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Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA)
A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx
or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux
of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regu-
late water movements by modulating ion gradients. In addition, since water movements
also occur through specialized water channels and transporters, GABAAR signaling could
affect the movement of water by regulating the function of the channels and transporters
involved, thereby affecting not only the direction of the water fluxes but also their dynamics.
We will here review recent observations indicating that in neural cells GABAAR-mediated
osmotic regulation affects the cellular volume thereby activating multiple intracellular sig-
naling mechanisms important for cell proliferation, maturation, and survival. In addition, we
will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain
water homeostasis in physiological and in pathological conditions causing brain edema, in
which the GABAergic transmission is often altered.
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INTRODUCTION
In the mammalian central nervous system (CNS) three classes
of GABARs have been identified, two of which, GABAARs
and GABACRs, are ligand activated pentameric anion channels.
Besides the differences in subunit composition, biophysical char-
acteristics, and pharmacological properties (Chebib and John-
ston, 1999), the two classes of ionotropic receptors also exhibit
a different pattern of expression. Whereas GABAARs are present
throughout the CNS, including non-neuronal cells and precursors,
GABAcRs are mainly found in neurons in a few brain structures
(Frazao et al., 2007). As yet GABAcRs have not been detected
in mature glial cells or in oligodendrocyte progenitors (OPCs;
Williamson et al., 1998). Although the transcripts of ρ subunits
are expressed in some populations of neural progenitors (Fukui
et al., 2008; Cesetti et al., 2010), the information concerning the
functional role of GABACRs in these cells is still scarce. There-
fore, we will here focus only on GABAARs. Moreover, since the
presence GABAARs in microglia cells in vivo is still controversial
(Velez-Fort et al., 2011), we will not include this cell population in
our discussion.

With a few exceptions, in mature neurons activation of
GABAARs leads to Cl− influx and hyperpolarization, whereas in
immature neuronal cells it generally causes a depolarizing efflux
of Cl−. This in turn triggers a voltage-dependent influx of Ca2+,
which is essential for the morphological and electrical maturation
of young neurons (Ben-Ari et al., 1989).

The consequence of GABAAR activation in non-neuronal cells
is far less predictable than in neurons. Moreover its functional
significance is still tentative. In non-neuronal cells, Cl− fluxes
via GABAARs occur in both directions according to the cellular

electro-chemical Cl− gradient (ECl), thereby contributing to the
regulation of osmotic tension. Therefore, activation of GABAARs
in these cells may directly affect the cell volume and indirectly con-
trol neuronal excitability by regulating the extracellular space and
the concentration of Cl−. Whereas in neurons changes in cell size
and osmotic tension are often associated to cell death and apopto-
sis (Pasantes-Morales and Tuz, 2006), in non-neuronal cells such
changes may activate several intracellular signaling mechanisms
important for cell survival, proliferation, and maturation.

We will here review evidence indicating that in the adult brain
GABAAR activation regulates osmotic tension as, despite its poten-
tial importance both at the cellular and systemic level, this function
of GABAARs has been so far less investigated than its role in
neurotransmission. After introducing the basic concepts of tissue
and cell volume regulation in the brain (Figure 1), we will then
describe the molecular machinery involved in water movements
and the anionic fluxes activated by GABAAR with a special focus
on non-neural cells, i.e. macroglia and different precursor types
(Figure 2). In the second part of the review we will discuss the
role of GABA in the context of cell volume regulation and water
exchange in the brain, its physiological significance and potential
clinical relevance.

BASIC PRINCIPLES OF BRAIN WATER HOMEOSTASIS
Normal brain function is inextricably coupled to water home-
ostasis, which is the result of central osmoreception, osmolarity
compensation, and cell volume regulation. More than 75% of
the adult mammalian brain weight is represented by water sub-
divided in four distinct compartments: the blood of the cerebral
vasculature, the cerebrospinal fluid (CSF) in the ventricular system
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FIGURE 1 | Basic properties of water and anions fluxes. (A) Water can
diffuse according to the osmotic pressure through the membrane lipid
bilayer or via the dedicated channels AQP. Additionally it can be transported
against its gradient by cotransporters, such as those for GABA and
glutamate that use the driving force of Na+ to move the neurotransmitters
and eventually water against their gradient. (B,C) The activity of different
transporters and exchangers determines the steady-state gradient for Cl−

and consequently regulates the ECl. Cl− transport via cation–chloride
cotransporters is fueled by the Na+ and K+ gradients generated by the
Na–K ATPase. Two of the major players in neural cells are NKCC1 and KCC2,
by which Cl− is transported inside and outside the cells respectively. When
ECl (see Box 1), is more positive that the EM, opening of GABAAR would
mediate an efflux of Cl− (for convention called inward current) that
depolarizes the cells (B). Conversely when ECl is more negative that the EM,
GABAergic currents (outward) bring the membrane potential close to these
values and are hyperpolarizing (C). In this case to determine the EGABA is
important to consider also the flux of HCO−

3 since GABAARs are permeable
to this anion. Due to its higher level inside the cells, opening of GABAAR
would drive a depolarizing efflux of HCO−

3 that, counteracting the influx of
Cl−, contributes to deviate EGABA to value more positive than that of HCO−

3

(For Rev, see Andrew et al., 2007; Blaesse et al., 2009; Risher et al., 2009).

and subarachnoid space, the extracellular fluid (ECF) in the brain
parenchyma, and the intracellular fluid (ICF). Three main barriers
maintain a distinct fluidic composition among these compart-
ments: the blood–brain barrier (BBB), the blood–CSF barrier
(BCSFB) formed by the surface of the arachnoidea and choroid
plexus epithelial cells, and the plasma membranes of the neural
cells. Although the bulk of the ECF is generated from the metab-
olism of neural cells, around 30% is secreted from the endothelial
cells of the brain capillary. The composition of the ECF depends
on the interaction between the BBB, the BCSFB, and the activity
of transporters on the membrane of neural cells, primarily astro-
cytes. The bulk of the CSF is largely the result of its secretion by the
choroids plexus epithelium and its re-adsorption into the blood
plasma at the dural sinuses in the subarachnoid space. In addition,
according to recent evidence there is a flow of fluid from the ECF
to the CSF. Although its composition displays regional variation,
compared to the plasma, the CSF is generally slightly hypertonic
containing moderately higher Na+ and HCO−

3 and lower K+ and
Cl− concentration. The K+ concentration, which is critical for
the regulation of the neuronal resting potential, is even lower in
the ECF but it is increased in the ICF, which also contains lower
Ca2+ and Na+ concentrations than the ECF. The volume and ionic
composition of the ICF depend on cellular metabolic activity and
active transport of ions, and therefore, the ICF compartment is
particularly sensitive to traumatic or ischemic injury. In general,
the maintenance of these compartments depends on the existence
of ionic gradients and water transport that are tightly regulated.
For a comprehensive discussion of this complex topic we refer
the reader to recently published excellent reviews (Strange, 1993;
Kahle et al., 2009; Oreskovic and Klarica, 2010; Redzic, 2011).

