 35S:CFLAP1SRDX plants. (A) Late-flowering phenotype of 35S:
CFLAPISRDX-48 plants. Left, 35S:CFLAP1SRDX-48 plants; right, wild type. (B) Leaf numbers

for the flowering plants of 355:CFLAP1SRDX-48 and wild type. (C) and (D) SEM images of the
epicuticular wax crystals on inflorescence stems of 35S:CFLAP1SRDX-48 and wild type.

Bar =5 um.

(TIF)

S6 Fig. The change of epicuticular waxes showed similar trends in 35S:CFLAP1SRDX-41
and 35S: CFLAP1SRDX-48 plants. (A) Epicuticular wax components of 35S: CFLAPISRDX-
41, 35S: CFLAPISRDX-48 and wild-type stems. Numbers indicate the main chain length of
each constituent. Each value is the mean + SD of three biological replicates. At least 4 indepen-
dent stems were used for each replicate. (B) Epicuticular wax components of 35S:
CFLAPISRDX-41, 35S: CFLAP1SRDX-48 and wild-type rosette leaves. Numbers indicate the
main chain length of each constituent. Each value is the mean + SD of three biological repli-
cates. At least 5 rosette leaves from different independent plants were used for each replicate.
Level of significance obtained with a Student’s ¢ test is marked by the following: *, p<0.05; ***,
p<0.01.

(TTF)

S7 Fig. The subcellular localization of CFLAP1. (A) GFP signal of 35S:GFP-CFLAPI plant
root tip. (B) DAPI stained root tip. (C) Bright field. (D) (A) to (C) merged together.

Bars = 30 um.

(TIF)

S8 Fig. The putative zinc finger domain in the AtCFL1 C-terminus is necessary for
AtCFL1-CFLAP2 interaction. The results of yeast two-hybrid for the interactions between
CFLAP2 and mutated AtCFL1s. The baits were wild-type AtCFL1, AtCFL1 with C155 and
C158 residues mutated, AtCFL1 with C171 and C174 residues mutated and AtCFL1 with
C155, C158, C171 and C174 residues mutated respectively. The co-transformed yeast strains
were plated on the control medium SD-LW and selective medium SD-LWH.

(TIF)
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S1 Table. The result of 35:CFLAP1 RNA-seq data.
(XLS)

S2 Table. The result of 35:CFLAP1SRDX RNA-seq data.
(XLS)

$3 Table. Primer information used in this study.
(DOC)
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