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A continuing challenge in the analysis of massively large sequencing data sets is quantifying and interpreting non-neutrally

evolving mutations. Here, we describe a flexible and robust approach based on the site frequency spectrum to estimate the

fraction of deleterious and adaptive variants from large-scale sequencing data sets. We applied our method to approximate-

ly 1 million single nucleotide variants (SNVs) identified in high-coverage exome sequences of 6515 individuals. We estimate

that the fraction of deleterious nonsynonymous SNVs is higher than previously reported; quantify the effects of genomic

context, codon bias, chromatin accessibility, and number of protein–protein interactions on deleterious protein-coding

SNVs; and identify pathways and networks that have likely been influenced by positive selection. Furthermore, we show

that the fraction of deleterious nonsynonymous SNVs is significantly higher for Mendelian versus complex disease loci

and in exons harboring dominant versus recessive Mendelian mutations. In summary, as genome-scale sequencing data ac-

cumulate in progressively larger sample sizes, our method will enable increasingly high-resolution inferences into the char-

acteristics and determinants of non-neutral variation.

[Supplemental material is available for this article.]

Copious amounts of exome and whole-genome sequence data
have been, and continue to be, generated, yieldingmassively large
catalogs of human genomic variation in geographically diverse
populations (Novembre et al. 2008; The 1000 Genomes Project
Consortium 2012; Keinan and Clark 2012; Tennessen et al.
2012; Fu et al. 2013). A fundamental challenge in interpreting ge-
nome-scale sequencing data derived from increasingly large panels
of individuals is identifying and quantifying variants that influ-
ence evolutionary fitness. A deeper understanding of deleterious
and advantageous mutations would enable insights into the char-
acteristics and determinants of non-neutral variation and have im-
portant practical consequences for inferring human demographic
history (Fu et al. 2013), informing disease gene mapping studies
(Mathieson and McVean 2012; Henn et al. 2015), and clinical ge-
nomics (Dewey et al. 2014).

A number of approaches have been pursued to identify or
quantify variants that may have functional or fitness effects. For
instance, functional predictionmethods based on physiochemical
properties of nonsynonymous mutations (Kumar et al. 2009;
Adzhubei et al. 2010), evolutionary conservation metrics that are
applicable to all mutational types (Cooper et al. 2005; Siepel
et al. 2006), or statistics that aggregate information across a wide
variety of predictive methods are widely used (Kircher et al.
2014). A limitation of functional prediction methods is that they
often yield disparate results when applied to the same data set
(Fu et al. 2014; Henn et al. 2015), likely reflecting high rates of
both false-positive and -negative predictions. Another strategy to
quantify non-neutral (primarily deleterious) variation is to explic-
itly model evolutionary and demographic history from patterns of
genetic variation in order to disentangle the effects of selection
from confounding evolutionary forces. Although powerful, such
models are parameter-rich, and thus inferences are potentially sen-
sitive to model misspecification.

Here, we develop a simple population genetics approach for
estimating the fraction of deleterious or adaptive variants in large
sequencing data sets. The key advantages of our method are its ro-
bustness to a wide range of evolutionary and demographic con-
founding forces and the ability to quantify patterns of selection
in any class of sites of interest.We leverage ourmethod to perform
a comprehensive analysis of non-neutral protein-coding variation
in exome sequences from 6515 individuals sequenced as part of
the Exome Sequencing Project (ESP) (Fu et al. 2013). These analy-
ses reveal new insights into the heterogeneous and context-depen-
dent forces that shape patterns of deleterious nonsynonymous
and synonymous variation, characteristics of natural selection
that act on disease-associated or -causing genes, and pathways
that have experienced adaptive evolution.

Results

A simple nonparametric approach to infer the proportion

of sites under selection

The site frequency spectrum (SFS) is a compact summary of genetic
variation (Fig. 1A) that contains considerable information about
population history (Gutenkunst et al. 2009) and the evolutionary
forces that have shaped extant patterns of segregating variation
(Akey 2009). For example, purifying selection acting ondeleterious
alleles results in a skew of the SFS toward rare variation, whereas
positive selection acting on advantageous alleles causes a skew of
the SFS toward common variation relative to neutral expectations
(Fig. 1A). Thus, in principle, the fraction of sites under selection,
f, can be inferred by comparing the SFS between a class of variants
of interest (which we denote as test sites) to the SFS of putati-
vely neutral variation (which we denote as reference sites). More
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specifically, f can be estimated as the difference between a test and
reference SFS, summed across all frequency classes (Fig. 1A). With
appropriate rescaling, positive and negative values of f provide es-
timates of the fraction of test sites that are under purifying andpos-
itive selection, respectively (Fig. 1A). Conceptually, our approach
is analogous to methods such as dN/dS (Yang 1998) and the
McDonald–Kreitman test (McDonald and Kreitman 1991).

We first carefully investigated a number of neutral evolution-
ary forces that could potentially confound estimates of f. To eval-
uate the effects of heterogeneity in the neutral mutation rate,
we simulated data under neutrality where reference sites had a
mutation rate of μ and test sites had mutation rates of 0.1μ, 2μ,
or 10μ under realistic models of human demographic history
(Supplemental Figs. S1, S2). Although mutation rates influence
the amount of genetic variation, the shape of the SFS is approxi-
mately constant, and thus, estimates of f are approximately zero
(Supplemental Fig. S2). Furthermore, estimates of f are not con-
founded by demographic perturbations such as population bottle-
necks, expansions, and cryptic population structure (Fig. 1B), and
therefore, inferences can be made without accurately specifying a
demographic model as required by other approaches (Williamson
et al. 2004; Boyko et al. 2008; Nielsen et al. 2009). The robustness
in estimates of f to demographic history is due to the fact that, on
average, genetic drift influences both the test and reference class of

sites equally. Moreover, estimates of f are robust to recombination
rate heterogeneity (Supplemental Fig. S3).