Water homeostasis in the brain is necessary to prevent changes
in the brain volume that could critically affect intracerebral pres-
sure. As in other tissues, also in the brain changes in the extracellu-
lar or intracellular content of osmolytes are coupled to movements
of osmotically obliged water. In normal conditions a redistribution
of water between the intra and extracellular space occurs, which
modifies the volume of the neural cells but not of the total brain.
These changes in cell volume are referred to as isosmotic or anisos-
motic depending on whether they originate from a change in the
intracellular solute content or of the extracellular osmotic pres-
sure, respectively. For example, neural activity determines isos-
motic volume changes as a consequence of the ionic fluxes across
the cell membrane occurring during neuronal firing. Cells coun-
teract a decrease or an increase in volume by activating accordingly
the processes of regulatory volume increase (RVI) and decrease
(RVD). These processes of volume regulation involve increase or
decrease of intracellular ionic and organic osmolytes achieved by
modifying the expression and activity of ion channels and trans-
porters and by metabolic changes. Different pathologies lead to
isosmotic cytotoxic swelling. For example, energetic failure and
dissipation of Na+ gradients during hypoxia/ischemia, increase
in the extracellular K+ concentration such as during ischemia,
epilepsies, and cortical spreading depression or ammonium accu-
mulation occurring during hepatic encephalopathy, they all lead
to cytotoxic swelling. Swelling in isosmotic conditions alters neu-
ronal activity since changes in the extracellular/intracellular ionic
equilibrium, which determine the resting membrane potential and

Frontiers in Cellular Neuroscience www.frontiersin.org January 2012 | Volume 6 | Article 3 | 2

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Cesetti et al. Osmotic regulation by GABAergic signaling

FIGURE 2 | GABA-mediated osmotic regulation in non-neuronal cells.

Schematic representation summarizing the current knowledge concerning the
expression of the neurotransmitter GABA, the synthesizing enzyme GAD, the
membrane transporter GAT, which can work in both directions, and the ionic
GABAAR in the indicated non-neuronal cell types of the mammalian CNS.
Depicted is also the direction of water flux and of the Cl− gradient, as
estimated in resting physiological conditions. The scheme also illustrates the
expression of the aquaporin (AQP) water channels and of the Na+/K+/Cl−

(NKCC) and K+/Cl− (KCC) transporters in those cell types where their
expression has been directly investigated. As in neurons, GABA promotes
swelling in neural stem cells (NSC) but not in NG2+ oligodendrocyte

precursors (OPCs) and in mature macroglia, where GABAAR activation
induces Cl− exit and water efflux. Note that here the information concerning
neural stem cells (NSCs) is gathered from the analysis of neural precursors
isolated from the postnatal SVZ on the basis of Prominin expression. We did
not include in this diagram the information concerning GFAP expressing cells
in neurogenic regions of the adult brain because they mainly consist of niche
astrocytes. Moreover, the properties illustrated in the diagram were not
directly investigated in these populations. However, as discussed in the text,
the available information indicates that these GFAP populations resemble
mature astrocytes with respect to the direction of the GABA evoked Cl−

currents.

the driving force for the different ions (see Box 1), directly impact
the discharge pattern of the neurons. Neurons are very sensitive
to isosmotic swelling which is usually detrimental for these cells,
since they cannot recover their original volume. Astrocytes instead
should be better geared than neurons to counteract cytotoxic
swelling, as they can undergo RVD. However, in intact tissue under
physiologically relevant osmotic conditions, swelled astrocytes
recover their volume only when the osmotic challenge is removed
and control condition are re-established (Risher et al., 2009).

The blood plasma osmolality is strictly regulated and the
solute content of the ECF and CSF is kept constant by the
balanced influx/efflux across the plasma membrane and pro-
duction/removal of osmotically active substances. Thus, under
normal physiological conditions, neural cells are relatively pro-
tected against drastic anisosmotic volume changes. However,many

pathological processes can cause drastic changes in the blood
plasma osmolarity that in turn can affect brain volume. In par-
ticular, hypoosmolar states can lead to brain swelling whereas
hyperosmotic changes cause brain dehydration. For example,
hyponatremia associated with clinical conditions such as heart
failure, nephritic syndromes, and hepatic cirrhosis may cause
hyposmotic swelling of neural cells. Hyponatremia, even if drastic,
rarely results in neuronal death, since neurons use compensatory
mechanisms to retain their volume such as unconventional release
of neurotransmitters (Tuz et al., 2004). On the contrary, hypos-
molarity causes astrocytes swelling due to water fluxes across
the membrane. Water can also diffuse to neighbor astrocytes via
gap-junctions. Swelling of astrocytes may represent a protective
mechanism for neurons since they clear from the extracellular
space not only water but also the neurotransmitters in excess. This
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Box 1 Basic elements of electrophysiology

The direction of the current flow is conventionally defined as the movements of positive charges: an inward currents (depolarizing) means
that cations enter the cells or/and anions exit. Respectively an outward current (hyperpolarizing) is determined by the efflux of cations or
influx of anions. By convention, an inward current is displayed in voltage clamp as a downward deflection, while an outward current (positive
charge moving out of the cell) is shown as an upward deflection.
The concentration gradient (ΔC = [X]o/[X]i) depends on the concentration of the ion outside and inside of the cells and it determines the
reversal potential (EX) for a defined ion (X ) according to the Nernst Equation:

E X = RT /zF ln[X]o/[X]i.

At the reversal potential (EX) the electrical force (membrane potential) counteracts the chemical force (concentration gradient ΔC ) so that
the ion influx is equal to the efflux. Changes in the extracellular and/or intracellular volume would impact ΔC and thus the EX.
The resting membrane potential (EM) in general depend on the driving force of Cl−, Na+, and K+ and their relative permeability (PX) according
to the Goldmann-Hodgkin-Katz equation:

E M = (PK /Ptot )E K + (PNa/Ptot )E Na + (PCl /Ptot )E Cl

In resting condition, having K+ the higher permeability, the EM is closer to the EK that is about −80 mV.
The current (i) through a single ionic channel is dependent on the channel conductance (g) and the “driving force” of the permeant ion. The
driving force is determined according to the EX and the resting membrane potential (EM).The single channel current is calculated as follow:

i = g(E M − E X ).

The whole-cell current (I) through specific ion channels is proportional to the single channel current (i ) and the number of opened channels
at the membrane (n) according to the equation:

I = n · i.

HOW CAN WE MEASURE. . .?
THE REAL RESTING MEMBRANE POTENTIAL (E M)
In whole-cell patch-clamp measurements, due to dialysis of the cytoplasm, the intracellular ionic composition is altered therefore the mea-
sure of EM in current-clamp does not correspond to the real value. The real EM can be better estimated by measuring the amplitude of the
current of a single K+ channel versus the voltage in cell-attached configuration (Soltesz and Mody, 1994). Another approach takes advantage
of voltage-sensitive dyes: changes in fluorescence visualized with live microscopic imaging or fluorescent activated cell sorting (FACS)
correspond to changes in the membrane potential. Membrane potential can be calibrated by permeabilizing the cells with gramicidin and
applying different Na+ concentrations (Maric et al., 2000). Recently also voltage-sensitive genetically encoded sensors have been developed
(Mutoh et al., 2011).

THE REVERSAL POTENTIAL FOR GABAAR (E GABA)
It can be experimentally determined in whole-cell perforated patch-clamp recording using gramicidin, which is not permeable to Cl− and
therefore does not alter the intracellular Cl− concentration. Using a ramp or step protocol in the presence of a GABAergic agonist the
current versus voltage relationship is measured: the EGABA corresponds to the voltage at which the currents is zero (Ge et al., 2006).
Another possibilty is to block Na+, Ca2+, and K+ currents and, in perforated current-clamp recording, measure the maximum depolarization
produced by the application of a saturating concentration of a GABAergic agonist (Owens et al., 1996). EGABA can also be measured on the
basis of the reversal potential of single GABA and NMDA receptor channels (Tyzio et al., 2006).

