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Abstract: The aim of this study is to predict local failure after partial prostate re-irradiation for the
treatment of isolated locally recurrent prostate cancer by using a machine learning classifier based on
radiomic features from pre-treatment computed tomography (CT), positron-emission tomography
(PET) and biological effective dose distribution (BED) of the radiotherapy plan. The analysis was
conducted on a monocentric dataset of 43 patients with evidence of isolated intraprostatic recurrence
of prostate cancer after primary external beam radiotherapy. All patients received partial prostate
re-irradiation delivered by volumetric modulated arc therapy. The gross tumor volume (GTV) of
each patient was manually contoured from planning CT, choline-PET and dose maps. An ensemble
machine learning pipeline including unbalanced data correction and feature selection was trained
using the radiomic and dosiomic features as input for predicting occurrence of local failure. The
model performance was assessed using sensitivity, specificity, accuracy and area under receiver
operating characteristic curves of the score function in 10-fold cross validation repeated 100 times.
Local failure was observed in 13 patients (30%), with a median time to recurrence of 36.7 months
(range = 6.1–102.4 months). A four variables ensemble machine learning model resulted in accuracy
of 0.62 and AUC 0.65. According to our results, a dosiomic machine learning classifier can predict
local failure after partial prostate re-irradiation.

Keywords: radiomics; dosiomics; machine learning; radiotherapy; prostate cancer; partial prostate re-irradiation

1. Introduction

Prostate cancer (PCa), the fourth most occurring cancer overall and the second most
frequent in men [1], is commonly treated with surgery or radiation therapy (RT), including
brachytherapy and external beam radiotherapy (EBRT). Advanced EBRT techniques were
associated with a relevant improvement in tumor control and reduced severe toxicity
rate, in the last decade [2,3]. However, following radiation treatment, about half patients
can develop biochemical recurrence (BCR) of disease diagnosed via a prostate-specific
antigen (PSA) test [4]. Additionally, a percentage ranging from 30–60% of patients with
BCR experience an evidence of local disease progression on imaging [5,6]. Despite the
existence of guidelines panels, supported by comprehensive literature reviews, there is no
consensus on the optimal salvage therapy strategy [7,8]. An available treatment option is
represented by partial prostate re-irradiation (PPR), a therapy scheme which combines the
use of accurate medical images with stereotactic body radiation therapy (SBRT) to deliver
ablative doses to a small region including the tumor volume [9,10].

Heterogeneous disease within and among patients demands a need for an individual-
ized approach to PCa relapse. Precision medicine aims to design treatment plans tailored
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to the specific disease profile of the patient in order to improve outcomes. However, a
major challenge for individualized treatment is accurate prediction of a patient’s disease
response to specific therapeutics approach [11]. A widely established method to describe
the dose-response after EBRT is the tumor control probability (TCP), a formalism developed
to compute the probability of local control by accounting for 3D dose distribution and
fractionation [12,13]. However, over the past years, there has been a growing interest
in advanced computational methods based on artificial intelligence (AI) [14,15]. In this
scenario, radiomics is a powerful tool for applying AI in healthcare. It is a quantitative
approach which includes systematic procedures to calculate and analyze high-dimensional
data from medical images [16]. The main assumption behind the radiomics concept is
that details reflective of the underlying tissue biology, not visible to the human eye, are
contained in biomedical images [17]. Through the extraction of mathematical descriptors
of intensity and textural information, called radiomic features, the pixel/voxel interrela-
tionships are mined by means of AI methods, mainly machine learning (ML) algorithms, to
build a radiomics signature that can predict prognosis, or therapeutic response [18,19]. An
extension of radiomics is represented by a more recent approach called dosiomics, where
features are extracted from three-dimensional (3D) EBRT dose distribution to encode its
spatial and intensity characteristics [20].