Next, to evaluate the accuracy of f, we simulated exome se-
quences under purifying and positive selection. Initially, we
assumed the distribution of fitness effects followed a gammadistri-
bution with parameters previously inferred for protein-coding
sequences (Boyko et al. 2008) and a realisticmodel of European de-
mographic history (see Methods) (Tennessen et al. 2012). Under
this baseline model of purifying selection (denoted as γ∗), the pa-
rameters of the gammadistribution correspond to an average selec-
tion coefficient of s =−3 × 10−2. The strength of selection was also
systematically varied around the baseline model γ∗ (the average s
ranged from −3 × 10−6 to −3 × 10−2). There is a clear relationship
between f and the strength and type of selection (Fig. 1C). For in-
stance, in the baseline model of purifying selection (γ∗), f is esti-
mated to be 59% and decreases to 4% when the magnitude of
selection is reduced to 10−4. Similarly, in models of positive selec-
tion, f is estimated to be 92% in the baseline model (|γ∗|) and 1.6%
when the magnitude of selection is reduced by 10−4. Overall, our
simulations suggest that f can be accurately inferred for sites
with selection coefficients (|s| > 0.0001) (Fig. 1D). In general, ro-
bust estimates of f can be made with sample sizes of at least 1000
individuals, with larger sample sizes providing more accuracy
(Supplemental Fig. S4). Very strong purifying or positive selection
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Figure 1. A nonparametric approach for estimating the fraction of SNVs under selection. (A) Schematic illustration of the method to estimate f by com-
paring a test SFS to a putatively neutral reference SFS. The fraction of deleterious (red) and advantageous (blue) SNVs is estimated as the scaled difference
between test and reference SFS (see Methods). (B) Estimates of f when test and reference sites have different mutation rates (the test SFS was set to θ) for
a different demographic model. The estimate of f in the population structure model is from population one. (C) Estimates of f as a function of strength of
selection assuming the same demographic model as in B. (γ∗) Baseline selectionmodel (Boyko et al. 2008). (D) Comparison between observed and expect-
ed estimates of f (|s| > 0.0001) inferred from the distribution of selection coefficients. (E) Estimates of f for neutral mutations linked to selected sites (black
region) as a function of distance from reference sites (gray regions).
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can result in f being under- or overestimated, respectively, relative
to theoretical expectations (Fig. 1D).

Finally, we studied the effects of selection at linked neutral
sites (background selection and adaptive hitchhiking) on estimates
of f. To this end, we simulated neutrally evolving test sites linked
at varying distances to adaptive or deleterious sites (Fig. 1E).
Estimates of fwere robust to both background selection and hitch-
hiking when the test and reference sites are separated by <100 kb
(Supplemental Figs. S1, S5). Intuitively, these results make sense,
as selectionwill have similar effects on closely linked loci. In hitch-
hikingmodels, f can be overestimatedwhen test and reference sites
are separated by larger distances (Fig. 1E), and thus, reference sites
should be chosen tominimize the effects of strongly advantageous
mutations. In summary, these results demonstrate that our simple
nonparametric approach for estimating f is accurate and robust to a
wide variety of potentially confounding evolutionary forces.

Quantifying the burden of deleterious protein-coding variation

We estimated f in high-coverage exome sequences derived from
4298 European Americans (EAs) and 2217 African Americans
(AAs) (Fuet al. 2014). In total, 597,921 codingand326,065 intronic
SNVs are present in these 6515 individuals (446,783 nonsynony-
mous and 151,138 synonymous) (Supplemental Table S1). As a
putatively neutral class of reference sites, we used unconstrained
intronic variants proximal to each exon (see Methods). For all
protein-coding SNVs, f was 0.374 ± 0.002 (mean ± SE) in EAs and
0.319 ± 0.003 in AAs (Fig. 2A). As expected, the fraction of non-
synonymous SNVs that were deleterious ( fEA = 0.585 ± 0.002 and

fAA = 0.524 ± 0.002) was considerably higher than synonymous
SNVs ( fEA = 0.079 ± 0.005 and fAA = 0.073 ± 0.004) (Fig. 2A). The
higher estimates of f in EAs compared with AAs are consistent
with previous studies (Lohmueller et al. 2008; Fu et al. 2014) and
are likely due to differences in demographic history.Note, previous
studies based on PolyPhen2 (Adzhubei et al. 2010) or arbitrary con-
servation thresholds have estimated that less than∼40% of nonsy-
nonymous SNVs are deleterious (Fu et al. 2013); our data driven
estimate of f suggests a considerably higher burden of deleterious
nonsynonymous SNVs.

