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This paper aims to study the global stability of an Ebola virus epidemic model. Although
this epidemic ended in September 2015, it devastated several West African countries and
mobilized the international community. With the recent cases of Ebola in the Democratic
Republic of the Congo (DRC), the threat of the reappearance of this fatal disease remains.
Therefore, we are obligated to be prepared for a possible re-emerging of the disease. In this
work, we investigate the global stability analysis via the theory of cooperative systems, and
we determine the conditions that lead to global stability diseases free and endemic
equilibrium.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Ebola Virus Disease (EVD) is a type of hemorrhagic fever caused by an infection from a virus of the filoviridae family.
Since 1976, five species of this virus have been identified; the most recent virus that caused the 2014e2015 outbreak in West
Africa is one of them. This recent epidemic has been the deadliest with 28514 cases and 11313 deaths (Center for Disease
Contro, 2014). The case fatality rate of this outbreak has been different in different affected countries with Guinea (60%),
Liberia (42%), and Sierra Leone (22%) (World Health Organization, 2017).

The natural host of the virus and how humans get infected by the virus, in the first place (World Health Organization,
2015), are among the many issues that have not yet been understood regarding this virus. The human-human infection,
can happen in several ways such as via direct contact with body fluids of an infected person, contaminated needles, sexual
contact (Johns Hopkins Medicine He), and direct contact with a dead person in funeral rites (Manguvo & Mafuvadze, 2015).

Mathematical modeling of the EVD has been the subject of many papers that attempted to study the epidemiological
aspects of this disease or its dynamical aspects (Agusto, 2017; Althaus, 2014; Berge, Lubuma, Moremedi, Morris, & Kondera-
Shava, 2017; Bodine, Cook, & Shorten, 2018; Browne, Gulbudak, & Webb, 2015; Chowell & Nishiura, 2014; Legrand, Freeman
Grais, Boelle, Valleron, & Antoine, 2007; Vittoria Barbarossa et al., 2015; Webb & Browne, 2016; Weitz and Dushoff, 2015;
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Wong, Bui, Chughtai,&Macintyre, 2017). From an epidemiological point of view, mathematical models were used to estimate
the basic reproduction number R 0 (Althaus, 2014; Bodine et al., 2018; Browne et al., 2015; Legrand et al., 2007; Wong et al.,
2017), find the final epidemic size (Vittoria Barbarossa et al., 2015), estimate the effectiveness of interventions during the
outbreak (Chowell & Nishiura, 2014), and finally to determine the control measure that stopped the spread from the dead
bodies infected by the EVD (Weitz and Dushoff, 2015). On the other hand, the mathematical analysis the dynamic of the EVD
models was investigated in (Agusto, 2017; Berge et al., 2017;Webb& Browne, 2016) by considering constant recruitment rate
of the population (Agusto, 2017; Berge et al., 2017), where the standard Lyapunov approach was used to prove the global
stability. The disease age density was also used to fit the data of the West African outbreak (Webb & Browne, 2016).

In this work, we propose a deterministic model to describe the spread the EVD that includes a non-constant recruitment of
the population. The idea behind this assumption is the fact that the fertility rate in the African countries in general, and the
countries which were infected by the recent outbreak in particular, is very high. Therefore, in order to have a better un-
derstanding of the dynamic of the disease in the coming years, we have to consider a non-constant recruitment of the
population. With such an assumption, the considered model becomes a cooperative system.

The literature of cooperative dynamical systems is very rich. Muller (Müller, 1927) and Kamke (Kamke,1932) were the first
to apply monotone methods to differential equations. Later, Hirsch applied these results to dynamical systems and proved
several results in this theory (Hirsch, 1982, 1983; Hirsch, 1990). The work of Smith and his collaborators (Smith & Thieme,
1990, 1991; Hirsch & Smith, 2005; Smith, 2008) improved the results of the Hirsch and used the theory of cooperative
and irreducible systems in different types of ODEs with applications to biological systems. The application of the theory of
cooperative systems in the epidemiological model is given in (Iggidr, Niri, & Moulay Ely, 2010), more recent works in (Niri,
Kabli, & El moujaddid, 2015), and an epidemiological model with delay in (El Karkri & Niri, 2014; Niri & El Karkri, 2015).

We apply this theory to study the stability of the model of Ebola by showing that the theory of cooperative and irreducible
systems could be an alternative to Lyapunov functions.