A radiomics-based computer-aided decision can be crucial to implementing a personal-
ized salvage program for the treatment of isolated intra-prostatic recurrence in PCa patients
who underwent EBRT as primary curative course. Several studies offered a non-invasive
way to obtain a diagnostic and risk stratification of PCa patients by means of radiomics in
different imaging modalities, mostly involving magnetic resonance imaging (MRI) [21–26].
Positron emission tomography (PET), computed tomography (CT) and transrectal ultra-
sound (TRUS) images have been used to obtain radiomics-based predictive models for PCa
detection, therapy outcome, risk group discrimination and RT toxicity [27–32]. Moreover,
integrating texture analysis of 3D dose distribution of RT can improve model prediction
performance of toxicity rates in PCa [33]. Dosiomic features calculated from the target
volume were also significantly correlated with biochemical failure in patient with localized
PCa who underwent intensity modulated radiation therapy (IMRT) [34]. However, taking
into account anatomical, functional and dosimetric information used to perform the PPR
therapy scheme can be crucial because the response of re-irradiated tumors could be differ-
ent respect to those undergoing primary EBRT [35]. At our best knowledge, a model for
prediction of response to reirradiation of locally recurrent PCa has not been developed.

The purpose of this work was to build an ML model integrating radiomic and do-
siomic features derived from CT, PET and dose distribution in a retrospective cohort of
patients with isolated local recurrence of PCa treated with a PPR protocol [36] to be used
for prediction of local failure at three years from the end of PPR in a clinical decision
support system.

2. Materials and Methods

The radiomics workflow (Figure 1) involves the following steps [37,38]: (i) definition
of the clinical endpoint and suitable patient cohort, (ii) identification of appropriate image
modalities for feature extraction, (iii) contouring of the region of interest (ROI) segmentation
in a manual, semiautomatic or fully automatic manner, (iv) radiomic features extraction
from the voxels included in the ROI, (v) training of ML algorithm to obtain a predictive
model. The most relevant steps will be highlighted in the following sections.

2.1. Patient Data

Forty-three patients with evidence of isolated intra-prostatic recurrence of PCa were
treated following a PPR protocol and retrospectively analyzed. All the patients met the
following inclusion criteria: (1) previous EBRT as primary treatment, (2) evidence of
biochemical recurrence (BCR) defined as a PSA rise of 2 ng/mL above the nadir [39],
(3) subsequent detection of isolated local relapse via (11C)-choline PET-CT, and (4) PPR as
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local salvage treatment. Furthermore, in order to ensure reproducible and repeatable results,
we excluded from the analysis all the patients with (11C)-choline PET-CT not acquired in
our institution because of inter-scanner variability or different image acquisition protocol.
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Figure 1. The radiomics framework depicts all the steps needed to build a radiomics model. After
medical image acquisition and reconstruction, the region of interest (ROI) is segmented manually,
semi-automatically or fully automatically. The feature extraction step, including post-processing
of the acquired image, provides numerous quantitative biomarkers managed by means of artificial
intelligence to achieve a clinical decision support system.

As already extensively described [36], PPR treatment was performed delivering a
volumetric modulated arc therapy (VMAT) technique with a course scheme of 35 Gy in
seven daily fractions of 5 Gy, five fractions/week (Figure 2); considering an alpha-beta
ratio of 1.5 Gy, the total BED at the target was 151.7 Gy [40]. All patients were imaged with
a non-contrast-enhanced pre-treatment CT using a 32-slice scanner (Toshiba Aquilion LB,
Toshiba Medical Systems Europe, Zoetermeer, the Netherlands). The gross target volume
(GTV) was defined with the aid of the (11C)-choline PET as the volume delineated with a
semi-automated technique using a fixed threshold of 40% of the maximum signal intensity.
To reduce inter-observer variability, minimal manual corrections of the GTV borders were
performed to take into account anatomical differences due to possible sub-optimal spatial
registration between different image modalities. The dose distributions were calculated on a
resolution grid of 2.5 mm or less with Eclipse treatment planning system (TPS) version 13.6,
using the Anisotropic Analytical Algorithm version 13.6.23 (Varian Medical System, Palo
Alto, CA, USA). For each patient, PET and CT images, together with the dose distributions
and GTV contours, were saved in the digital imaging and communications in medicine
(DICOM) format. The following analysis, including data conversion, image post processing,
feature calculation and model training and validation were performed in Matlab R2021b
version: 9.12.0.1927505 R2022a (The MathWorks, Inc., Apple Hill Drive Natick, MA, USA).