Genomic context is a strong determinant of deleterious

protein-coding variation at nonsynonymous sites

Next, to better understand how patterns of selection are influ-
enced by genomic context, we categorized synonymous and non-
synonymous variants according to whether the ancestral allele
at each SNV occurred in a CpG site, a potential site of GC-biased
gene conversion (gBGC), or a non-CpG and non-gBGC site
(NCB; see Methods). We constructed the reference and test SFS
to have the same mutational types to mitigate influences of muta-
tion rate heterogeneity (although simulations demonstrate this
effect is likely to be small) (Fig. 2B). Indeed, estimates of f were
robust to the class of reference sites used, except in comparisons
that involved gBGC sites (Supplemental Figs. S6, S7), likely because
gBGC increases the rate of fixation and skews the SFS toward high
frequencies. Thus, matching genomic context between test and
reference sites is important whendisentangling the effects of selec-
tion from other evolutionary forces.

Figure 2. Characteristics of deleterious protein-coding SNVs. Estimates of f for (A) all protein-coding SNVs, all nonsynonymous SNVs, and all synonymous
SNVs in EAs (red) and AAs (blue). (B) Estimates of f for SNVs as a function of genomic context. (C) Estimates of f as a function of derived allele frequency. (D)
Effect of codon bias on estimates of f at synonymous sites. (E) Estimates of f for SNVs inside (+; darker shade) or outside (−; lighter shade) of DHSs. (F )
Decomposing the effects of genomic context, codon preference, and DHSs on estimates of f. (G) Schematic summary of context-dependent patterns
of deleterious synonymous SNVs (purple, vertical lines) as a function of regulatory context (first row), codon preference (second row), and genomic context
(third row). Note that preferred changes (U → P) at CpG sites and unpreferred changes (P → U) of gBGC within the DHSs show less constraint, whereas
preferred changes (U → P) at CpG sites outside of DHSs exhibit stronger constraint.
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Genomic context has limited effects at synonymous sites,
with estimates of f ranging from approximately 0.053 to 0.085 in
EAs and 0.059 to 0.073 in AAs (Fig. 2B). At nonsynonymous sites,
however, genomic context has a profound influence on estimates
of f. Specifically, the highest fraction of deleterious variants occurs
in CpG sites ( fEA = 0.649 ± 0.003 and fAA = 0.603 ± 0.004), whereas
NCB sites exhibit the lowest fraction of deleterious nonsyn-
onymous variants ( fEA = 0.537 ± 0.004 and fAA = 0.465 ± 0.003)
(Fig. 2B). The significantly higher estimates of f in CpG compared
with gBGC or NCB sites (Wilcoxon text, P < 10−16) (Supplemental
Fig. S8) suggests that CpG hypermutability (Shen et al. 1992) is a
potent source of deleterious nonsynonymous mutations. Con-
sistent with this hypothesis, nonsynonymous SNVs in CpG sites
have significantly higher average PolyPhen2 (Adzhubei et al.
2010) and Grantham (1974) scores than non-CpG sites (mean Pol-
yPhen2 scores of 0.687 ± 0.001 and 0.552 ± 0.001, respectively;
Mann-Whitney U test, P < 10−16; mean Grantham scores of 74.8 ±
0.1 and 69.9 ± 0.1, respectively; P < 10−16). Note, unless otherwise
stated, all P-values reported below are fromMann-WhitneyU tests.

To explore the stability of f estimates, we repeated all analyses
using four different sets of reference sites (Supplemental Fig. S9).
Overall, estimates of f were extremely robust. For example, in
EAs f ranged from 0.656 to 0.675 for nonsynonymous CpG sites
across different sets of reference sites. We also estimated f using
only conserved intronic sites as the reference SFS. As expected, f
was reduced ∼7% at nonsynonymous sites and ∼14% at syn-
onymous sites (Supplemental Fig. S9), likely due to the pre-
sence of deleterious variants in the reference SFS. Thus, f may be
underestimated in empirical data sets, as it is difficult to unam-
biguously define sites evolving under strict neutrality, although
this effect is likely to be modest when reference sites are carefully
chosen.

Rare variants are highly enriched for deleterious alleles in EA

We estimated the fraction of deleterious variants as a function
of derived allele frequency (Fig. 2C). Overall, 94% of deleterious
SNVs in EAs and 87% of deleterious SNVs in AAs were rare
(DAF < 0.001), consistent with previous studies (Fu et al. 2013).
Notably, estimates of f for singletons (derived alleles that appear
once in the sample) were fEA = 0.427 and fAA = 0.349 for nonsynon-
ymous SNVs and fEA = 0.059 and fAA = 0.046 for synonymous
SNVs. To more directly compare f between EAs and AAs, we sam-
pled an equal number of chromosomes from each population
(Supplemental Fig. S10). In all mutational classes, EAs have signifi-
cantly higher estimates of f compared with AAs (P < 10−16), consis-
tent with previous observations that the out-of-Africa bottleneck
resulted in proportionally more deleterious variation in EAs com-
pared with AAs (Lohmueller et al. 2008; Fu et al. 2014).

Influence of codon bias and chromatin accessibility

on the burden of deleterious SNVs

Codon bias refers to the differential use of synonymous codons
and has been found in a wide variety of organisms (Novoa et al.
2012), although the amount of codon bias and the evolutionary
forces influencing it in humans remains unclear (Kotlar and
Lavner 2006; Yang and Nielsen 2008). To investigate the evolu-
tionary dynamics of codon bias in humans, we focused on derived
mutations that result in a change from a preferred to unpreferred
codon (P→U) or a change from an unpreferred to preferred codon
(U→ P) (Fig. 2D). Estimates of f for SNVs with P→U ( f EA= 0.097 ±
0.006, f AA= 0.093 ± 0.005) codon changes were significantly high-

er than SNVswithU→ P codon changes ( f EA= 0.039 ± 0.008, f AA=
0.020 ± 0.006) (pEA = 2.7 × 10−7, PAA = 1.0 × 10−14) (Fig. 2D), sug-
gesting stronger constraint on P→U SNVs.