INTRACELLULAR Cl− CONCENTRATION
It can be established with Cl− sensitive intracellular microelectrodes (Kettenmann et al., 1987) and radioactive studies (Kimelberg, 1981). Addi-
tionally it can be estimated with Cl− sensitive dye, such as MEQ, (Bevensee et al., 1997) or genetically encoded probes, such as Clomeleon
(Kuner and Augustine, 2000): both allow the analysis, with cellular resolution, of real-time changes in [Cl−]i by microscopic imaging.

CHANGES IN CELL VOLUME
Since in cells undergoing osmotic changes the intensity of light scattering varies inversely with the cell volume, changes in forward scat-
tering measured by FACS analysis, can be related to changes in cell volume of a whole-cell population (McGann et al., 1988). To measure
changes in the volume of single cells, optical measurement of calcein fluorescence quenching can be employed (Solenov et al., 2004).
Also in slices intrinsic optic signals are a read out of volume changes: when cells swell light scattering decreases and the tissue shows
increased light transmittance (MacVicar and Hochman, 1991; Andrew and MacVicar, 1994; Holthoff and Witte, 1996). However, with this
technique it is not possible to distinguish which cell type changes its volume. On the contrary with the two-photon microscopic technique
the time course of swelling in slice and in living brain can be monitored at cellular and subcellular levels (Andrew et al., 2007; Risher et al.,
2009). Additionally with electrophysiology, the amplitude of evoked field potential is an indirect way to measure tissue swelling: since the
extracellular resistance is inversely proportional to the osmolarity, a reduction of the latter induces an increase in the evoked field potential
(Andrew et al., 2007).
In vivo changes in human brain volume can be revealed by monitoring intracranial pressure, by computed tomography and by MRI. These
techniques provide a measure of the total water content at a given anatomical location.
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function of the astroglia is crucial to synaptic transmission since it
counteracts the effect that hyposmolarity may have on the extra-
cellular concentration of neurotransmitters and the size of the
extracellular space.

WATER MOVEMENT AND TRANSPORT IN BRAIN CELLS
Cell membranes are highly permeable to water and cannot resist
hydrostatic pressure. Therefore, water movements occurring by
diffusion across the cell membrane and through the aquaporin
(AQP) water channels, are largely driven by the transmem-
brane difference in chemical potential. However, water can also
be actively transported in the brain, and it is widely accepted
that some cotransporters and uniporters contribute to this flux
exchange (Agre, 2004).

WATER MOVEMENT VIA AQPs
AQPs are a family of tetrameric water channels assembled at the
cell membrane or, as in the case of AQP6, inside the cell. Thir-
teen homologs of AQPs (AQP0–AQP12) have been identified so
far in mammals (Verkman, 2005). AQPs display a variable tissue
distribution, depending on their distinct physiological functions.
They mediate movements of water and small solutes, such as
glycerol, across membranes according to osmotic gradients and
differences in hydrostatic pressures (Verkman, 2005). AQPs have
recently been subdivided into three functional groups based on
permeability characteristics (Verkman, 2000): the water selective
aquaporins, including AQP0, AQP1, AQP2, AQP4, AQP5, AQP6;
the aquaglyceroporins, including AQP3, AQP7, AQP8, permeable
to water, glycerol, and urea; the neutral solute channels, includ-
ing AQP9, allowing the passage of water, glycerol, urea, purines,
pyrimidines, and monocarboxylates. AQP10, like AQP9, is per-
meable to water and neutral solutes, but not to urea and glycerol
(Hatakeyama et al., 2001).

Three AQPs have been functionally involved in the regula-
tion of water movements in the CNS: AQP1, AQP4, and AQP9.
Among these, AQP4 is the most abundant. It is strongly expressed
at the borders between the brain parenchyma and major fluid
compartments, including the foot processes of astrocytes, the glia
limitans, and the ependyma lining the lateral ventricle. AQP4
is also expressed in the astrocytes of the two major neurogenic
regions in the postnatal CNS: the subventricular zone (SVZ; Rash
et al., 1998) and the hippocampal dentate gyrus (DG; Venero et al.,
2001). In the brain, AQP4 normally displays a polarized cellular
distribution, being expressed in astroglial foot processes adjacent
to the endothelial cells (Nielsen et al., 1997). In general, AQPs
are not expressed in neurons and it is still unclear whether these
cells possess a dedicated molecular machinery mediating water
movements (Andrew et al., 2007).

The levels of AQP expression are not constant but functionally
regulated. For example they are increased in brain regions where
the BBB is disrupted following brain injury, ischemia, or tumor
(Vizuete et al., 1999; Taniguchi et al., 2000; Saadoun et al., 2002).
The amount of AQPs expressed at the cell surface is regulated
both at the levels of RNA transcription (Wen et al., 1999) and
of channel assembly. Multiple phosphorylation sites and different
kinases have been involved in this complex regulation (Zelenina
et al., 2002; Carmosino et al., 2007) and the precise regulatory

mechanisms of AQP expression in different brain cell types remain
unclear.

AQP4 has been involved in brain water homeostasis. Deficiency
of AQP4 in mouse markedly reduces brain swelling in cytotoxic
brain edema and tissue swelling mediated by physiological neu-
ronal activity (Papadopoulos andVerkman, 2005), while it worsens
the outcome in vasogenic brain edema (Zador et al., 2007), indi-
cating that AQP4 facilitates the redistribution and absorption of
excessive brain fluid. Several evidences point at functional and
physical interaction between AQPs and ion channels in the reg-
ulation of water homeostasis. For example, in astrocytes AQP4
interacts with the inward rectifier K+-channel (Kir 4.1; Nagelhus
et al., 2004). Tetraethylammonium, a blocker of voltage-dependent
K+-channel, also inhibits water permeability of AQP1 (Brooks
et al., 2000). Lack (Binder et al., 2006) or mislocation (Amiry-
Moghaddam et al., 2003) of AQP4 causes impaired K+ clearance
following neuronal stimulation, suggesting that K+ clearance is
mediated by the AQP4–Kir4.1 complex. In astrocytes, the com-
plex between AQP4 and the transient receptor potential vanilloid
4 (TRPV4) is essential to induce [Ca2+]i increase and promote
RVD upon hypotonic challenge (Benfenati and Ferroni, 2010).

Besides the systemic regulation of water exchange, AQP4 con-
tributes to multiple steps of adult neurogenesis (i.e., proliferation,
migration, and differentiation). Adult neural stem cells express
AQP4 (Cavazzin et al., 2006) and its level of expression in neural
precursors changes during brain development (Wen et al., 1999).
Genetic ablation of AQP4 impairs proliferation, migration, and
neuronal differentiation of adult neural stem cells (Kong et al.,
2008). Using microarray and quantitative mRNA analysis in neural
precursors prospectively isolated from the neonatal SVZ, we have
also recently confirmed that neural stem cells, and particularly
activated neural stem cells, express AQP4 at higher levels in
comparison to later stages of differentiation (Li and Ciccolini,
unpublished observations). Our observations also indicate a sim-
ilar expression pattern for AQP4 and GABAAR in the neonatal
SVZ. We showed that activation of GABAARs induces Cl− entry
and osmotic swelling of neural stem cells (Cesetti et al., 2010),
opening up to the possibility that GABAARs and water channels
interact to mediate cell volume changes in the neonatal SVZ niche.