This paper is organized as follows: In the next section, section 2, we present the EVDmodel. The preliminary results of our
analysis are in section 3, where we prove that the system is cooperative and irreducible, and we calculated the two disease
thresholds, including the basic reproduction number. The local stability analysis is also given in this section. In section 4, we
prove our main result: sufficient conditions of global stability for the endemic disease equilibrium. In Section 5, we present
numerical simulations and support our results. Finally, the conclusion is given in Section 6, and Appendix is in Section A.
2. Introduction of the model

We adopted the model of Legrand et al. (Legrand et al., 2007) by ignoring the class of people that are dead but not yet
buried. Ignoring such a class can be accepted as a modeling convention because the problem of the infection between people
and the dead bodies before being buried was identified and controlled by the international community in their intervention
to stop the spread of the disease via this route (Manguvo&Mafuvadze, 2015;WONG et al., 2017). Hence, our model described
by the flow diagram in Fig. 1 is given by

_S ¼ aN � mS� bISI
N

� bHSH
N

_E ¼ bISI
N

þ bHSH
N

� ðmþ sÞE
_I ¼ sE � �mH þ mQ þ mþ mR

�
I

_H ¼ mHI � ðm0 þ mþ m0RÞH
_R ¼ mRI � mRþ m0RH;

(1)

where S is susceptible individuals, E is a class of exposed people by the close contacts with infectious individuals; and people
in E could become infectious after an incubation period. Once people in E become infectious, they are moved to I: A proportion
Fig. 1. An SEIHR model for Ebola virus disease.
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of infected people might be hospitalized and hence moved to H. The infected untreated people in I and the infected hospi-
talized patients in H may die or recover and hence moved to R. N ¼ Sþ E þ I þ H þ R is the total population. Note that the
population growth is proportional to the total population as expressed in aN in (1). Hence, we have a varying total population
size. Table 1 gives the definition of all the parameters used in the model.

To proceed with our analysis, we made the following accepted assumptions:

i) The contact rate between susceptible and infected individuals is always superior to death rate due to infection bI >mQ .
ii) The contact rate between susceptible and hospitalized individuals is always superior to death rate due to infection at the

hospital bH >m0.

These assumptions will help us to prove the uniqueness of the endemic equilibrium point.

3. Preliminary analysis

The dimensionless form of the model (1) is given by

_s ¼ a� bIsi� bHshþ mQsiþ m0sh� as
_e ¼ ðbI iþ bHhÞs� ðaþ sÞeþ mQ ieþ m0eh
_i ¼ se� �mQ þ mR þ mH þ a

�
iþ m0ihþ mQ i

2

_h ¼ mHi� ðm0 þ m0R þ aÞhþ mQhiþ m0h2
_r ¼ mRiþ m0Rh� ar þ mQ riþ m0rh

(2)
with

s ¼ S
N
; e ¼ E

N
; i ¼ I

N
; h ¼ H

N
and r ¼ R

N
: (3)
In the rest of the paper we will study the system (2) in the positively invariant convex set:

S ¼
n
ðs; e; i;h; rÞ2ℝ5

þ : sþ eþ iþ hþ r � 1
o

and formulate our results accordingly. The system (2) has others properties which play a key role in our analysis. That is
system (2) is cooperative; this means that an increase in any compartment causes an increase of the growth rates of all the
other compartments.

Theorem 1. The system (2) is cooperative and irreducible on S.

Proof The system is cooperative if the sign of the off diagonal of its Jacobian matrix is positive (see (Smith, 2008), p 34).
By replacing i by 1� s� e� h� r and h by 1� s� e� i� r in the first equation, and e in the second equation by 1� s�

i� h� r; then the Jacobian matrix of the system (2) becomes
Table 1
Parameters used in the model.

Parameter Description

a Birth rate
m Natural death
bI Contact rate between susceptible and infected individuals
bH Contact rate between susceptible and hospitalized individuals
1=s Incubation period
1=mH Time until hospitalization
mR Recovery rate of infectious people
m0R Recovery rate of hospitalized people
mQ Death rate due to infection
m0 Death rate due to infection in hospital
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J ¼

0
BBBBBBBBBBBBBB@

A bIsþ bHs bHsþ mQs bIsþ m0s bIsþ bHs

bI iþ bHhþ aþ s mQ iþ m0h bIsþ mQeþ aþ s bHsþ m0eþ aþ s aþ s

0 s �aþ 2mQ iþ m0h m0i 0

0 0 mH þ mQh �bþ mQ iþ 2m0h 0

0 0 mR þ mQ r m0R þ m0r �a

1
CCCCCCCCCCCCCCA

where
A ¼ �a� bIð1� 2s� e� h� rÞ � bHð1� 2s� e� i� rÞ;
a ¼ mH þ mQ þ mR þ a;

b ¼ m0 þ m0R þ a:
We can write the matrix J the following form to see the sign of each term

J ¼

0
BBBB@

� þ þ þ þ
þ � þ þ þ
0 þ � þ 0
0 0 þ � 0
0 0 þ þ �

1
CCCCA;

where * represents the terms on the main diagonal. It is easy to see that the Jacobian matrix is irreducible, and hence the

system (2) is irreducible.

3.1. Positivity of solutions

The next result shows that the solutions for the system are well-defined and are non-negative.

Proposition 1. All solutions of the system (2) starting from non-negative initial conditions exist for all t >0 and remain non-
negative. Furthermore, if ið0Þ>0, then iðtÞ>0ct >0:

Proof Since the system (2) is cooperative and irreducible, then it’s strongly monotone (Hirsch, 1985; Smith, 2008). Thus,we can
confirm that for each initial condition x0 � 0 corresponds a solution yðt;x0Þ � 0. Suppose that if ið0Þ>0, and there is a t1 >0 such
that iðtÞ>0 for t2½0; t1Þ, and iðt1Þ ¼ 0: Using the third equation in system (2)

i0ðt1Þ ¼ seðt1Þ � 0:
Then lim
t/t1

iðtÞ�iðt1Þ
t�t1

� 0: Since t < t1 we have iðtÞ � iðt1Þ � 0: Thus iðtÞ � iðt1Þ ¼ 0; which is a contradiction. This implies that

such a t1 cannot exist, thus iðtÞ>0 for all t >0.