Next, we estimated f for variants in DNase I hypersensitive
sites (DHSs), which delimit regions of open chromatin, and con-
trasted it to estimates of f for variants outside of DHSs. Overall,
f is significantly higher for variants in DHSs compared with vari-
ants outside of DHSs in both the EA and AA samples (PEA <
10−16, PAA = 1.7 × 10−15) (Fig. 2E), suggesting higher levels of con-
straint in protein-coding regions that may also encode regulatory
information (Stergachis et al. 2013). This pattern was particularly
strong at nonsynonymous variants (Fig. 2E), although the rela-
tionship between f from SNVs within and outside of DHSs was
strongly influenced by genomic context (Fig. 2F). For instance, es-
timates of f were significantly higher within compared with out-
side of DHSs for gBGC (PEA = 6.6 × 10−6, PAA = 8.2 × 10−7) and
NCB (PEA = 2.4 × 10−6, PAA = 0.006231) sites, whereas for CpG sites
they were significantly lower (PEA,AA < 10−16) (Fig. 2F).

Surprisingly, estimates of f for synonymous variants within
and outside of DHSs were similar, particularly in EAs (Fig. 2E). As
heterogeneous and context-dependent forces likely influence pat-
terns of evolutionary constraint, we decomposed the effects of co-
don bias, chromatin accessibility, and genomic context on
estimates of f (Fig. 2F). We found distinct patterns of selection
when simultaneously accounting for all of these factors, which
are not readily apparent when considering any factor in isolation
(Fig. 2F). For example, the equivocal estimates of f for synonymous
variants within and outside of DHSs arise from the complex, and
opposing, patterns caused by codon bias and genomic context.
Specifically, estimates of f at U→ P synonymous variants in gBGC
sites are significantly higher within compared with outside
of DHSs (PEA = 8.5 × 10−6, PAA = 1.0 × 10−6) (Fig. 2F), whereas they
are similar at CpG sites. Conversely, estimates of f at P→U synon-
ymous variants in CpG sites are higher within compared with out-
side of DHSs (Fig. 2F). It is interesting to note that differences
between f within and outside of DHSs have the same patterns in
EAs and AAs, except for P→U gBGC synonymous sites (Fig. 2F).
We hypothesize this observation may be due to the interaction of
recombination rate heterogeneity between populations, strength
of gBGC, and genomic contexts (Galtier et al. 2009; Glemin et al.
2015), but additional work is necessary to fully interpret patterns
of deleterious variation at P→U gBGC synonymous sites. A sche-
matic summary of the context-dependent effects observed in esti-
mates of f for synonymous SNVs is shown in Figure 2G.

Selection at the center and periphery of protein–protein

interaction networks

To better understand how interactions between proteins influence
characteristics of deleterious variation, we constructed a protein–
protein interaction (PPI) network consisting of 6700 protein-
coding genes that harbor variants in the ESP data (Fig. 3A).
Consistent with previous studies, the topology of the network is
approximately scale-free (Barabási and Oltvai 2004; Stelzl et al.
2005) such that most proteins have relatively few interactions, al-
though some proteins have a large number of interactions (Fig.
3B). There is a significant (P = 0.009) linear relationship between
estimates of f at nonsynonymous sites and the number of PPIs,
with a 10-fold increase in interactions associated with a 3.3% in-
crease of f (Fig. 3C). Moreover, the difference between estimates
of f at nonsynonymous sites for nodes in the center and periphery
of the network is about 0.11 ( fEA = 0.66 and fAA = 0.62 in the center
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and fEA = 0.58 and fAA = 0.51 in the periphery). When separating
variants into genomic context, the effect of interactions becomes
more pronounced (Supplemental Fig. S11); differences in f can
be as high as 40% between nodes in the center and periphery of
the network at CpG sites. Interestingly, there is no significant rela-
tionship between estimates of f and the number of interactions at
synonymous sites (Fig. 3D).

Selection on nonsynonymous SNVs in disease-related genes

We also studied patterns of selection across disease related genes.
Specifically, we first estimated f for nonsynonymous SNVs in
genes annotated as “Essential” (731 genes) (Bult et al. 2013),
“Mendelian” disorders (Amberger et al. 2015) (2622 genes),
“Complex” traits (Becker et al. 2004) (1690 genes), and “Other”
(2472 genes). Estimates of f were significantly different across
categories (P < 0.01 for all comparison in EAs and AAs), with
Essential genes showing the most constraint ( fEA = 0.644 ± 0.008,
fAA = 0.610 ± 0.008), followed by Mendelian disease genes ( fEA =
0.607 ± 0.006, fAA = 0.527 ± 0.006), Complex disease genes ( fEA =
0.528 ± 0.008, fAA = 0.467 ± 0.006), and Other genes ( fEA = 0.453 ±
0.009, fAA = 0.407 ± 0.007) (Fig. 4A).