Interestingly, GABAARs and AQPs are involved in the reg-
ulation of similar processes. For example, they both enhance
migration in response to a chemotactic stimulus in vitro in various
neural cell types (Behar et al., 1998; Saadoun et al., 2005). They
also modulate Ca2+ homeostasis and promote neuronal differen-
tiation in neural precursors. Lack of AQP4 in adult neural stem
cells significantly decreases their ability to generate neurons, alters
spontaneous Ca2+ oscillations, and suppresses depolarization-
induced Ca2+ influx (Kong et al., 2008). Similarly GABAAR sig-
naling increases [Ca2+]i and promotes neuronal differentiation of
progenitors in the adult hippocampus (Tozuka et al., 2005). More-
over, we found that GABAAR activation modulates spontaneous
Ca2+ oscillations in culture of neural stem cells isolated from the
neonatal SVZ (Figure 2; Cesetti et al., 2010). The analysis of mice
lacking the intracellular membrane protein dystrophin provides a
further hint of a possible connection between GABAAR and AQPs.
Dystrophin in the brain is important for clustering and stabilizing
GABAAR in neurons (Brunig et al., 2002). It is also responsible
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for anchoring AQP4 at the membrane of perivascular astrocytes
(Nicchia et al., 2008). The expression of AQP4 in ependymal cells
and in astrocytic endfeet of the lateral ventricle is reduced in a dys-
trophic mice model (mdx ; Frigeri et al., 2001) and hippocampal
neurogenesis is altered in these mice (Deng et al., 2009), suggesting
that dystrophin may be important for stem cell function.

However, despite being coexpressed in non-neuronal cells and
regulating similar mechanisms, a direct functional interaction
between AQPs and GABAAR has not been yet demonstrated.

WATER TRANSPORT
It has been recently recognized that some cotransporters and uni-
porters also transport water (MacAulay et al., 2001). Extensive data
show that water molecules move in association with the transport
of ions and substrates.

Cotransporters are a group of membrane-spanning transport
proteins which can couple ion and substrate transport. For exam-
ple, it is well known that Na+ is employed as the principal
cotransported ion for its large inwardly directed electro-chemical
gradient. In this process, Na+ can force the uptake of a substrate
against its chemical gradient. The ratio between the various fluxes
is a fixed property of the transporter protein and the energy for
the water transport can be derived from the transport of the non-
aqueous substrates. Thus, cotransport may carry a fixed number
of water molecules together with each transported solute against
the osmotic gradients.

Various cotransporters are able to transport water against the
osmotic gradient, such as for example the K+/Cl− cotransporter
(KCC) in the choroid plexus (Zeuthen, 1994), the Na+/K+/2Cl−
(NKCC; Hamann et al., 2005), the glial Na+-coupled glutamate
(EAAT1; MacAulay et al., 2001), and the Na+/GABA (GAT-
1) cotransporters (MacAulay et al., 2002). Similar phenomena
are also associated to glucose uniporters (GLUT1 and GLUT2;
Zeuthen and Zeuthen, 2007). For some ionic cotransporters, water
transport is closely coupled to the transport of the other substrates.
Other cotransporters, such as EAAT1 and GAT-1, not only cotrans-
port water but also have water channel properties. Therefore, the
total water transported is the sum of the cotransported and the
osmotic components. In GAT-1 expressing oocytes, water can
move passively through GAT-1 under external osmotic challenge.
However, upon addition of GABA the influx of water increases
and it is strictly coupled to the transport of GABA through GAT-
1, independent of the external osmotic gradient (MacAulay et al.,
2002). Thus, ambient GABA in the brain could also affect osmotic
gradients by enhancing water transport via GATs activation.

GABAAR SIGNALING IN NON-NEURONAL CELLS OF THE CNS
Despite the difficulties in detecting GABAergic currents in astro-
cytes due to their electrical coupling, it has been proved that glial
cells express GABAARs in a functionally significant amount.

The astrocytic GABAARs have many pharmacological similar-
ities to the receptors on neuronal cells, such as barbiturate- and
benzodiazepine-mediated potentiation. Differently from neurons,
the inverse benzodiazepine agonist DMCM enhances the GABAer-
gic currents of some subpopulations of astrocytes, suggesting that
the subunit composition of GABAARs among different popula-
tions of astrocytes is heterogeneous (Bormann and Kettenmann,

1988). Analyses in vitro and in vivo have shown that in the SVZ
niche glial fibrillary acidic protein (GFAP)/nestin immunoposi-
tive cells, pre-neuroblasts, and especially neuroblasts also express
functional GABAARs (Stewart et al., 2002; Liu et al., 2005; Cesetti
et al., 2010). GABAARs are also expressed in mature oligodendro-
cytes (Von Blankenfeld et al., 1991) and the mRNAs for GABAAR
α2–5, γ2–3 and to a lesser extent γ1 subunits have been found in
NG2+ OPCs. Different sources of GABA activate GABAARs in
non-neuronal cells. Some progenitor cells, such as the OPCs in
the gray and cerebellar white matter, receive direct GABAergic
synaptic input, which regulates their proliferation and differen-
tiation (Lin and Bergles, 2004). Newly born granule cells in the
adult DG of the hippocampus also display during their mat-
uration first tonic and then phasic GABAergic currents. These
currents are evoked by GABA released from mature interneurons,
which modulates morphological development and connectivity of
new born granule cells (Ge et al., 2006; Markwardt et al., 2009).
Despite these examples of phasic currents, in non-neuronal cells
GABAAR activation is mostly tonic, mediated by GABA derived
from non-synaptic release or synaptic spillover. Neurons may
release GABAAR modulators such as taurine and GABA upon
osmotic stress, via a mechanism similar to Ca2+ mediated exo-
cytosis that can be blocked by tetanus toxin (Tuz et al., 2004).
Additionally, alternative mechanisms, such as reverse operation
of the transporters have been reported (Koch and Magnusson,
2009). Glial cells are also a source of ambient GABA, although it is
unclear whether this reflects uptake/release dynamics or synthesis
and whether GABA acts as an autocrine factor on glial cells. The
fact that glial cells can release GABA in culture has been long
known. Already 40 years ago low activity of the glutamic acid
decarboxylase (GAD), the rate-limiting enzyme in the synthesis
of GABA, and modest production of GABA (Wu et al., 1979) were
observed in astrocytes and GABA concentration in culture was
estimated to be 3.5 mM (Bardakdjian et al., 1979). The finding
that astrocytes in situ are immunopositive for GABA (Blomqvist
and Broman, 1988) and for GAD (Martinez-Rodriguez et al., 1993)
has been recently confirmed also in human astrocytes (Benagiano
et al., 2000). Recent evidence suggests that GABA released by astro-
cytes can modulate the neuronal network by inducing either tonic
or transient currents in neurons (Angulo et al., 2008). It was orig-
inally proposed that GABA may be released by cultured cerebellar
astrocytes via the GABA transporter working in the reverse mode
(Gallo et al., 1991). This mechanism has been later confirmed in
Bergman glial cells in acute slices (Barakat and Bordey, 2002).
Outwardly directed GABA currents occur when the cells are filled
with GABA 10 mM and Na+ 12.5 mM. However, it is still unclear
whether in physiological conditions the intracellular concentra-
tion of GABA is enough to activate this mechanism (Barakat and
Bordey, 2002). Astrocytes of the olfactory bulb can release not only
glutamate but also GABA that leads to a long lasting synchronous
inhibition of both mitral and granule cells (Kozlov et al., 2006). As
the frequency of these inhibitory slow outward currents is sensi-
tive to extracellular osmolarity, the mechanism proposed involved
a release from volume activated anion channels. Such a mechanism
has been confirmed only recently in the cerebellum Bergmann glial
cells that have been shown to release GABA via the Bestrophin 1
anion channel, providing a tonic inhibition for cerebellar granule
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cells (Lee et al., 2010). Bestrophins are enigmatic anion channels,
permeable to HCO−

3 , large anions, and even to glutamate; they are
activated by increases in the intracellular Ca2+ and cell swelling,
but they are active also at resting Ca2+ levels and normal cell
volume.