3.2. Calculation of the basic reproduction number R 0

The basic reproduction number is the expected number of secondary infected people contacted by a single infectious
person. In the following, we calculate R 0 of (2) using the method described in (Van den DriesscheJames, 2002). Let

F ¼
0
@ sðbI iþ bHhÞ

0

1
A and V ¼

0
B@

ðaþ sÞe� mQei� m0eh
�seþ �mH þ mQ þ mR þ a

�
i� mQ i

2 � m0ih
�mHiþ ðm0 þ m0R þ aÞh� mQ ih� m0h2

1
CA:
Then,

F ¼
0
@0 bI bH

0 0 0
0 0 0

1
A and V ¼

0
@sþ a 0 0

�s mH þ mQ þ mR þ a 0
0 �mH m0 þ m0R þ a

1
A:
Following the same approach as (Van den DriesscheJames, 2002), we obtain,
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R 0 ¼ s�
mH þ mQ þ mR þ a

�ðsþ aÞbI þ
smH�

mH þ mQ þ mR þ a
�ðm0 þ m0R þ aÞðsþ aÞbH:

Hence,
R 0 ¼ s�
mH þ mQ þ mR þ a

�ðsþ aÞ
�
bI þ

mHbH
ðm0 þ m0R þ aÞ

�
: (4)
Note thatR 0 ¼ R 0i þR 0h whereR 0i is the reproduction number if there is no contact with hospitalized people andR 0h
is the reproduction number if there is contact just with the hospitalized individuals.

The basic reproduction number R 1
0 of system (1) is similarly calculated as follows:

R 1
0 ¼ s�

mH þ mQ þ mR þ m
�ðsþ mÞ

�
bI þ

mHbH
ðm0 þ m0R þ mÞ

�
: (5)
By assuming that a>m, it is easy to see that

R 1
0 >R 0 (6)
In fact, this result is straightforward since the function f is defined by

f ðxÞ ¼ s�
mH þ mQ þ mR þ x

�ðsþ xÞ
�
bI þ

mHbH
ðm0 þ m0R þ xÞ

�
; (7)

is a decreasing function on ℝþ and R 1
0 ¼ f ðmÞ and R 0 ¼ f ðaÞ:

3.3. Local stability of disease free equilibrium point

The aim of this section is to investigate the local stability of free equilibrium of the system (2). Clearly the system (2) has
the disease free equilibrium given by Ef ¼ ð1;0;0;0Þ.
Theorem 2. (i) If R 0 <1, then the disease-free equilibrium Ef is locally asymptotically stable. (ii) If R 0 >1, then Ef is unstable

Proof Since the variable r does not intervene in the first 4 equations, then we reduce the system (2) to a system of four
equations, and we can get r by r ¼ 1� s� e� i� h. Therefore, the system (2) is equivalent to:

_s ¼ a� �bI � mQ
�
siþ ðm0 � bHÞsh� as

_e ¼ ðbI iþ bHhÞs� ðaþ sÞeþ mQ ieþ m0eh
_i ¼ se� �mQ þ mR þ mH þ a

�
iþ m0ihþ mQ i

2

_h ¼ mHi� ðm0 þ m0R þ aÞhþ mQhiþ m0h2:

(8)

(i) The Jacobian matrix of system (2) at Ef is given by
J Ef ¼

0
BB@

�a 0 ��bI � mQ
� þðm0 � bHÞ

0 �ðsþ aÞ bI bH
0 s �a 0
0 0 mH �b

1
CCA
The characteristic equation is given by

ðlþ aÞ
�
l3 þ p1l

2 þ p2lþ p3
�
¼ 0: (9)
It is clear that l ¼ �a<0 is a root of (9), and we can solve

PðlÞ ¼ l3 þ p1l
2 þ p2lþ p3 ¼ 0; (10)

where
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p1 ¼ aþ bþ sþ a
p2 ¼ abþ ðaþ bÞðsþ aÞ � sbI
p3 ¼ abðsþ aÞ � sðbIbþ bHmHÞ:

In terms of Routh-Hurwitz criterion (Gradshteyn & Ryzhik, 2000), it is sufficient to show that
p1 >0; p2 >0; p3 >0 and p1p2 � p3 >0:
We have

R 0 ¼ bs
abðsþ aÞbI þ

mH
abðsþ aÞbH

¼ sðbbI þ mHbHÞ
abðsþ aÞ :

(11)
Then

abðsþ aÞð1�R 0Þ ¼ abðsþ aÞ � sðbIbþ bHmHÞ:
Thus

p1 ¼ aþ bþ sþ a
p2 ¼ abþ bðsþ aÞ þ aðsþ aÞ � sbI
p3 ¼ abðsþ aÞð1�R 0Þ:
From (11) if R 0 <1; we have

abðaþ sÞ> sbbI þ smHbH0bðaðaþ sÞ � sbIÞ>smHbH
0aðsþ aÞ> sbI :
Since b>0, smHbH >0 and if R 0 <1 then p1, p2 and p3 are positive. Moreover, we can easily see that

p1p2 � p3 >0:
Therefore, by the Routh-Hurwitz criterion, all roots of (10) have negative real parts, concluding that if R 0 <1, then Ef is
locally asymptotically stable.