Next, we identified exons that harbor clinically significant
mutations as defined by ClinVar (Landrum et al. 2014), catego-
rized these exons based on themutations’ reportedmode of inher-
itance (Dominant, Recessive, or Other), and estimated f from
nonsynonymous SNVs found within these exons (Fig. 4B). As ex-

pected, the average number of nonsynonymous SNVs per kb in
ClinVar exons is higher in the ESP data compared with SNV densi-
ty estimated directly fromClinVar (Fig. 4B) given the larger sample
size. Strikingly, estimates of f in exons associated with autosomal-
dominant diseases ( fEA = 0.807 ± 0.007, fAA = 0.704 ± 0.008) were
significantly higher than estimates of f from exons harboring auto-
somal-recessive disease ( fEA = 0.559 ± 0.020, fAA = 0.502 ± 0.016;
P < 10−16) (Fig. 4B). Indeed, estimates of f from exons with domi-
nant diseases are significantly higher (PEA,AA < 10−16), whereas es-
timates of f from exons with recessive diseases are significantly
lower (PEA= 0.017, PAA < 0.031), compared with f from nonsynon-
ymous SNVs in exons associatedwith other ClinVar diseases ( fEA =
0.626 ± 0.018, fAA = 0.552 ± 0.018) (Fig. 4B). It is interesting to note
the ∼30% reduction of f in recessive compared with dominant
exons may reflect the proportion of potentially deleterious non-
synonymous mutations in heterozygous form with no visible del-
eterious phenotype in recessive exons.

Estimates of f facilitate probabilistic interpretations of C-scores

Recently, an approach to assess the pathogenicity of individual
variants was developed that integrates a large number of heteroge-
neous data types into a single metric denoted as a C-score (Kircher
et al. 2014). To date, interpretingC-scores has relied upon arbitrary
empirical thresholds. To provide a more probabilistic interpreta-
tion of C-scores, we calculated f for ESP variants as a function of
scaled C-score bin for nonsynonymous (Fig. 5A) and synonymous

A B

C

D

Figure 3. Higher burden of nonsynonymous SNVs for proteins at the center versus periphery of protein–protein interaction networks. (A) PPI network of
6700 protein-coding genes with 56,728 significant connections (STRING score >0.7). Each protein is a node and is shaded by the number of interactions
(degree). (B) Relationship between the average number of interacting proteins (x-axis) and the degree of connectivity (y-axis) for the PPI network. (C)
Relationship between the average number of interacting protein neighbors on estimates of f at nonsynonymous SNVs, showing significantly increased pu-
rifying selection on genes located at center rather than periphery of the PPI network. (D) No significant relationship between the average number of in-
teracting proteins on estimates of f at synonymous sites.
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(Fig. 5B) SNVs. For nonsynonymous SNVs, there was a significant
relationship between f and scaled C-score (R2

EA = 0.94, P = 6.3 ×
10−120; R2

AA = 0.95, P = 2.6 × 10−129) (Fig. 5A), with f > 0.90 for
scaledC-scores greater than about 18 (i.e., we estimate 90%of non-
synonymous SNVs with a scaled C-score ≥18 are deleterious).
Importantly, the relationship between f and scaled C-scores was
similar in both EAs and AAs (Fig. 5A). Note, estimates of f for the
lowest scaled C-score bin are about 0.10, suggesting that a small
fraction of nonsynonymous SNVs that possess little evidence of
being pathogenic by even sophisticated prediction algorithms
may actually be deleterious. The relationship between f and scaled
C-scores for synonymous SNVs was considerably more modest
(R2

EA = 0.60, P = 8.5 × 10−12; R2
AA = 0.63, P = 6.3 × 10−16) (Fig. 5B)

and varied around zero for C-scores below five. In summary, esti-
mates of f can help guide the interpretation and selection of appro-
priate C-score thresholds, particularly for nonsynonymous SNVs.

Natural selection on pathways

We calculated estimates of f in categories of genes as defined by
Gene Ontology (GO) (The Gene Ontology Consortium 2015),
KEGG pathways (Kanehisa et al. 2014), and Reactome pathways
(Croft et al. 2014) in EAs and AAs (Fig. 6; Supplemental Table
S2–S4). As expected, the majority of categories and pathways ex-
hibit purifying selection, although there is considerable heteroge-
neity in levels of constraint (Fig. 6). The most constrained
processes and pathways are in general related to gene ensembles
that participate in core cellular functions; for example, the largest
estimate of f in KEGG pathways is for “basal transcription factors.”
Although estimates of fwere largely similar between EAs andAAs, a
number of categories and pathways exhibited differences in the in-
tensity of purifying selection (Fig. 6). For instance, theGOcategory
“NADmetabolic process” ( fEA = 0.18 and fAA = 0.74) and Reactome
pathway “Notch-HLH transcription pathway” ( fEA = 0.02 and fAA

= 0.64) had markedly different estimates of f among populations.
Finally, several categories exhibited evidence of positive selection
( f < 0) in either one population or both populations (Fig. 6;
Supplemental Table S2–S4). Examples of pathways with evidence
of positive selection in both EAs and AAs include the KEGG path-
way “asthma” ( fEA =−0.93 and fAA =−0.28), GO category “positive
regulation of innate immune response” ( fEA =−0.89 and fAA =
−0.35), and Reactome pathway “defensins” ( fEA =−0.74 and fAA
=−0.84). We caution that strong positive selection can lead to bi-
ased estimates of f (Fig. 1E). Furthermore, wenote that the interpre-
tation of pathway data is complicated by the fact that genes are
often assigned to multiple categories and that current pathways
are simplified representations of complex biological processes.
Nonetheless, these results demonstrate that estimates of f yield in-
sight into the tempo and mode of selection acting in aggregate
across ensembles of genes.