In the neonatal SVZ both neuroblasts and neural precursors
are immunopositive for GABA, GAD65, and GAD67. However,
mRNA levels are much higher in neuroblasts than in neural pre-
cursors (Cesetti et al., 2010). On the contrary, GABA has not been
detected in SVZ astrocytes. It is believed that in this region GABA
is manly synthesized and released by neuroblasts via an unknown
non-synaptic mechanism which is SNARE-independent but medi-
ated by depolarization, acting as “volume neurotransmitter” (Liu
et al., 2005). Despite the presence of GAD65/67 in this region,
GABA in neonatal tissue is mainly produced via monoacetylation
of putrescine (Sequerra et al., 2007). Similarly, O2-A progenitor
cells of the optic nerve synthesize GABA from putrescine (Barres
et al., 1990).

EFFECT OF GABAergic SIGNALING ON ANIONIC
DISTRIBUTION IN NEURAL CELLS
ASTROCYTES
The concept that astrocytes regulate K+ homeostasis by clearing
it from the extracellular space (K+ siphoning) has been proposed
a long time ago along with the idea that astrocytes have no resting
Cl− conductance (Ballanyi et al., 1987; Walz and Wuttke, 1999).
Glial cells in resting condition are indeed permeable to K+ there-
fore their resting potential (EM) is more negative than −75 mV.
However, it is quite intuitive that in order to maintain the EM and
the osmotic pressure constant, K+ fluxes must be followed by Cl−
and water fluxes. During neuronal activity, astrocytes accumulate
K+, which causes an influx of Cl− and osmotically obliged water,
thereby increasing their cell volume. Astrocytes counteract this
volume increase by releasing Cl− and other anions. Thus, K+ and
Cl− homeostasis are crucially linked. In astrocytes the regulation
of Cl− fluxes is quite complex involving a large number of exchang-
ers, transporters as well as ion channels (Walz, 2002). Although
reactive, neoplastic, and deformed astrocytes can express a signifi-
cant resting Cl− conductance (Walz and Wuttke, 1999), astrocytes
have generally a low permeability to Cl− and are able to accumulate
it. When 30 years ago functional GABAARs were firstly identified
in astrocytes in situ, the depolarizing effect of GABA was thought
to be indirect, due to the increase in [K+]o upon its release from
adjacent neurons (Hosli et al., 1978, 1981). Later evidence proved
that GABAARs in glial cells in situ mediate Cl− outward currents
(MacVicar et al., 1989; Steinhauser et al., 1992; Pastor et al., 1995),
in agreement with previous data in vitro (Kettenmann et al., 1987).
Confirming that astrocytes have a ECl much more depolarized than
their EM, the analysis of GABAAR-mediated currents (see Box 1)
showed that the ECl of astrocytes in cultures is around −40 mV
that corresponds to a [Cl−]i of 29 mM (Bekar and Walz, 2002).
Using more direct experimental approaches, such as intracellu-
lar microelectrodes (Kettenmann et al., 1987), radioactive studies
(Kimelberg, 1981), and Cl−-sensitive dyes (Bevensee et al., 1997),
both in cell culture and in vivo, the intracellular Cl− concentra-
tion has been calculated between 30 and 40 mM. In contrast to
neurons, where GABAergic currents shift from depolarizing to

hyperpolarizing during the second week after birth, the direction
and the density of GABAergic currents in astrocytes do not change
during development (Bekar et al., 1999). The absence of phasic
GABAARs activation in astrocytes suggests that they would mainly
sense ambient GABA rather than transient high concentrations
from synaptic release.

Analyses in vitro have implicated two major transport systems
in the accumulation of Cl− in astrocytes: NKCC1 (Jayakumar
and Norenberg, 2010) and the Cl−/HCO−

3 exchanger (Kimelberg,
1981). NKCC1 plays a major role in setting Cl− gradients in rest-
ing condition as well as during astrocytes swelling which occurs
in pathological conditions such as brain edema, ischemia, and
trauma (Chen et al., 2005). As the activity of NKCC1 is strongly
stimulated by cell swelling (Mongin et al., 1994), a positive feedfor-
ward mechanism further contributes to cell volume increase. The
K+/Cl− (KCC) cotransporter is also responsible for the mainte-
nance and regulation of the cell volume of cultured astrocytes,
but it is mainly involved in RVD (Ringel and Plesnila, 2008). The
expression of these carriers in astrocytes in vivo is still controver-
sial: whereas previous works failed to detect them (Plotkin et al.,
1997; Clayton et al., 1998), one recent study reported the expres-
sion of NKCC1 and KCC1 mRNAs also in glial and ependymal cells
(Kanaka et al., 2001), which is consistent with functional evidence
(Tas et al., 1987). Indeed, application of GABA after pharmacolog-
ical blockade of NKCC1 no longer depolarizes the membrane of
astrocytes, since the outwardly directed Cl− gradient is dissipated
(Kimelberg and Frangakis, 1985).

The role of GABAARs in astrocytes is still an open ques-
tion. Interestingly, GABA signaling regulates the differentiation
of immature astrocytes (Matsutani and Yamamoto, 1997; Mong
et al., 2002). In the brain there is a positive correlation between
the numbers of GABAergic axonal terminals and the expression
of GFAP, suggesting that GABA released by neurons may promote
GFAP expression and stellation of astrocytes. This hypothesis has
been strengthened by the observation that increasing GABAergic
signaling in vivo induces a striking modification of the struc-
tural organization of GFAP+ astrocytes, increasing the number
of branches. The mechanism underlying these modifications is
not known but it could be direct and mediated by the efflux of
Cl− (Runquist and Alonso, 2003). We also showed that a sys-
temic administration of diazepam increased the number of GFAP
expressing cells in the SVZ of the lateral ventricle, where GFAP
expression identifies both niche astrocytes and stem cells (Cesetti
et al., 2010).