(ii) If R 0 >1; then Pð0Þ ¼ p3 <0, and we have PðlÞ/∞ as l/∞. Therefore, there exists at least one positive root of the
polynomial PðlÞ. Moreover, the equilibrium Ef is unstable if R 0 >1.
3.4. Existence and uniqueness of the endemic equilibrium point

Proposition 2. The system (1) has an infinity equilibrium points ðS�; E�; I�;H�;R�Þ with positive components.

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

S� ¼
 
a

m

�
mQ

a� m
þ m0mH
ða� mÞðm0 þ mþ m0RÞ

�
� ðmþ sÞ�mH þ mQ þ mR þ m

�
ms

!
I�;

E� ¼ mH þ mQ þ mR þ m

s
I�;

H� ¼ mH
m0 þ mþ m0R

I�;

R� ¼
�
mR
m

þ m0RmH
mðm0 þ mþ m0RÞ

�
I�;

N� ¼
�

mQ
a� m

þ m0mH
ða� mÞðm0 þ mþ m0RÞ

�
I�:

(12)
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Proof To find the endemic disease equilibrium of system (2), we solve the system:

8>>>>>><
>>>>>>:

aN � mS� bISI=N � bHSH=N ¼ 0;
bISI=N þ bHSH=N � mE � sE ¼ 0;
sE � mHI � mQ I � mRI � mI ¼ 0;
mHI � m0H � mH � m0RH ¼ 0;

mRI � mRþ m0RH ¼ 0;
aN � mN � mQ I � m0H ¼ 0:

(13)
Which gives

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

S� ¼ a

m
N� � mþ s

m
E�;

E� ¼ mH þ mQ þ mR þ m

s
I�;

H� ¼ mH
m0 þ mþ m0R

I�;

R� ¼
�
mR
m

þ m0RmH
mðm0 þ mþ m0RÞ

�
I�;

N� ¼
�

mQ
a� m

þ m0mH
ða� mÞðm0 þ mþ m0RÞ

�
I�:

(14)
Let's have

ðs�; e�; i�;h�; r�Þ ¼
�
S�

N�;
E�

N�;
I�

N�;
H�

N�;
R�

N�

�
;

with
N� ¼ S� þ E� þ I� þ H� þ R�;

then we have the following result.
Theorem 3. 1. If R 1
0 >1, then ðs�; e�; i�;h�; r�Þ is an endemic equilibrium point of the system (2), it belongs to S, with

8>>>>>>>>>>>><
>>>>>>>>>>>>:

s� ¼ 1

R 1
0

;

e� ¼ m

mþ s
R �;

i� ¼ 1
K
R �;

h� ¼ mH
Kd

R �;

(15)

with
R � ¼ a

m
� 1

R 1
0

;

c ¼ mH þ mQ þ mR þ m;

d ¼ m0 þ m0R þ m;

K ¼ cðmþ sÞ
ms

:

1
2. If R 0 <1, then the system (2) has only a disease-free equilibrium.

Proof 1. Let R 1
0 >1

i) Let's take X ¼ ðS; E; I;H;RÞ and x ¼ ðs;e; i;h; rÞ, with x ¼ X
N: From the system (2), the vector field f ¼ ðf1; f2; f3; f4; f5Þ can be

writing on the form:
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0
a� �b � m

�
siþ

�
m

0 � b
�
sh� as

1

f ðxÞ ¼

BBBBBBB@

I Q H

ðbI iþ bHhÞs� ðaþ sÞeþ mQ ieþ m
0
eh

se� �mQ þ mR þ mH þ a
�
iþ m

0
ihþ mQ i

2

mHi�
�
m

0 þ m
0
R þ a

�
hþ mQhiþ m

0
h2

mRiþ m
0
Rh� ar þ mQ riþ m

0
rh:

CCCCCCCA

� � � � �
If ðS ;E ; I ;H ;R Þ is an equilibrium point of the system (1). Then we have:
8 � � � � � � � �
>>>>>><
>>>>>>:

aN � mS � bIS I =N � bHS H =N ¼ 0;
bIS

�I�=N� þ bHS
�H�=N� � mE� � sE� ¼ 0;

sE� � mHI
� � mQ I

� � mRI
� � mI� ¼ 0;

mHI
� � m0H� � mH� � m0RH� ¼ 0;
mRI

� � mR� þ m0RH� ¼ 0;
aN� � mN� � mQ I

� � m0H� ¼ 0:

(16)

� � � � � �
Our goal is to prove that x ¼ ðs ; e ; i ;h ; r Þ is an equilibrium point of system (2), which
means