Discussion

We developed a simple nonparametric method to estimate the
fraction of non-neutral SNVs in large sequencing data sets and
showed that it is robust to many potential confounding demo-
graphic and evolutionary forces. A particularly powerful feature
of our approach is its flexibility, which we leverage to comprehen-
sively study characteristics and patterns of non-neutral protein-
coding variation. Our results provide important new insights
into the heterogeneous and highly context-dependent effects
that shape patterns of deleterious protein-coding variation. For ex-
ample, recent studies (Stergachis et al. 2013; Xing and He 2015)
have come to disparate conclusions on whether exonic DHSs pro-
vide an additional level of constraint on protein-coding sequences.
Our results show that this straightforward question is complicated
by the multitude of context-dependent factors that influence

A B

Figure 4. Intensity of purifying selection on nonsynonymous SNVs in disease related genes. (A) Estimates of f in genes designated as Essential, Mendelian,
Complex, or Others (for details, see text). (B) Estimates of f from SNVs in exons with reported disease causing mutations as a function of mode of inher-
itance. The top panel provides a schematic illustration of the analysis, including intersection between exons containing ClinVar reported mutations and
nonsynonymous SNVs in ESP. The plots below show the number of nonsynonymous SNVs/kb estimated from ClinVar and ESP, as well as estimates of f
as a function of mode of inheritance. Dashed lines denote the average f for nonsynonymous SNVs in EAs (red) and AAs (blue).
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protein-coding variation, but when properly taken into account,
regulatory DNA in coding regions does impose additional con-
straints (Fig. 2E,F), although the magnitude of such effects are
modest. Moreover, we found that estimates of f were significantly
higher for nonsynonymous SNVs in exons that harbor dominant
versus recessive diseases. This observation suggests mutations that
occur in a particular exon may be more likely to have a similar
mode of inheritance. Furthermore, we showed a strong quantita-
tive relationship between estimates of f and C-scores, particularly
for nonsynonymous SNVs (Fig. 5), which enable variants with a
particular C-score to be interpreted in a probabilistic framework
and should be of considerable utility in evolutionary and clinical
genomics studies.

It is important to note that ourmethodhas several limitations
(see also Supplemental Material). For example, accurate estimates
of f require a reference SFS composed of neutrally evolving sites.
In practice, unambiguously identifying neutral sites is challeng-
ing, although a number of functional and evolutionary genomics
resources can help inform what sites are most likely to be free of
selective constraint. Furthermore, although a number of assump-
tions are required for model-based estimates of the fraction of
deleterious variants, they have some advantages compared with
our nonparametric approach. For example, they provide more di-

rect estimates on the distribution of fitness effects (Racimo and
Schraiber 2014) and other parameters that may be of interest,
and thus, our method is complimentary to existing approaches.
Of particular interest, fitCons (Gulko et al. 2015) was recently
developed to provide an estimate for fitness consequences of
mutations at each site in the genome and leverages both polymor-
phismwithin and divergence between species, as well as function-
al genomics data. Thus, fitCons captures the effects of selection
acting over longer time-scales compared with our method, which
focuses on the effects of more recent selection acting on a class of
sites of interest.

Finally, another limitation of our method is interpreting esti-
mates of f when test sites are composed of a mixture of deleterious
and advantageous mutations. Indeed, we simulated test SFSs com-
posed of varying fractions of advantageous, deleterious, and neu-
tral mutations (Supplemental Fig. S12) and found that estimates
of f reflect the net effect of selection. In general, deleterious muta-
tions vastly outnumber advantageous mutations, and as a conse-
quence, the power of our method to detect positive selection
may be low when aggregating over large numbers of sites (i.e.,
the signature of positive selection would be attenuated in the
presence of deleterious variation). Nonetheless, as sample sizes in-
crease, simulations suggest that future estimates of f could bemade

110 (6.4%)

81 (4.7%) 43 (2.5%)

1486 (86.4%) 8 (4.8%)

8 (4.8%) 4 (2.4%)

147 (88.0%) 48 (5.6%)

36 (4.2%) 12 (1.4%)

759 (88.8%)

Figure 6. Natural selection on pathways. Estimates of f in EAs and AAs were calculated for nonsynonymous SNVs for genes across all categories in Gene
Ontology, KEGG pathways, and Reactome pathways. The number (and proportion) of categories in each of the four quadrants is shown in each panel.

A B

Figure 5. Relationship between predicted pathogenicity of SNVs and estimate of f in populations. The average estimate of f on nonsynonymous (A) and
synonymous (B) SNVs was computed on each bootstrapped subset of SNVs in each bin by using a quantile-binning approach, such that each bin had the
same number of SNVs. Error bars, SEM scaled C-score (x-axis) andmean estimate of f (y-axis). The red (EA) and blue (AA) lines represent the best fit curves to
the data.
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at individual genes or exons (Supplemental Fig. S4), which would
facilitate the construction ofmore homogeneous test SFSs andmit-
igate these interpretational issues.