OLIGODENDROCYTES
Similar to astrocytes, oligodendrocytes actively accumulate Cl−
via NKCC1 and their [Cl−]i, measured with microelectrodes, is
2–3 mM higher than the one expected for a passive distribution
(Hoppe and Kettenmann, 1989). Cumulative evidence indicates
that a higher resting permeability accounts for the lower [Cl−]i

observed in oligodendrocytes as compared to astrocytes. A resting
Cl− conductance was detected in most cultured oligodendrocytes
and the ECl (−61 mV) is only slightly more positive than the EM

(−64 mV), in line with the observation that GABA depolarizes
oligodendrocytes by 4 mV (Kettenmann et al., 1984). GABAergic
currents were recorded in oligodendrocytes in brain slices in the
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corpus callosum (Berger et al., 1992) and in the hippocampus (Von
Blankenfeld et al., 1991). However, GABAAR-mediated currents in
oligodendrocytes are smaller than in astrocytes, probably depend-
ing on both a reduced expression of GABAARs and a smaller
outwardly directed driving force for Cl−. It was first shown that
oligodendrocytes in explant cultures of the spinal cord can be
directly depolarized by the activation of GABAARs (Kettenmann
et al., 1984). Later on it was shown that the mechanism under-
lying the depolarization is an efflux of Cl− via GABAARs (Wang
et al., 2003). However, only a subpopulation of the oligodendro-
cytes investigated was GABA-sensitive, indicating heterogeneity in
the cell population in culture or in its differentiation stage. Indeed,
NG2+ OPCs have larger GABAergic currents compared to their
differentiated counterpart: the density of GABAARs decreases by
a factor 100 when OPCs in culture maturate along the oligoden-
drocytic lineage, indicating a developmental down-regulation of
GABAAR expression (Von Blankenfeld et al., 1991). A difference
in Cl− driving force could also contribute to the larger GABAer-
gic currents in OPCs. In line with this, in OPCs of the adult
neocortex [Cl−]i was estimated to be 45 mM and the ECl to be
−30 mV (Tanaka et al., 2009). Furthermore, a robust expres-
sion of NKCC1 was reported in satellite NG2+ glial cells (Price
et al., 2006). These developmental changes in the GABAergic
signaling suggest that GABA may exert different physiological
roles during oligodendrocytes lineage progression. Unlike astro-
cytes, GABAARs in OPCs are transiently activated by synaptically
released GABA, since it was shown that in the hippocampus
OPCs form real functional synapses with neuronal axons thereby
sensing the activity of the dense inhibitory network surround-
ing them. Despite the depolarizing ECl, GABA regulates OPCs
membrane excitability with a shunting effect on AMPA currents
due to an increase in membrane conductance and alteration of
[Cl]i (Lin and Bergles, 2004). In cultured oligodendrocytes mus-
cimol promoted cell survival upon growth factor withdrawal by
reducing [Cl−]i, which in turn induced cell shrinkage and a subse-
quent Ca2+ signal. NKCC1 activity was required for both effects,
confirming the importance of NKCC1 for maintaining [Cl−]i

above the electro-chemical gradient (Wang et al., 2003). Thus,
in OPCs the signaling pathways downstream GABAAR involve
alternative mechanisms such as shunting inhibition, modulation
of transporter activity and control of ion homeostasis and cell
volume.

NEURAL PROGENITORS
In progenitors of the embryonic (E16) ventricular zone [Cl−]i

has been estimated to be 37 mM, based on the measurement of
an EGABA of −30 mV (see Box 1). The EGABA becomes progres-
sively more negative during development reaching about −60 mV
at P16. This gradient is dissipated upon pharmacological block-
ade of NKCC1 (Owens et al., 1996) or by the overexpression of
exogenous KCC2 (Cancedda et al., 2007). The development of
neuronal progenitors is ubiquitously characterized by changes in
Cl− transporters expression. This was also observed in the neuro-
genic niche of the adult DG. The measurement of the EGABA in
DG precursors at different stages of lineage progression revealed
that at early stages of neuronal differentiation the EGABA is more
positive than the EM. With the progressive maturation of granule

neurons, EGABA gradually decreases to finally switch to values
more negative than the EM. The estimated change in [Cl−]i dur-
ing this process, i.e., from about 30–10 mM, is likely due to the
fact that the pattern of cotransporter expression changes from
high NKCC1/low KCC2 to low NKCC1/high KCC2 between the
beginning and the end of this maturation period. Indeed, down-
regulation of NKCC1 expression resulted in a shift of EGABA from
depolarizing to hyperpolarizing at all time-points analyzed (Ge
et al., 2006). However, even if depolarizing, in differentiating gran-
ule neurons GABAergic currents have a shunting effect (Overstreet
Wadiche et al., 2005). Within the DG, GABA released by interneu-
rons evokes currents not only in newborn neurons but also in
progenitors, albeit there is still controversy over the developmen-
tal stage at which the switch from tonic to phasic currents occurs
(Overstreet Wadiche et al., 2005; Tozuka et al., 2005; Wang et al.,
2005; Ge et al., 2006).

In the postnatal SVZ, GABA elicits Cl− currents in neurob-
lasts and pre-neuroblasts and in two cell populations defined
as stem cells on the basis of the expression of either Prominin
(Cesetti et al., 2010) or GFAP (Wang et al., 2003; Liu et al., 2005).
The largest currents were observed in neuroblasts (Wang et al.,
2003; Cesetti et al., 2010). In these cells EGABA, estimated via
gramicidin perforated whole-cell recording (see Box 1), is about
−40 mV, which is more positive than their EM and corresponds
to a [Cl−]i of 26.7 mM (Wang et al., 2003). Considering their
very small size, the current density is also high (in vitro estimated
about 190 pA/pF) and consistent with the very strong GABAAR
immunoreactivity displayed by these cells (Cesetti et al., 2010).
These huge GABAergic currents depolarize very efficiently neu-
roblasts (Wang et al., 2003), which have already a depolarized EM

(−55 mV) and a very high RM (1–3 GΩ). Indeed, spontaneous
depolarizations of 15–20 mV were previously observed in neu-
roblasts (Liu et al., 2005). It is very likely that GABA regulates
the osmotic pressure in neuroblasts since GABAARs are present
at high density and are tonically activated. Thus, a persistent Cl−
efflux may affect the osmolarity of the intracellular milieu from
such small cells.

In contrast to neuroblasts, the Cl− gradient of SVZ stem cells is
still unclear. Compared to neuroblasts, neonatal Prominin+ pre-
cursors have a much smaller (30 times) density of GABAergic
current (5 pA/pF), which likely reflects the differences in lev-
els of receptor expression between the two populations (Cesetti
et al., 2010). However, larger GABAergic currents were mea-
sured from precursor cells contacting each other in vitro, possibly
due to electrical coupling. A similar phenomenon was previ-
ously observed in precursors of the embryonic ventricular zone,
where GABA elicited small (around 5 pA) currents on isolated
cells and almost 100 times larger currents in coupled cells (Owens
et al., 1996). Although the exact [Cl−]i and the absolute value
of EM are not known, using a voltage-sensitive dye (see Box 1)
we showed that muscimol hyperpolarizes precursors, suggesting
that GABAAR activation leads to Cl− influx in this cell pop-
ulation (Cesetti et al., 2010). Instead, in GFAP+ cells of the
adult SVZ GABAAR activation elicited Ca2+ increases (Young
et al., 2010). This indirectly suggests that, as in mature astro-
cytes, also in GFAP+ cells of the SVZ GABA has a depolarizing
effect.
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PHYSIOLOGICAL ROLE OF GABAAR-MEDIATED OSMOTIC
REGULATION
Osmotic swelling may affect brain physiology by different mech-
anisms. For example, it may change the ionic gradients, which are
key for setting the resting membrane potential and the driving
force of the ionic currents. It may modulate the extracellular con-
centration of neurotransmitters, either inducing their release or
regulating the size of the extracellular space. Osmotic swelling can
also represent a signaling mechanism, by activating different intra-
cellular pathways. While the first two scenarios are more relevant
to the regulation of systemic processes, for example water balance
and synaptic transmission, the last one can transduce signals regu-
lating cell growth and proliferation as it can modulate the activity
of membrane and intracellular signaling molecules.