�
f ðx Þ ¼ 0:
We have:
� � � � � ��
f1ðs�; e�; i�;h�; r�Þ ¼ f1
S
N�;

E
N�;

I
N�;

H
N�;

R
N�

¼ a� m
S�

N� � bI
S�

N�
I�

N� � bH
S�

N�
H�

N� �
S�

N�

�
a� m� mQ

I�

N� � m0
H�

N�

�

¼ 1
N�

�
aN� � mS� � bI

S�I�

N� � bH
S�H�

N�

�
� S�

ðN�Þ2
�ða� mÞN� � mQ I

� � m0H��:

Using the first and the last equations of (16), we have

� � � �

aN� � mS� � bI

S I
N� � bH

S H
N� ¼ 0
and

� � 0 �
ða� mÞN � mQ I � m H ¼ 0:
Which concludes that
� � � � �
f1ðs ; e ; i ;h ; r Þ ¼ 0:
Similarly, we obtained,
� � � � �
fiðs ; e ; i ;h ; r Þ ¼ 0 for i ¼ 2;/;5;
and conclude that

� � � � �
f ðs ; e ; i ;h ; r Þ ¼ 0

� � � � �
�

S� E� I� H� R�
�

Thus ðs ; e ; i ;h ; r Þ ¼ N�;N�;N�;N�;N� is an equilibrium of system (2). In addition, it is
clear that ðs�; e�; i�;h�; r�Þ2S.

ii) To find the endemic equilibrium point of system (2), we solve the following equations
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� � bIS
�I� bHS

�H�

aN � mS �

N� �
N� ¼ 0;

bIS
�I�

N� þ bHS
�H�

N� � ðmþ sÞE� ¼ 0;

sE� � �mH þ mQ þ mþ mR
�
I� ¼ 0;

mHI
� � ðm0 þ mþ m0RÞH� ¼ 0;

mRI
� � mR� þ m0RH� ¼ 0:

(17)
From the third and fourth equations of the system (17), we have

m þ m þ mþ m

E� ¼ H Q R

s
I�;

H� ¼ mH
m0 þ mþ m0R

I�:
(18)

� �
Next, we replace E and H in the second equation of the system (17) and we get

� � �

S
N� ¼

ðmþ sÞ mH þ mQ þ mþ mR

s
�
bI þ bH

mH
m0þmþm0

R

� ¼ 1
R 1

0

:

�
Now, we sum up the first and second equations of the system (17) and we divide on N to get
� �
E

N� ¼
a

mþ s
� m

mþ s

S
N�:
Using equation (18) and the following notations
R � ¼ a

m
� 1

R 1
0

;

c ¼ mH þ mQ þ mR þ m;

d ¼ m0 þ m0R þ m;

K ¼ cðmþ sÞ
ms

;

we obtain

8 �
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

S
N� ¼

1

R 1
0

E�

N� ¼
m

mþ s

 
a

m
� 1

R 1
0

!
¼ m

mþ s
R �

I�

N� ¼
1
K

 
a

m
� 1

R 1
0

!
¼ 1

K
R �

H�

N� ¼
mH

Kðm0 þ mþ m0RÞ

 
a

m
� 1

R 1
0

!
¼ mH

Kd
R �

(19)
Which concludes (15).
2. Since S�
N� ¼ 1

R 1
0
; then R 1

0 <1 implies that the system (2) has only a disease-free equilibrium.

Before proving the uniqueness of an endemic equilibrium point, we need to give the following results (Smith, 2008):For an
autonomous system of ordinary differential equations
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_x ¼ f ðxÞ (20)
Definition 1. f is said to be of type K in D if for each i; fiðaÞ � fiðbÞ for any two points a and b in D satisfying a � b and ai ¼ bi:

Hence, if x0; y02D such that x0 < y0; t >0 then xðt; x0Þ � yðt; y0Þ for t � 0. Moreover, if D is a p-convex and vfi
vxj

ðxÞ � 0; isj, x2D,

then f is of type K in D.

Proposition 3. The endemic equilibrium point ðs�; e�; i�;h�; r�Þ of the system (2) is unique.

Proof By contradiction, let assume that E � ¼ ðs�; e�; i�;h�; r�Þ and E 1 ¼ ðs1; e1; i1;h1; r1Þ be the two endemic equilibrium
points such that E �sE 1 and in particular, i� > i1: Let P1 ¼ ðs�; e�; i1;h�; r�Þ; then E � > P1. Since the system in (2) is cooper-
ative, f is type K, where f ¼ ðf1;/; f5Þ and fi represents the right-hand side of the system in (2) such that _s ¼ f1; /; _r ¼ f5:
Hence

f1ðE �Þ � f1ðP1Þ: (21)

�
On the other hand, by substituting E and P1 in f1 of (2), we find that

i�
�
mQ � bI

� � i1
�
mQ � bI

�
:

Since bI >mQ then i� � i1, which contradicts to i� > i1. By the same token, when we suppose that i� < i1 we will find that
i� � i1, which contradicts i� < i1: Thus, i� ¼ i1.

