
[12:35 2/12/2009 Bioinformatics-btp611.tex] Page: 125 125–126

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 1 2010, pages 125–126
doi:10.1093/bioinformatics/btp611

Sequence analysis

NGSView: an extensible open source editor for next-generation
sequencing data
Erik Arner∗, Yoshihide Hayashizaki and Carsten O. Daub
RIKEN Omics Science Center, RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan

Received on July 17, 2009; revised on October 6, 2009; accepted on October 20, 2009

Advance Access publication October 24, 2009

Associate Editor: Limsoon Wong

ABSTRACT

Summary: High-throughput sequencing technologies introduce
novel demands on tools available for data analysis. We have
developed NGSView (Next Generation Sequence View), a generally
applicable, flexible and extensible next-generation sequence
alignment editor. The software allows for visualization and
manipulation of millions of sequences simultaneously on a desktop
computer, through a graphical interface. NGSView is available under
an open source license and can be extended through a well
documented API.
Availability: http://ngsview.sourceforge.net
Contact: arner@gsc.riken.jp

1 INTRODUCTION
The emergence of next-generation sequencing platforms (Holt and
Jones, 2008; Shendure and Ji, 2008) imposes increasing demands
on the bioinformatics methods and software used for analysis and
interpretation of the vast amounts of data generated using these
technologies (Pop and Salzberg, 2008). In addition to methods
for sequence mapping (reviewed in Trapnell and Salzberg, 2009),
assembly (Simpson et al., 2009; Zerbino and Birney, 2008) and
various downstream applications such as SNP discovery and
detection (Huang et al., 2009; Li,R et al., 2009), structural variant
detection (Korbel et al., 2009; Hormozdiari et al., 2009) and ChIP-
seq peak calling (Ji et al., 2008; Fejes et al., 2008), an important part
of the analysis pipeline is the ability to view and manually interact
with the data in an intuitive and straightforward manner.

The fast pace of development and increasingly shorter half-life
of sequencing platforms furthermore introduces additional demands
on software generality, flexibility and extensibility. In order to avoid
a lag between sequencing technology development and available
analysis methods, it is a great advantage if existing tools are
sufficiently general and easy to modify for fast re-adaptation to
appearing technologies.

Recently, tools specifically designed for visualizing next-
generation sequencing data have been introduced (Bao et al., 2009;
Huang and Marth, 2008). While these applications go a long
way toward fulfilling the visualization needs of next-generation
sequencing projects, they lack either in generality, flexibility or
extensibility—they have strong couplings to specific sequencing

∗To whom correspondence should be addressed.

platforms or limits in the amount of data they can handle, they offer
limited means of editing and manipulating data, and their source
code are either closed source or lack a well-defined application
program interface (API).

We introduce NGSView (Next Generation Sequence View), an
open source alignment editor and visualization tool, designed to
address the issues mentioned above. It provides generality in being
able to handle sequence data of any format and virtually any
size, flexibility in allowing extensive editing options in addition
to visualization and extensibility by being released under an open
source license with a well-documented API. Using NGSView, it is
possible to very quickly go from a zoomed in sequence level view, to
a zoomed out view of an entire chromosome, and editing operations
can be performed on any subset of reads defined by the user.

2 METHODS
NGSView is an extension of DNPTrapper (Arner et al., 2006), our previously
developed alignment editor designed for analysis of Sanger reads from
complex repeat regions. The code has been extensively refactored in
order to meet the requirements of next generation sequencing data. It
is implemented in C++ using the Qt (http://www.qtsoftware.com/) GUI
toolkit for visualization and Berkeley DB (http://www.oracle.com/) as the
back end database. The RAM required to run the software is low and
independent of project size. This is achieved by reading data from disk at
request rather than keeping data cached in the main application; a layered
database design also ensures that disk access lag is kept at a minimum.
Compared with other software (Huang and Marth, 2008), the added element
of database construction makes initial import of data into NGSView more
time consuming. However, this import cost is compensated for on subsequent
visualization runs of the data, as NGSView opens instantaneously once
data have been imported. Benchmarks of loading times are provided at the
web site.

The software has been developed and tested on Linux Fedora, Ubuntu,
Debian, openSUSE and CentOS 32 and 64-bit platforms. The underlying
components are open source and available on a wide range of additional
platforms, which enables straightforward porting of NGSView to other
platforms in the future, should interest arise.

A native XML format is used as input to NGSView. A standalone, all
purpose, column-based parser (implemented in Perl) is also included in
the package to enable easy conversion of many common formats including
Eland, MAQ and Corona. Converters from SAM (Li,H et al., 2009) and
ACE (http://www.phrap.org) formats are also provided. Additional strategies
for converting other formats to NGSView XML are listed at the software
web site.

© The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://ngsview.sourceforge.net
http://www.qtsoftware.com/
http://www.oracle.com/
http://www.phrap.org
http://creativecommons.org/licenses/


[12:35 2/12/2009 Bioinformatics-btp611.tex] Page: 126 125–126

E.Arner et al.

3 RESULTS
Here, we introduce the key elements of NGSView. Additional
detailed documentation including screen shots is available at the
software web site listed above.