Below, we will suggest ways in which GABAAR activation can
modulate these different processes and discuss a few studies that
have indicated a physiological role for GABAAR-mediated osmotic
regulation.

WATER BALANCE IN THE BRAIN
A few studies have indicated that GABAAR activation may affect
brain water homeostasis. For example the anti-epileptic drug viga-
batrin, which raises extracellular GABA levels by inhibiting the
GABA degrading enzyme GABA transaminase, can cause swelling
and loss of myelin (Sidhu et al., 1997), suggesting that excessive
activation of GABAARs in the myelinating processes of oligoden-
drocytes may damage them. In one patient it was also found that
cerebral edema induced by valproate overdose can be aggravated
by diazepam (Rupasinghe and Jasinarachchi, 2011). Since con-
ditions such as energy deprivation and brain trauma lead to a
temporary increase in the concentration of extracellular GABA
(Hagberg et al., 1985; Shimada et al., 1993), GABAAR-mediated
osmotic regulation may also play a significant role in the regula-
tion of water balance in pathological conditions. For neurons an
excess of GABA may have contrasting consequences. On one hand,
it will protect neurons by decreasing the membrane depolariza-
tion caused by glutamate. On the other hand, it will induce entry
of Cl− ions through GABAARs, leading to water influx and cell
swelling (Chen et al., 1999; Allen et al., 2004). Indeed, diazepam
elicits opposite responses depending on the concentration and
time of application (Ricci et al., 2007). Benzodiazepines can also
ameliorate the effect of ammonia-induced swelling in vitro (Ben-
der and Norenberg, 1998). Additionally, in an in vitro model of
ischemic insult, the inhibitory effect of taurine on water gain
required active GABAAR, indicating a potential involvement of
GABAAR on osmotic regulation (Ricci et al., 2009). However
these studies have neither investigated the direct target of the
treatment nor elucidated the mechanisms underlying its effect
and they cannot be used as evidence that GABAAR signaling
plays a role in osmotic regulation. Also in astrocytes, the acti-
vation of GABAARs generates physiologically important changes
in ion distribution. For example, GABAAR function in astrocytes
may be important for the maintenance of the extracellular Cl−
concentration in the vicinity of neuronal GABAergic synapses,
to prevent the sink in [Cl−]o during high inhibitory activity. In
addition,GABA modulates voltage-dependent K+ channels within
astrocytes themselves, by depressing A-type outward K+-currents

(Bekar and Walz, 2002). Such modulation of K+ conductance may
have important consequences for the progression of spreading
depression through the brain and for astrocytic swelling in patho-
logical conditions. In contrast to neurons, activation of GABAARs
in conditions of cytotoxic swelling may be beneficial to astro-
cytes since their ECl is depolarizing. Therefore, the activation of
GABAAR will decrease the intracellular osmolarity of these cells,
thereby preventing cellular edema.

However, so far activation of GABAAR in astrocytes has not
been directly associated to osmotic regulation. Moreover, although
there is good evidence that following ischemic or traumatic brain
injury the levels of ambient GABA increase, the rapid release of
GABA is followed in various cases by a decrease in its synthe-
sis (Green et al., 1992). Thus it remains still unclear whether
GABAergic function is effectively increased in these conditions
(Green et al., 2000). Therefore, the hypothesis that GABAAR con-
tributes to the regulation of osmotic tension in the CNS needs
experimental confirmation.

NEURAL ACTIVITY-MEDIATED OSMOTIC SWELLING
A functional connection between swelling and neural activity was
indirectly suggested by the observation that the intake of water in
healthy subjects leads to an increased synchronization of the spon-
taneous magnetoencephalogram during hyperventilation with an
increase in the spectral power in all frequency bands (Muller
et al., 2002). Moreover, hyposmolarity induces hyperexcitability
and increases evoked epileptiform activity (Rosen and Andrew,
1990; Saly and Andrew, 1993). Neuron swelling occurs also in
physiological conditions. For example, changes in tissue volume
in the brain related to neuronal activity and cell swelling may
occur in vivo in the human visual cortex (Darquie et al., 2001).
In hippocampal slices, high frequency stimulation of the Schaf-
fer collateral fibers increases the transmittance of the somatic and
dendritic CA1 regions, in concomitance with the evoked postsy-
naptic field potential (fEPSP), indicating a relationship between
tissue swelling and neuronal activity. GABA negatively modulates
the generation of fEPSP and at the same time promotes swelling.
Moreover, lowering the [Cl−]o to create an outwardly directed dri-
ving force for Cl− produces the opposite effect on transmittance,
leading to the interpretation that neuronal swelling is mediated
mainly by Cl− synaptic influx via GABAAR (Takagi et al., 2002).
However, so far the change in neuronal volume has not been
directly analyzed at the cellular level and it is still unknown to
which extent GABA modulates cell volume during normal network
activity. A functional consequence of the osmotic pressure gener-
ated by GABA may include the modulation of neuronal plasticity
and the generation of an alternative way of signal propagation in
a network of neurons and glia.

Prolonged activation of GABAARs, such as during high fre-
quency activity of inter-neuronal network, induces in postnatal
cerebellar interneurons an increase in [Ca2+]i, which can be
observed up to 3 weeks after birth (Chavas et al., 2004). Since
the membrane potential measured in these cells in such condi-
tions is more negative than the activation threshold of VDCCs,
it has been suggested that the increase in [Ca2+]i, is triggered
by a Ca2+ influx independent from VDCCs and/or by a release
from intracellular stores in response to the rising osmotic tension
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within the neuronal dendrites. According to this hypothesis, it was
suggested that prolonged opening of GABAAR causes a persis-
tent HCO−

3 efflux, which in turn exerts a continuous depolarizing
force favoring a large Cl− influx. As Cl− carriers correct varia-
tions in the [Cl−]i on a slow time scale, this large Cl− influxes
cannot be immediately compensated and they lead to water entry
and swelling. Consistently with this hypothesis, the application
of a GABAAR agonist increases the dimension of the dendrites
(Chavas et al., 2004). However, the exact link between osmotic
tension and Ca2+ elevations remains so far unknown.