Suppose h� > h1 and let P2 ¼ ðs�;e�; i�;h1; r�Þ, then E � >P2. Using the fact that f1ðE �Þ � f1ðP2Þ for i ¼ 1;2, we have

h�ðm0 � bHÞ � h1ðm0 � bHÞ:
Since bH >m0, we have m0 � bH <0. Thus h� � h1 which contradicts h� >h1. If we assume h� <h1 using the same terminology,
we can find, h� � h1, again we deduce that h� ¼ h1.Since,

f3ðE �Þ ¼ f3ðE 1Þ ¼ 0

and we have i� ¼ i1 and h� ¼ h1, it is easy to see that e� ¼ e1.
Back to the first equation of (2),

f1ðE �Þ ¼ f1ðE 1Þ ¼ 0;

�
We have s ¼ s1.
Using the fact that, s� þ e� þ i� þ h� þ r� ¼ 1 ¼ s1 þ e1 þ i1 þ h1 þ r1, we conclude r� ¼ r1, and therefore E � ¼ E 1.

4. Global stability of equilibrium

In order to prove the global stability results, we first prove the following theorems.

Lemma 1. Let S be a convex subset of ℝnAssume that system (20) is cooperative and irreducible in S, and all solutions of (20) are
bounded in S.

(a) If there is one equilibrium, it attracts all solutions. So this unique equilibrium is globally asymptotically stable.
(b) Assume that there are two equilibria p and q not ordered and simple. Then if p is unstable, q attracts all solutions. So, ðcx2

DÞ yðt;xÞ /
t/∞

q

The Proof of this result is in the Appendix.
Using the fact that the system (2) is cooperative and irreducible on the set S which is convex and positively invariant set,

we first prove the global stability of Ef as follows.
In the next result, we give sufficient conditions that allow all solutions to converge to the disease free equilibrium or the

disease endemic equilibrium. For this purpose, we use the following definition:

Definition 2. An equilibrium X� is called simple if 0;SpecðJ ðX�ÞÞ with J is the Jacobian matrix.

Proposition 4. i) If c2
mQ

< sða�mÞ
sþm , then EDEE is a simple equilibrium. ii)The disease free equilibrium Ef is a simple equilibrium.

Proof i) In order to show that EDEE is a simple equilibrium, we need to show 0;SpecðJ ðEDEEÞÞ, which is equivalent to
showing that detðJ ðEDEEÞÞs0: The Jacobian matrix of the system (2) at EDEE is given by:
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J ðEDEEÞ≡J ¼

0
BBBBBBBBBBBBBBBBBB@

�aR 1
0 0

��bI � mQ
�

R 1
0

�ðbH � m0Þ
R 1

0

�
aR 1

0 � m
�

�ðsþ mÞ bI

R 1
0

þ mQm

mþ s
R � bH

R 1
0

þ m0m
mþ s

R �

0 s �cþ mQ
K
R � m0

K
R �

0 0 mH þ mQmH
Kd

R � �dþ m0mH
Kd

R �

1
CCCCCCCCCCCCCCCCCCA

:

Using the elementary row operation, we get
J ¼

0
BBBBBBBBBBBBBBBB@

aR 1
0 � m �ðsþ mÞ bI

R 1
0

þ mQm

mþ s
R � bH

R 1
0

þ m0m
mþ s

R �

0 s �cþ mQ
K
R � m0

K
R �

0 0 mH þ mQmH
Kd

R � �dþ m0mH
Kd

R �

0 0 0 E

1
CCCCCCCCCCCCCCCCA

:

With

E ¼
�
mH þ mQmH

Kd
R �
�
Dþ C

�
d� m0mH

Kd
R �
�
;

and
C ¼ sAþ aðsþ mÞR 1
0

�
� cþ mQ

K
R �
�

and D ¼ sBþ aðsþ mÞR 1
0

�
m0

K
R �
�
>0;

and
A ¼ mmQR
� þ mbI

R 1
0

þ amQm

sþ m
R 1

0R
� >0 and B ¼ mm0R � þ mbH

R 1
0

þ am0m
sþ m

R 1
0R

� >0:

� 1 � mQ � � mH � 0
Using the fact that i ¼ KR <1 and mQ < c, we can easily show that K R < c. Similarly, since h ¼ KdR <1 and m < d, we

have �dþ m0mH
Kd R � <0: On the other hand

detðJ Þ ¼ s
�
aR 1

0 � m
��

mH þ mQmH
Kd

R �
�
E:
Hence, to show that detðJ Þ>0 is equivalent to showing that E>0. By the form of E it suffices to show that C >0. We have,

C ¼ sAþ aðsþ mÞR 1
0

�
� cþ mQ

K
R �
�

¼ smmQR
� þ smbI

R 1
0

þ aR 1
0

cðsþ mÞ gðR
�Þ:

� 	

With g is a function defined on I ¼ a

m � 1; am by

gðxÞ ¼ smmQ ðcþ sþ mÞx� c2ðsþ mÞ2:
It's obvious that g is an increasing function on I and
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g
�
a

m
� 1

�
¼ csmQ ða� mÞ þ ðsþ mÞ

�
asmQ � smmQ � c2ðsþ mÞ

�
:

� �

Since a� m>0 and c2

mQ
< sða�mÞ

sþm , then g a
m� 1 >0, which gives ðcx2IÞ gðxÞ>0. Thus C >0, and which implies E>0.

