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Abstract: Waldenström macroglobulinemia is an indolent, B-cell lymphoma without a known cure.
The bone marrow microenvironment and cytokines both play key roles in Waldenström macroglob-
ulinemia (WM) tumor progression. Only one FDA-approved drug exists for the treatment of WM,
Ibrutinib, but treatment plans involve a variety of drugs and inhibitors. This review explores avenues
of tumor progression and targeted drug therapy that have been investigated in WM and related
B-cell lymphomas.
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1. Introduction

Waldenström macroglobulinemia (WM) is a rare, indolent B-cell malignancy, character-
ized by the infiltration of plasma cells, plasmacytoid lymphocytes, and small lymphocytes
to the bone marrow [1–3]. The median age of diagnosis is 63–68 years old [4] and this
disease accounts for 1–2% of hematological neoplasms, with an age-adjusted incidence
rate of 3.4 per million among male and 1.7 per million among female populations in the
United States [4]. The World Health Organization defines WM as a lymphoplasmacytic
lymphoma (LPL) with an immunoglobulin M (IgM) paraprotein [2,5]. The most frequently
observed cytogenetic abnormality in WM is deletion of the long arm of chromosome 6
(6q). This deletion is correlated with poor prognostic features, such as higher levels of
beta2-microglobulin and a greater prevalence of hypoalbuminemia and anemia [4,6]. There
is no standard treatment for WM and treatment programs are variable. To date, no cure has
been discovered for WM [7], although allogeneic hematopoietic stem cell transplantation
(allo-HSCT) has become a cornerstone in the treatment of hematological malignancies such
as WM. Within allo-HSCT therapy, there is still a problem with disease relapse, and it is
associated with poor long-term survival [8]. Because most WM/LPL patients eventually
relapse, there is a need to balance the benefits of treatment and the side effects of that
treatment. Some patients with WM will relapse with the aggressive form of non-Hodgkin
lymphoma [9,10]. Approximately 75% of WM patients have symptoms at the time of
diagnosis and anemia is common, as WM cell growth in the bone marrow progresses [2].
Hyperviscosity syndrome, caused by abnormal IgM secretion and accumulation in the
blood, occurs in 10–30% of patients and may be life-threatening [2].

Discriminating WM from chronic lymphocytic leukemia (CLL), mantle cell lymphoma
(MCL), and follicular lymphoma involves noting the presence of CD19, CD20, CD22,
CD79α, and CD138 cell expression and lack of CD5, CD10, and CD23. The expression of
CD5, CD10, and CD23 may be found in 10–20% of lymphoma cases and does not exclude the
diagnosis of WM. WM has to be separated from the CD5+ lymphoplasmocytoid lymphoma
as these cases are B-CLL variants. A diagnosis of WM requires the differentiation from IgM
myeloma, which is a rare disease presenting as a homogenous plasma cell population in
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the bone marrow, characterized by symptomatic clonal plasma cell proliferation, 10% or
more plasma cells on bone marrow biopsy, plus the presence of lytic bone lesions and/or
IGH-translocations 4p16, 6p21, 11q13, 16q23, and 20q11 [11].

WM has an associated precursor disease, monoclonal gammopathy of undetermined
significance (MGUS) of IgM type. IgM MGUS is defined by a serum concentration of 3 g/dL
or less of IgM paraprotein, the absence of proliferation of plasma cells, and a population of
10% or less of bone marrow plasma cells. MGUS can progress to WM, and typically does
so at a rate of 1% per year, indicating the importance of understanding IgM MGUS. Several
prognostic markers indicating the risk of disease progression have been proposed. Due to
the relatedness of these two diseases, it can be clinically difficult to distinguish these two
diseases. One proposed marker has shown some success in distinguishing between MGUS
and WM, the presence of a deletion of the long arm of chromosome 6 (6q), as no patients
IgM MGUS patients with a 6q-deletion have been documented [11].