NEUROGENESIS
Despite the intense scrutiny, many aspects of the regulation of
GABA on neurogenesis are still unclear. This concerns especially
the downstream mechanisms involved, the role of this regula-
tion in vivo and the differences associated to age and regional
factors. The concept that GABA regulates neural progenitor behav-
ior mainly via GABAAR-mediated depolarization and consequent
activation of VDCCs has become widely accepted. However, con-
sidering the wide range of cell types within the stem cell niches
and the relative differences in their GABAergic currents and in
the source of GABA, it is likely that several downstream trans-
duction mechanisms are involved. Moreover, often the conclusion
that VDCCs are activated by GABAARs-mediated depolariza-
tion has been indirectly drawn from the observation that VDCC
antagonists impact the physiological effect mediated by GABA.
Although some studies have provided evidence that GABAARs
activation depolarizes neural precursors in the embryonic and
adult neurogenic niche (Owens et al., 1996; Liu et al., 2005;

Young et al., 2010), it is often unclear whether this effect can be
obtained at physiological concentrations of GABA, whether func-
tional VDCCs are present and are activated by the GABA-induced
depolarization. This analysis is further complicated by the tech-
nical challenge posed by the simultaneous measurement of mem-
brane potential and Ca2+ signals without interfering with Cl−
homeostasis, and by the identification of the different cell types
within the adult neurogenic niche. By combining antigenic and
functional characterization we have previously detected VDCCs
in neuroblasts, but not in more immature precursor cells of the
neonatal SVZ (Cesetti et al., 2009). Consistently, GABA evoked
a rapid Ca2+ increase in neuroblasts but not in precursor cells
(Cesetti et al., 2010). However, spontaneous Ca2+ signals occur
in vitro both in embryonic (Ciccolini et al., 2003; Gakhar-Koppole
et al., 2008) and in neonatal neural progenitors (Cesetti et al.,
2009) and they can be modulated by GABA (Figure 3). GABAer-
gic modulation of spontaneous Ca2+ signals was also observed
in situ in GFAP expressing cells of the SVZ; these spontaneous
Ca2+ signals depended on IP3 mediated Ca2+ release from the
stores. In about half of these cells the GABAAR antagonist bicu-
culline reduced the frequency of the Ca2+ transients while in
the other half it produced an increase (Young et al., 2010). Like-
wise, GABA evoked Ca2+ signals mediated by VDCCs only in
half of the GFAP+ cells. Since all GFAP+ cells respond to GABA
(Liu et al., 2005), these results underscore the heterogeneity of
the GFAP+ cell population that, beside a small fraction of stem
cells, mostly consists of niche astrocytes. They also suggest the
involvement of different downstream signaling cascades in the
GABAergic response.

FIGURE 3 | GABAAR signaling promotes regular Ca2+ transients on

proliferating neural precursors. Analysis of spontaneous Ca2+ transients in a
population enriched in neural stem cells, purified by fluorescence activated
cell sorting from the postnatal SVZ on the basis of the expression of high
levels of EGFR (EGFRhigh cells; Ciccolini et al., 2005). After isolation the cells
were plated on coverslips and maintained in medium containing EGF and
FGF-2 for 2 days (Cesetti et al., 2009). Upon loading with the Ca2+ indicator
fluo-3, in control conditions the EGFRhigh cells displayed a very low incidence

of regular Ca2+ oscillation (regular oscillation defined as at least three spikes
with similar amplitude and interspike interval within 15 min recording) (A,B).
However the addition of GABA (100 μM) to the medium before (15 min) and
during the imaging led to a dramatic increase in the incidence of the cells
displaying regular Ca2+ oscillation (A,B), an effect that was blocked by the
GABAAR bicuculline (50 μM) (A). In (B) three representative traces of Ca2+

changes are shown, respectively in control condition and upon GABA
treatment, after background subtraction, and normalization to baseline values.
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Indeed we have shown that in stem cells of the neonatal SVZ,
identified according Prominin and GFAP expression, activation
of GABAARs produces a Cl− influx which promotes osmotic
swelling and insertion of epidermal growth factor receptor (EGFR)
in the cell membrane. In the presence of EGF, this event leads
to a change in the expression of the phosphatase and tensin
homolog deleted on chromosome 10 (PTEN) tumor suppres-
sor and Cyclin D1 and promotes cell cycle entry (Cesetti et al.,
2010). Since osmotic swelling can spread through gap junc-
tion coupling, potentially this mechanism could synchronize the
cell cycle of several progenitor cells (Cesetti et al., 2009). How-
ever, GABA evokes very small Cl− currents in these progenitor
cells, raising the question of whether GABAAR activation alone
is enough to cause swelling and stem cell proliferation in vivo.
Supporting this possibility we found that a single intraperitoneal
injection of diazepam promotes massive stem cell proliferation
and increased EGFR expression (Cesetti et al., 2010). It is possi-
ble that the amplitude of GABAergic currents measured in vitro
does not reflect the degree of activation in vivo. This could be
due to the modulation of GABAAR by endogenous ligands such as
neurosteroids. Indeed, using gene array analysis we have recently
found that precursors express the E18-kDa translocator protein
(Tspo) and the 11-kDa diazepam binding inhibitor, a polypeptide
that is a well-characterized ligand for Tspo (Obernier and Cic-
colini, unpublished observation). Activation of Tspo results in an
increased production of the neurosteroid precursor pregnenolone
that in turn potentiates GABAergic currents (Mellon and Griffin,
2002).

In embryonic and peripheral neural crest stem cells, activation
of GABAAR also induced swelling associated to hyperpolariza-
tion, but it had an opposite effect on cell proliferation, as it led to
the generation of phosphorylated histone γH2AX, which in turn
inhibited cell cycle progression (Andang et al., 2008). It has been
proposed that GABA prevents proliferation in the adult SVZ by
a similar mechanism (Fernando et al., 2011). However, we found
that activation of GABAAR in the neonatal SVZ did not lead to
the generation of γH2AX (Cesetti et al., 2010), suggesting that the
responses of neonatal and adult SVZ precursors to GABA may dif-
fer. Thus, in more primitive neural precursors GABAAR-mediated
cell swelling plays an important role in proliferation control.

CONCLUDING REMARKS AND PERSPECTIVES
So far only a few studies have clearly indicated a role for GABAAR
activation in the osmotic regulation of brain.

One possible reason of such limited number of observations is
the difficulty to discriminate in vivo between the effect of GABA
as neurotransmitter and as osmotic modulator due to the inter-
dependency between neural activity and osmotic regulation in
the brain. Another limiting factor may be the technical difficul-
ties associated to the measurement of cell volume changes in situ
or in vivo. The regulation of water and ion balance in the brain
is crucial for normal functions and for recovery from pathologi-
cal swelling. A constant redistribution of water occurs across the
membrane of the different neural cell types, accompanying fluxes
of ions and release and uptake of neurotransmitters. However the
measurement of water diffusion/transport with cellular resolution
is still technically challenging. Magnetic resonance imaging (MRI)
permits the quantification of global or local increase in water con-
tent at specific anatomical location but without cell specificity.
Only recently, with the development of two-photon laser scan-
ning microscopy and of transgenic mice with intrinsic fluorescent
neurons or glia, it has been possible to monitor real-time changes
in cell volume in brain slice and in vivo with cellular and even sub-
cellular resolution. However the molecular mechanism involved
in cell volume changes and the downstream activated signaling
have been mainly investigated in isolated cell systems which do
not reflect the complexity of the situation in vivo. Although the
picture is still fragmented and incomplete, new concepts start to
emerge. GABA regulates not only inter-neuronal communication
but also the communication between neurons and non-neuronal
cells. GABAergic signaling between astrocytes and neurons can
be bidirectional, with astrocytes sensing extrasynaptic GABA and
releasing GABA and taurine upon osmotic challenge, providing
a feedback mechanism of volume regulation. Oligodendrocytes
instead receive a dedicated synaptic GABAergic input. Adult neural
precursors in the DG and SVZ of the adult brain sense synaptic or
ambient GABA, respectively.

Thus, although many questions are still open, recent evidence
indicates that GABAAR-mediated osmotic regulation may have
consequences at the cellular and at the systemic level. Therefore,
GABAergic osmotic regulation should be taken into account dur-
ing the treatment of pathologies requiring the administration of
GABAAR modulators and for the development of therapies for
diseases causing water unbalance in the brain.
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