Tumor response after PPR was based on PSA level dosage on subsequent follow-up,
recorded 3 months after therapy, quarterly for the successive 2 years, biannually until the
fifth year and annually thereafter. During follow-up, according to Phoenix Consensum
criteria [39], BCR occurred when PSA nadir + 2 ng/mL was observed. In the case of
BCR, patients were scanned with an additional (11C)-choline-PET-CT to evaluate for local,
regional, or metastatic failure. All recurrences occurred within the treatment field, except for
one, which was observed outside the treatment field. Patient characteristics are summarized
in Table 1.
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Table 1. Characteristics of patient cohort.

Characteristics Value

Patient number 43

Age at PPR (years), median (range) 77.5 (57–90)

Follow-up (months), median (range) 36.7 (6.1–102.4)

PSA before PPR (ng/mL), median (range) 3.2 (0.09–16.5)

PSA after PPR (ng/mL), median (range) 1.1 (0.07–12.08)

Interval between PPR and BCR (months),
median (range) 30.1 (7.9–51.8)

LF after PPR 13 (30%)

In-field 10 (23%)

Out-field 1 (2%)

In-field/Out-field 2 (5%)

PSA at LF detection after PPR (ng/mL),
median (range) 4.8 (1.8–27)

Abbreviations: PSA—prostate-specific antigen; BCR—biochemical recurrence; PPR—partial prostate re-irradiation;
LF—local failure.

2.2. Image Processing

It is well known how different choices during features calculation procedures can im-
pact the ML analysis [41,42]. To standardize this practice, we designed an image processing
scheme, i.e., the sequence of actions needed to obtain image biomarkers from medical im-
ages, following the methodology and definitions of the Image Biomarker Standardization
Initiative (IBSI) [43].

Firstly, in order to work with more meaningful information, raw data from PET and
dose distribution from TPS were corrected voxel-wise in standard uptake value (SUV)
and BED (α/β-ratio of 1.5 Gy), respectively [44]. Because GTV contours within DICOM
RTSTRUCT files were stored as a set of points defining a polygon for each image slice, an
in-house segmentation algorithm was used to find out which image voxel makes up the
binary ROI mask. The chosen method is based on a crossing-number test [45]. It counts
the number of times a line starting from the point and going in a fixed direction intersects
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with the polygonal boundary; all the points with odd counts are considered part of the
ROI mask.

PET, CT, BED distribution and the corresponding ROI masks were also interpolated,
using a trilinear algorithm, to 1 × 1 × 1 mm3 isotropic voxel size to provide a texture
features comparable across the cohort and make measurement reproducible [46]. A thresh-
old of 0.5 was used to binarize ROI mask voxels to account for partial volume effects
introduced by the trilinear interpolation. Subsequently, since Hounsfield units (HU) do
not take non-integer values, CT data were rounded to the nearest integer, whereas no
re-segmentation was applied. ROI masks were then utilized to isolate the voxels within the
GTV from the surrounding intensities, that were replaced by NaN values.

Voxel intensities within the ROI were discretized into 64 grey levels in order to nor-
malize their values among patients and reduce noise. A fixed bin number discretization
approach was preferred because allows a direct comparison of feature values across sam-
ples [47]. A total of 380 radiomic features were calculated for each patient using an in-house
Matlab code previously benchmarked with different phantoms to quantify the IBSI compli-
ance level [48].

2.3. Machine Learning Model

For ML analysis, outcome was binarized considering patient status at three years from
the end of the PPR treatment. Local relapse events after PPR were considered as positive
whereas relapse-free patients were considered as negative. Radiomic features dataset from
PET, CT and BED was used to build an ML model for treatment response classification. As
shown in Figure 3, the ML procedure involves three steps: oversampling of the minority
class, feature selection and model building from the selected features.
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performed to yield accuracy and area under curve with standard deviations in order to make
model comparisons.