In conclusion, as whole-genome sequences supplant exomes,
and sample sizes move from thousands to hundreds of thousands
of individuals, our approach will become an increasingly useful
and powerful tool to comprehensively investigate the characteris-
tics and determinants of evolutionarily significant variation.

Methods

The model

Given a set of n DNA sequences, derived variants can be described
as a vector of the number of variable sites at frequency of i/n in the
sample,where i is the number of observed derived alleles. Thus, the
SFS can be written as η = ηi (i = 1, 2, …, n−1). The goal of our ap-
proach is to estimate the fraction, f, of non-neutral SNVs in a class
of sites of interest (test sites) by comparing the SFS between test
sites (ηtest) to a SFS composed of putatively neutral reference sites
(ηref). However, because of differences in effect sequence length
and number of SNVs between ηtest and ηref, it is not possible to
compare them directly. Therefore, we first use estimators of the
population mutation rate, u = 4NemL (where Ne is the effective
population size, μ is themutation rate/base pair, and L is the length
in base pairs of sequence), to scale ηref. As deleterious SNVs are less
likely than neutral variants to drift to high frequencies, we us θπ,
which puts more weight on intermediate-frequency variants
(Tajima 1983), as an estimator for θ.We calculate the expected val-
ue of ûp from the observed SFS as

ûp(h) = n
2

( )−1∑n−1

i=1

i(n− i)hi = 4NemL.

Under a variety of demographic models (Fig. 1), we showed that
the total number of observed SNVs,

∑
h, is proportional to μL in

a way that the SFS is shifted up or down without changing its
shape. This property enables the amount of low-frequency sites
to be inferred from the amount of intermediate-frequency sites
in two sets of SFSs when μ is unknown and L varies considerably.
Next, we calculate the ratio of θπ estimated from the test (ηtest)
and reference SFS (ηref):

a1 = û p(htest)
û p(href)

= mtestLtest

mrefLref
.

By using α1, which is the ratio of μLweighted by putatively neutral
intermediate-frequency variants between test and reference sites,
we obtain the scaled SFS of test sites, ηref∗ = α1ηref = α1ηi (i = 1, 2,
…, n−1). Although we could now directly calculate f, we expect
most deleterious SNVs to be rare. Therefore, for inferring the frac-
tion of deleterious SNVs in test sites, we use θW, which places more
weight on low-frequency sites (Watterson 1975):

ûW (h) = 1/hn

∑n−1

i=1

hi,

where hn = ∑n−1
k=1 (1/k). We obtain the estimate of f in test sites by

removing the fraction of neutral variants inferred from the scaled
reference SFS (ηref∗):

f = 1− ûW (href∗)
ûW (htest)

.

Under the null hypothesis that all test sites are neutrally evolving,
ηtest is equal to that of ηref∗ (and thus f≈ 0). Note, in practice we

found estimates of f to be stable regardless of what particular esti-
mator of θ is used (see Supplemental Material).

Estimates of f < 0 indicate an excess of common variants in
test sites, which may occur if some test sites are subject to positive
selection. To estimate the fraction of sites that are under positive
selection, we obtain a new scale factor, α2, for the reference SFS
based on θW,

a2 = ûW (htest)
ûW (href)

= mtestLtest

mrefLref
.

By using α2, we have a new ηref∗ = α2ηref = α2ηi (i = 1, 2, …, n−1) to
subtract neutral variation at intermediate-frequency sites from
ηtest. It is straightforward to compute the fraction of putatively
adaptive variants based on θπ:

f = 1− û p(href∗)
û p(htest)

.

Note, we use a negative sign to distinguish it from estimates of the
fraction of deleterious SNVs.

Simulations

We tested the accuracy and robustness of estimating f under com-
plex demographic scenarios (Tennessen et al. 2012; Fu et al. 2013;
Gazave et al. 2013) and a variety of selection regimes. For each de-
mographic scenario (see Supplemental Note), we simulated DNA
sequences consisting of coding and noncoding regions. Only non-
synonymous sites in coding regions were under selection with
differing selection coefficients, s, a population-scaled selection
coefficient γ = 2Nes, where γ was drawn from Gamma distribution
(Γ). We set the shape (α) and the rate (β) parameters as described by
Boyko et al. (2008), where α∗ = 0.206, β∗ = 1/2740, and Ne = 10,000
(Gazave et al. 2013), for a baseline model of selection. Γ∗ was shift-
ed to have average selection coefficients (α/β) ranging from
1/10,000 to 1/10 of that of the baseline model by multiplying
coefficients (10, 40, 100, 200, 400, 1000, 10,000) to the rate param-
eter (β) with the shape (α) parameter of baselinemodel of selection.
We specified negative and positive γ for negative and positive se-
lection coefficients, respectively. We simulated sequence samples,
comparable in size to empirical exome data, consisting of 300 bp of
coding and 100 bp of noncoding sequence at each locus. Coding
regions were composed of nonsynonymous and synonymous
sites, as well as nonsynonymous sites under selection. For evaluat-
ing the effect of hitchhiking and background selection on the es-
timate of f, we specified the distance between coding region and
noncoding region to be 0, 1, 10, 100, and 500 kb. Unless otherwise
noted, for each parameter combination we simulated 100 repli-
cates of an aggregate set of 1000 loci. Simulations were carried
out with varying sample sizes of n = 10, 100, 1000, and 10,000 se-
quences.We performed forward-time simulations implemented in
SFS_CODE program (Hernandez 2008).