Therefore, detðJ Þ>0, which conclude that EDEE is a simple equilibrium of system (2).
ii) We can remark from the Proof of Theorem 3 i) that if R 0s1, then p3s0 and consequently 0;SpecðJ Ef Þ.

Remark 1. It is easy to notice that the condition c2
mQ

< sða�mÞ
sþm can be written as

�
s

sþ m

� 
a� m

mH þ mQ þ mR þ m

! 
mQ

mH þ mQ þ mR þ m

!
>1:
Clearly, this can not be true except if the birth rate a is significantly large.

Theorem 4. a) IfR 1
0 <1, the disease free equilibrium Ef is globally asymptotically stable in S. b) IfR 1

0 >1 and c2
mQ

< sða�mÞ
sþm , there are

two cases:

i) R 0 <1<R 1
0, then the disease free equilibrium Ef is globally asymptotically stable, and the disease endemic equilibrium

EDEE is unstable.
ii) 1<R 0 <R 1

0, then the disease free equilibrium Ef is unstable, and the disease endemic equilibrium EDEE is globally
asymptotically stable.

Proof a) IfR 1
0 <1, thenR 0 <1. Hence, the set of equilibrium consists of one point Ef which is locally asymptotically stable.

Moreover, from lemma 1 (a), all solutions with initial value in S converge to Ef . Therefore Ef is globally asymptotically stable in
S.

b) To prove b), we will use Definition 2 and Proposition 4, recall that R 0 <R 1
0. Suppose R 1

0 >1, there are two cases:

i) If R 0 <1<R 1
0, the two equilibrium points Ef and EDEE exists. We have R 0 <1 then the disease free equilibrium Ef is

globally asymptotically stable. Since system (2) is cooperative and irreducible and equilibriums are simple then the disease
endemic equilibrium EDEE is unstable.

ii) If 1<R 0 <R 1
0, then from Theorem 2 the disease free equilibrium Ef is unstable, and then from Proposition 4, EDEE is stable.
5. Numerical simulation

In this section, we present the numerical simulations of our findings using parameters which are taken from the 2014West
Africa Ebola Outbreak (Rivers, Lofgren, Marathe, Stephen, & Lewis, 2014) (see Table 2). The parameters were fit to the data of
the outbreak of Liberia and Sierra Leone as follows.

With a ¼ :01, the basic infection reproduction number in Liberia isR 0 ¼ 0:5236159 and in Sierra LeoneR 0 ¼ 0:5256533.
By using Theorem 4, we deduce that Ef is globally asymptotically stable. Numerical simulation illustrates our results see Fig. 2.

By choosing the following set of parameters, a ¼ 0:25;bH ¼ 0:46;bI ¼ 0:75;s ¼ 0:85;mQ ¼ 0:15;m
0 ¼ 0:25;mH ¼ 0:01;mR ¼

0:006;m
0
R ¼ 0:005; and m ¼ 0:007. We have R 0 ¼ 1:4 and c2

mQ
< sða�mÞ

sþm , we get the time series presented in Fig. 3.

With this set of data and by taking the initial condition ðsð0Þ;eð0Þ;ið0Þ;hð0Þ;rð0ÞÞ ¼ ð0:2;0:2;0:2;0:2;0:2Þ, it is clearly shown
that the disease persists. In fact, the hospitalized and recovered people are below 1% (hospitalized 0:7% and recovered 0:96%).
Table 2
The parameters values obtained from fitting the epidemic model (Rivers et al., 2014) to the data of the Ebola in Liberia
and Sierra Leone, 2014

Parameter Liberia Fitted Values Sierra Leone Fitted Values

bI 0.160 0.128
bH 0.062 0.080
1=s 12 days 10 days
1=mH 3.24 days 4.12 days
mR 1=15 1=20
m0R 1=15:88 1=15:88
mQ 1=13 1=10:38
m0 1=10:07 1=6:26



Fig. 2. The time series of the model 2 using the parameters of the fitted data from Liberia and Sierra Leone in Table 2.

Fig. 3. The time series of the model 2 using the parameters that give R 0 >1 and convergence to the disease equilibrium.
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The exposed people reach 13:68%, the susceptible population does not exceed 46:25%, while the infected people reach almost
one third of the population 31:73%. We should also notice that the disease equilibrium is reached faster compared to the
disease free equilibrium.

6. Conclusion an discussion

The Ebola Virus Disease (EVD) is one the most devastating virus the infected the African continent in recent years. As the
threat of this diseases reminds, it important to have a clear understanding of the dynamic of the disease.

In this work, we presented a mathematical model of the spread of Ebola epidemic. The model is adapted from Legrand
et al. (Legrand et al., 2007), where the parameters of the model were estimated from the recent Ebola outbreak (2014e2015).
Using the monotone system theory in this work, is an alternative to the standard approach of analyzing the mathematical
models of epidemiological systems.