The first step was necessary because local failure rate was 30.2% resulting in an
imbalanced dataset. In this condition, the models can be prone to prefer prediction of
the dominant class to boost performance during the training phase [49]. To balance the
distribution of majority and minority classes, an adjustment strategy using the adaptive
synthetic (ADASYN) method was adopted on training data set [50].

Then, feature selection was performed by means of Neighborhood component analysis
(NCA) [51], a regularized non-parametric algorithm which learns features’ weights by
minimizing an objective function that measures the average leave-one-out classification
error. The regularization term, needed to avoid overfitting, was set to 0.02 while the solver
type chosen for estimating feature weights was the stochastic gradient descent algorithm.
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The final step was outcome modeling by ensemble ML (EML). EML is an approach
that seeks better predictive performance by aggregating predictions from multiple weak
learners [52]. A well-known system to combine weak learners is boosting, a method which
learns them sequentially in an adaptive way: a model at a given step is built giving more
importance to observations in the dataset that were previously badly handled. Among
ensemble aggregation techniques, RobustBoost was preferred because it is significantly
more robust against label noise [53]. A threshold of 5% was used as classification error
target, while the maximum number of iterations, often called “learning cycles”, was set to
500. For training the ensemble models, decision trees with a maximum number of split set
to 4 were used as weak learners [54].

To yield robust generalized performance of the trained models, a 100-times-repeated
10-fold cross-validation (CV) was performed. During each of the CV iterative loops, the
training set (9/10 of the whole dataset) was employed to perform the unbalanced data
correction. In this phase, to avoid data leakage [55], the NCA feature selection to obtain the
highest weighted variables used to train the EML models was also implemented. Lastly, the
testing set (1/10 of the whole dataset) was utilized to obtain predictions by means of the
trained classifiers (Figure 3). Furthermore, model performance was evaluated relatively to
the increasing number of features. With this goal, the CVs were run increasing the variable
number up to a maximum of 8 sorted in the feature selection process.

The model was assessed by estimating sensitivity (true positive rate), specificity (true
negative rate), accuracy (fraction of the events correctly classified) and the area under
curve (AUC) from the receiver operating characteristic (ROC) analysis [56]. To obtain a
global model performance, average values and standard deviations (σ) of these scores
were computed over all the repeated CVs. At the end, the best predictive classifier was
considered as the one with the highest accuracy.

3. Results

Model scores obtained which increased the feature number are shown in Figure 4. The
model with best performance was built by a radiomic signature based on four variables,
showing an AUC of 0.68 (±0.06 σ), with a sensitivity, specificity, and accuracy of 0.61
(±0.11 σ), 0.63 (±0.06 σ), and 0.63 (±0.06 σ) respectively. The ROC curve of the selected
EML and the most frequently chosen radiomic features during repeated CV are shown in
Figures 5 and 6, respectively. Two predictors, “Variance” and “Energy”, were intensity-
based statistical features, while “Integrated Intensity” and “Large zone high gray level
emphasis” were morphological and textural features, respectively [43]. All the variables
were extracted from BED distributions.
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4. Discussion

Radiomics has recently emerged as a tool for image analysis which converts medical
images into quantitative descriptors [57]. PCa radiomics has been largely applied, mostly
using multiparametric MRI, for automated and non-invasive tumor localization and char-
acterization [58]. Treatment response prediction by radiomic features was also the aim of
several studies. For instance, Alongi et al. [28] demonstrated how radiomic features from
PET/CT imaging are associated with PCa patients’ outcome. Similarly, Abdollahi at al. de-
veloped a model based on MRI radiomic features to predict EBRT response, Gleason Score
and PCa stage [59]. Since the use of imaging is vital to diagnose and stage recurrence, in
particular using multiparametric MRI and PET/CT [60], it can be postulated that radiomics
analysis could provide useful information to predict its outcome. In particular, PET/CT
is known to provide useful data regarding the metabolic and morphologic phenotype of
the recurrent tumor. BED distribution was found to accurately describe the radiotherapy
treatment: R. J. Klement et al. correlated the near-minimum and near-maximum dose



J. Pers. Med. 2022, 12, 1491 8 of 12

prescribed to the planning target volume and their average to the risk of local recurrence of
non-small cell lung cancer [61].