Exome sequencing data

We analyzed high-coverage exome sequencing data from 6515 in-
dividuals that were sequenced as part of the ESP (Fu et al. 2013).
QC and data filtering were performed as previously described.
Additionally, we defined ancestral alleles based on ancestral ge-
nome sequence for Homo sapiens (GRCh37) that can be down-
loaded from Ensembl (ftp://ftp.ensembl.org/pub/release-65/fasta/
ancestral_alleles/). We considered only sites showing ancestral
allele with high-confidence calls, i.e., ancestral state supported
by more than two sequences.
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Sequence contexts of SNVs

SNVs were classified into coding and noncoding sites, and coding
SNVs were classified into nonsynonymous and synonymous mu-
tations. Nonsynonymous SNVs were counted as a derived allele
that resulted in a change of amino acid sequence. Synonymous
mutations were defined as changes at the third position of four-
and sixfold degenerate sites without impact on the amino acid
sequence. Reference noncoding mutations were defined as any
mutations located within intronic regions and within 50 bp of
5′-upstream and 3′-downstream regions of exon boundaries. The
longest transcript was chosen to identify exon–intron boundaries
when there were more than two alternative splicing forms for
a gene.

SNVs were classified into three classes based on genomic con-
text: CpG, gBGC, and NCB classes. Specifically, the CpG class was
defined as SNVs that occurred in ancestral CpG sites (CpG→NpG
orCpN). gBGC sites were defined as SNVs that wereweak-to-strong
substitutions (AT→GC). All other SNVs were classified as NCB, in-
cluding A↔ T, G↔C, and GC→AT changes.

Finally, we classified synonymous SNVs into “preferred” or
“unpreferred” changes based on the abundance of tRNA in the ge-
nome (Novoa et al. 2012). A “preferred” change is defined when
the derived allele leads to the use of a tRNA whose anticodon fre-
quency is higher than that of the ancestral allele’s tRNAanticodon.
Similarly, an “unpreferred” change is defined as cases where the
derived allele leads to the use of a tRNAwhose anticodon frequen-
cy is lower than that of the ancestral allele’s tRNA anticodon.
Mutations that have no effect on the abundance of tRNA for the
ancestral and derived codons were excluded.

Constraint categories of SNVs

SNVs were classified into four categories according to the in-
formation available from external experiments: (1) evolutionary
conservation, (2) DNase I hypersensitivity analysis, (3) hominid-
specific selection, and (4) recombination rate variation. SNVs
were classified into different levels of the evolutionary con-
servation based on PhyloP scores (Cooper et al. 2005) of 99 verte-
brate genomes with human genome. SNVs were classified into
regulatory potentials by identifying any SNVs overlapped with
DHSs identified in 81 human cell types (Stergachis et al. 2013).
SNVs were classified into 20 groups according to levels of local re-
combination rates. More details can be found in the Supplemental
Material.

PPI and GO analysis

Genes harboring SNVs were integrated into PPI networks by using
the STRING v9 database (Franceschini et al. 2013). Only high-
confidence predictions (STRING score >0.7) were included. We
focused on the largest cluster of the PPI network that consisted
of 56,728 nonredundant interactions among 6700 gene products.
Genes were classified into 20 groups according to the degree
of interactions, and each group includes approximately similar
numbers of genes using the quantile binning procedure described
above. The PPI network was visualized using Cytoscape (Smoot
et al. 2011).

Genes harboring SNVs were grouped into categories of GO
biological processes retrieved from BioMart (Homo sapiens genes
version GRCh37.p13 in Ensemble Genes version 75). We con-
sidered all GO terms that had at least 10 genes, retaining a total
of 1719 GO biological process terms. Because many terms were
“part-of” relationships, we applied FDR, a less-conservative meth-
od than Bonferroni, to control for multiple testing.

Complex diseases association

We classified genes into Mendelian disease, Essential genes,
Complex disease, and other as previously described (Fu et al.
2013). Briefly, the list of genes associated with Mendelian disease
was obtained from the OMIM database. Essential genes were
defined as human–mouse orthologs associated with “abnormal
survival” (except extended life span) or “sterility” in the publicly
available mouse knockout data from the Mouse Genome
Informatics database (MGI) (Bult et al. 2013). The list of genes
associated with Complex disease was obtained from the archive
of human genetic studies of complex diseases and disorders
(Genetic Association Database, GAD, April 19, 2014) (Becker
et al. 2004). We filtered out genes that were assigned to multiple
classes.

For testing association between selection pressure and
mode of inheritance, we classified exons into “autosomal reces-
sive” and “autosomal dominant” using ClinVar (June 4, 2014)
(Landrum et al. 2014). We used clinically significant mutations
whose significance has been reported as “likely pathogenic” and
“pathogenic” flags. Additionally, we used the combined annota-
tion-dependent depletion scores (scaled C-score) to polarize dele-
teriousness of SNVs (Kircher et al. 2014). Specifically, we used
scaled C-scores that rank in order of magnitude of deleteriousness
all ∼8.6 billion SNVs possible based on the human reference
genome (hg19). For example, scaledC-scores of 10, 20, and 30 rep-
resent the top 10%, 1%, and 0.1% of reference genome single nu-
cleotide variants, respectively.

Software availability

Python source code and command lines of SFS_CODE can be
found in the Supplemental Material.
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