First, we proved that the proportion population model (2) is cooperative and irreducible on a positively invariant convex
set. Using the next generation population approach, we found the basic reproduction number R 0 of the population pro-
portions model. We notice that the basic reproduction number of the original model, R 1

0 was bigger R 0. To show the local
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stability of the disease-free equilibrium (DFE), we used the Routh-Hurwitz criterion, and for the DEE, we proved the
uniqueness via type K propriety and the fact that the system (2) is cooperative.

To prove the global stability of the DFE, we showed, in Lemma 1 (a), that if the system is cooperative, irreducible and all its
solutions are bounded, then the unique equilibrium is globally asymptotically stable. For the global stability of the disease-

endemic equilibrium (DEE), we found the condition c2
mQ

< sða�mÞ
sþm that made this equilibrium simple, and with the threshold

condition, R 0 >1, we ensured the global stability of DEE.
Our simulation was performed, using the most recent outbreak data, showed the global stability of the DFE. To illustrate

the global stability of DEE, we choose a set of parameters that verified the simple equilibrium condition and the threshold
condition.

As we mentioned in Remark 2, the condition c2
mQ

< sða�mÞ
sþm holds if the birth rate a is significantly large. In fact, the countries

that were affected by the Ebola outbreak are among the highest birth rate in the African continent, 4.52 births per woman in
Sierra Leone and 4.65 in Liberia (world bank data). This shows that although the basic reproduction number of the Ebola virus
was above one (Althaus, 2014) in the recent outbreak (for example Sierra Leone 2.53 and Liberia 1.59), the fact that these
countries have high birth rate has contributed to the outbreak. Moreover, the Ebola will continue to be a treat to these
countries if the virus gains ground in the future.

Acknowledgement

The authors would like to thank the referees for valuable comments and suggestions that help to improve the quality of
this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.idm.2018.09.004.

Appendix

To prove the Theorem 4 and 5, we need the following the results:

Theorem 5. (Hirsch & Smith, 2005) If I3X is a totally ordered arc, IyQ is at most countable

Theorem 6. Sequential Limit Set Trichotomy (Smith, 2008) Let x2D have the property that it can be approximated from below in
D by a sequence ~xn. Then there exists a sequence xn of ~xn such that xn < xnþ1 < x;n � 1, with xn/x satisfying one of the following.

(a) There exists u2E such that
uðxnÞ<uðxnþ1Þ<u ¼ uðxÞ; n � 1

lim distðuðxnÞ;uÞ ¼ 0.
and
n/∞

(b) There exists u2E such that
uðxnÞ ¼ u<uðxÞ; n � 1
If v2E and v<uðxÞ then v<u.

Lemma 2. (Hirsch, 1985) Let p be an u-colimit point x, y. Then p2E. If xðtÞ; yðtÞ converge to p as t/∞, then p is a trap.
Proof of lemma 1. (a): Let p be the unique equilibrium. If x2D, there exists a totally order line segment I3D and convergent

points u; v2I with u< x< v, by Theorem 5.

(c) uðxnÞ ¼ uðxÞ3E for n � 1

Therefore yðt;uÞ /
t/∞

p and yðt; vÞ /
t/∞

p, since the system is cooperative and irreducible then strongly monotone, so yðt;
xÞ /

t/∞
p.

If x2vD, there exists xn2D such that lim
n/þ∞

xn ¼ x.

xn2D0 lim
t/þ∞

yðt; xnÞ ¼ p; cn; by the first part of the Proof. Moreover lim
n/þ∞

�
lim

t/þ∞
yðt;xnÞ

�
¼ p:

By continuity,

https://doi.org/10.1016/j.idm.2018.09.004
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lim
n/þ∞

�
lim

t/þ∞
yðt; xnÞ

�
¼ lim

t/þ∞

�
lim

n/þ∞
yðt; xnÞ

�
¼ lim

t/þ∞
y
�
t; lim

n/þ∞
xn

�
¼ lim

t/þ∞
yðt; xÞ

We deduce that lim yðt; xÞ ¼ p for all x2vD.

t/þ∞

We conclude that for each x2S, yðt; xÞ converges to p.

Remark 2. It is well known that a sink is asymptotically stable and a simple trap is a sink.

Proof of Lemma 1 (b): Let x2S. By Theorem 6 (c), there exists a sequence ðxnÞn such that:xn < xnþ1 < x ðcn � 1Þ and
xn /

n/∞
x.

Since p and q are not ordered, we have necessarily:

uðxnÞ ¼ uðxnþ1Þ ¼ uðxÞ3E; ðcn � 1Þ:
So, uðxÞ ¼ p or uðxÞ ¼ q.
Suppose that uðxÞ ¼ a. We will prove that a ¼ q: In fact:
xn < x0yðtk; xnÞ< yðtk; xÞ by strongly monotone property and uðxÞ ¼ a0dtk/∞ such that yðtk; xÞ/a and yðtk;xnÞ/a:By

lemma (2) a is a simple trap. By Remark 2, a is asymptotically stable. Consequently a ¼ q:
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