The inclusion of BED maps delivered during EBRT is an effective way for improving
the predictive power of AI-based classifiers. Avanzo et al. [62] highlighted this point
by showing how the integration of radiomic and machine-learned predictors from BED
maps is advantageous, relative to the use of only CT-derived features, in increasing the
predictive performances of both ML and deep learning models. Likewise, Welch et al. [63]
demonstrated the effectiveness of the aggregation of features derived from different kinds
of data (in this case clinical, radiomic and dosiomics) to predict the loco-regional failure of
head and neck cancer.

As such, the purpose of this study was to explore the potential of imaging and dose
data of recurrent PCa to for predicting treatment response to EBRT, where the endpoint
for response was a new clinical recurrence at three years from the end of the therapy. The
obtained results, although the model performance on the repeated validation was only fair,
demonstrates that radiomics-based ML models can help in identifying recurrent tumors at
highest risk of lack of response.

As is well known, overfitting is a typical fault of ML models, meaning that the model
precisely follows the data random noise instead of detecting patterns or trends of data [64].
To build the radiomic signature and prevent overfitting, the most meaningful variables
were chosen by using NCA feature selection on CV (Figure 3). The radiomic model with
best performance showed an accuracy of 0.62 (±0.06 σ) and was derived by four radiomic
features which were all selected from the dose distribution. Because of this result, the
classifier can be considered as a dosiomic model, suggesting that local failure-free survival
is strictly correlated to the BED pattern within the RT target. The four most frequently
selected dosiomic variables were: “Variance” and “Energy”, two first order statistical
features describing the spread and magnitude of BED distribution in the tumor; “Integrated
intensity”, the average dose intensity in the GTV multiplied by its volume; “Large Zone
High Gray Level Emphasis” (LZHGE) that describes the emphasis of high-level BED zones.
These results are in agreement with previous findings where the highest BED was proven
to increase relapse-free survival after brachytherapy [65]. Dose escalation has been shown
to improve the response of PCa. Moreover, PCa is believed to be sensitive to fractionation
schedule, also suggesting the superiority of BED over dose for treatment analysis [66].

Our study has several limitations. Although inclusion criteria produced a homoge-
neous patient cohort, this resulted in a small dataset. In order to overcome this issue, a CV
approach was implemented to assess a more robust model performance. Moreover, the
result could be affected by selection bias because of the retrospective nature of the study.
Another restriction of this work is the relative short follow-up of the patient cohort; this
implies that patients with late relapse are categorized wrongly as relapse-free. Therefore,
short follow-up can represent a confounding factor for predictive analyses. Finally, the
patient population was imbalanced in favor of relapse-free patients. Despite mitigating the
effect of imbalance by using ADASYN algorithm, the model would benefit from a more
balanced dataset. A promising strategy to further increase the predictive power is to widely
investigate the patient dataset. Other clinical factors or features, such as those extracted
from genomes can also be found to be associated with isolated local recurrence incidence
after PPR, providing a deeper knowledge [67]. Therefore, their integration into the model
can improve the prediction capability and robustness.

Despite its limitations, to the best of our knowledge, this study offers a proof-of-
concept of using an ML radiomics-based model to predict treatment response after reirradi-
ation of a radio-recurrent PCa. A particularly attractive process in which our ML approach
could find its application is the tumor dose painting (DP) [68,69]. It is well known that
the common planning process involves patient preparation, simulation CT-scan, target
and organ at risk delineation and dose distribution calculation; all these steps are used to
create an individualized radiotherapy plan according to the treatment prescription. Instead
of prescribing a standard dose, it could be possible to apply a DP procedure where the
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prescribed dose is adapted according to the presumed BED spatial dependences within the
tumor found by our predictive model. These findings open new scenarios for developing
decision support systems able to help experts in defining the better salvage strategy for
managing recurrent tumors.

5. Conclusions

A dosiomic-based classifier was developed to predict therapy response at three years
from the end of PPR. Dose-based predictors contain important details related to patient out-
come. Future developments such as an inter-scanner calibration and an external validation
are needed prior its inclusion into clinical practice.
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