3.1 Generality
NGSView is a general sequence viewer in the sense that it assumes
very little about the sequencing platform(s) used in a project,
and simultaneously can handle sequence data of a wide range of
sequence lengths and types. For basic visualization functionality,
the only assumed property of a sequence is that it has a spatial
occupation in an alignment, meaning that it has a start, an end and
a row. All additional information about the sequence—including
but not limited to the nucleotide sequence (or color space sequence
in the case of SOLiD data), quality values, SNP locations, mate
pair information and meta data—are stored as feature data coupled
to the sequence, with general and configurable methods for how
to visualize different categories of feature data. This means that
anything with spatial properties that can be expressed in terms
of row, start and end (with optional additional features), can be
visualized and manipulated in the software.

Additional generality is provided in the amount of data that
NGSView can handle. The use of Berkeley DB as back end allows
for very fast disk retrieval and enables scrolling through millions of
reads with no lag at a zoomed in level, as well as visualization of
millions of reads simultaneously at a zoomed out level.

While NGSView is not intended to replace genome browsers like
UCSC (Kuhn et al., 2009) and Ensembl (Hubbard et al., 2009), the
general capability of displaying spatial data described above enables
analysis of sequencing data in the context of annotation data. The
included all purpose parser, which includes GFF parsing capability,
facilitates inclusion and visualization of various types of annotation
data into the viewer.

3.2 Flexibility
In NGSView, each element in the viewer is a bona fide object which
can be selected and manipulated independently or in combination
with other elements present in the same view. Different highlighting,
browsing, scrolling and sorting operations are available (based
on, e.g. SNP content, mate pair information, expression or other
annotation data) for any subset of sequences selected, as well as other
types of data manipulation and editing, and exporting to different
file formats. NGSView also includes a user-configurable feature data
type, which can be accessed by general sorting and highlighting
methods available in the viewer.

In contrast to other next-generation viewers, NGSView provides
additional flexibility in allowing editing operations such as cut, copy
and paste, as well as dragging and dropping of sequences into any
position. It is possible to create new contigs from subsets of the
data as the user sees fit, thus enabling a sand box approach where
different editing operations can be tried out without compromising
the integrity of the original alignment.

3.3 Extensibility
As mentioned above, NGSView includes a user-configurable feature
data type, allowing users to include additional feature data types into
the NGSView input XML in a straightforward way. The package

also comes with a documented API, including a framework for
adding data types and operations in a well-defined manner. Details
about extending the program, including skeleton code, are available
at the NGSView web site. By releasing the source code under
an open source license, we hope that additional members of the
bioinformatics community will feel encouraged to contribute to
further development of the software and API.

3.4 Additional features
NGSView can handle gapped alignments. Differential expression of
reads, e.g. from case/control or time course experiments, can also
be visualized.

ACKNOWLEDGEMENTS
The authors wish to acknowledge Erik Sjölund, who provided
implementations and designs of key parts of the previous version
of this software (DNPTrapper).

Funding: Research Grant for RIKEN Omics Science Center from
MEXT (to Y.H.).

Conflict of Interest: none declared.

REFERENCES
Arner,E. et al. (2006) DNPTrapper: an assembly editing tool for finishing and analysis

of complex repeat regions. BMC Bioinformatics, 7, 155.
Bao,H. et al. (2009) MapView: visualization of short reads alignment on a desktop

computer. Bioinformatics, 25, 1554–1555.
Fejes,A.P. et al. (2008) FindPeaks 3.1: a tool for identifying areas of enrichment

from massively parallel short-read sequencing technology. Bioinformatics, 24,
1729–1730.

Holt,R.A. and Jones,S.J.M. (2008) The new paradigm of flow cell sequencing. Genome
Res., 8, 839–846.

Hormozdiari,F. et al. (2009) Combinatorial algorithms for structural variation detection
in high-throughput sequenced genomes. Genome Res., 19, 1270–1278.

Huang,W. and Marth,G. (2008) EagleView: a genome assembly viewer for next-
generation sequencing technologies. Genome Res., 18, 1538–1543.

Huang,X. et al. (2009) High-throughput genotyping by whole-genome resequencing.
Genome Res., 19, 1068–1076.

Hubbard,T.J.P. et al. (2009) Ensembl 2009. Nucleic Acids Res., 37, D690–D697.
Ji,H. et al. (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq

data. Nat. Biotechnol., 26, 1293–1300.
Korbel,J.O. et al. (2009) PEMer: a computational framework with simulation-based

error models for inferring genomic structural variants from massive paired-end
sequencing data. Genome Biol., 10, R23.

Kuhn,R.M. et al. (2009) The UCSC Genome Browser Database: update 2009. Nucleic
Acids Res., 37, D755–D761.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics,
25, 2078–2079.

Li,R. et al. (2009) SNP detection for massively parallel whole-genome resequencing.
Genome Res., 19, 1124–1132.

Pop,M. and Salzberg,S.L. (2008) Bioinformatics challenges of new sequencing
technology. Trends Genet., 24, 142–149.

Shendure,J. and Ji,H. (2008) Next-generation DNA sequencing. Nat. Biotechnol., 26,
1135–1145.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.
Genome Res., 19, 1117–1123.

Trapnell,C. and Salzberg,S.L. (2009) How to map billions of short reads onto genomes.
Nat. Biotechnol., 27, 455–457.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res., 18, 821–829.

126