2. Genetic Abnormalities

Deletion of the 6q chromosome appears to be the most common abnormality in WM,
occurring in up to 50% of patients [12]. A study in 2006 showed that patients with the
deletion of 6q required treatment more frequently and displayed a shorter treatment-free
survival, compared with patients without the deletion [6]. The survival analysis, however,
showed that there was no significant difference between the 6q deletion group and the
non-deletion group in terms of median survival [6]. Another study, conducted in 2013,
investigated different chromosomal aberrations. The main aberrations were 6q deletions
(30%), trisomy 18 (15%), 13q deletions (13%), 17p (TP53) deletions (8%), trisomy 4 (8%),
and 11q (ATM) deletions (7%) [13]. Deletion of 6q, 11q, and trisomy 4 was associated with
poor clinical and biological parameters but was not associated with a decreased survival
rate [13]. TP53 deletions have an increased correlation with poor clinical outcomes, as
patients with this deletion had a short progression-free survival and short disease-free
survival [13]. Copy number changes were identified in nearly 80% of WM cases, notably
the inactivation of TNFAIP3 and TRAF3, which are genes involved in the regulation of the
NF-kB signaling pathway [12].

More recently, whole-genome sequencing of 30 patients with WM was performed
and the MYD88L265P somatic variant was identified in all patients with positive family
history and 86% of sporadic cases [4]. Most notably, the presence of the MYD88L265P

somatic variant is rare in patients with MGUS, multiple myeloma, splenic zone marginal
lymphoma, and healthy patients, allowing it to serve as a differential factor in diagnosis [4].

3. Tumor Microenvironment

The tumor microenvironment has recently become an emerging area of research, with
a growing number of studies looking at the tumor microenvironment in not only WM but
in other cancers as well. Homing to the bone marrow is a key characteristic of WM and
the mechanisms by which WM cells home to the bone marrow have been investigated.
Stromal-derived factor-1 (SDF-1), a chemokine responsible for in vitro migration of WM
cells, is found highly expressed in the bone marrow of WM patients [14].

The bone marrow is made up of a collection of immune and non-immune cells,
including T-cells, B-cells, macrophages, myeloid-derived suppressor cells, mast cells, mes-
enchymal stem cells, osteoclasts, osteoblasts, natural killer cells, and dendritic cells [15]
(Figure 1). While the full function and mechanism of these cells in the progression of WM
have not been described, some efforts have been made to quantify the importance of these
cells in WM prognosis. Recently, reports on the role of mast cells, T-cells, monocytes, and en-
dothelial cells in WM have been published. Mast cell hyperplasia is a characteristic of WM.
It has been previously demonstrated that mast cells in the bone marrow of WM patients
induce the proliferation of malignant B cells through CD40L and CD40 interactions [16].
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T-cells have also been examined in WM and the expression of PD-1 and the ligands
PD-L1 and PD-L2 have been characterized. PD-L1 and PD-L2 gene expression was induced
by IL-21, interferon-γ, and IL-6 expression in WM cell lines and patient bone marrow cells.
Increased expression of PD-L1 and PD-L2 in the bone marrow of WM patients increased
the proliferation of malignant B cells and reduced T-cell proliferation [17].

Bone marrow stromal cells (BMSC) are a heterogenous population that have been
shown to play an important role in normal and malignant cell biology [18]. Mesenchymal
stem cells (MSCs) serve as the progenitor for most bone marrow stromal cell populations,
including osteoblasts, chondrocytes, fibroblasts, endothelial cells, and myocytes [18]. In
WM, BMSCs have been shown to regulate the proliferation of tumor cells while contributing
to increased drug therapy resistance [19].

Endothelial cells have been shown to increase WM cell adhesion and proliferation
through the Ephrin receptor B2 (Eph-B2), which is found upregulated in WM cells [20]. The
Eph-B2 receptor was found to be activated in WM patients compared with healthy samples.
Endothelial cells in the bone marrow express high levels of Ephrin-B2 ligand. Blocking of
either Ephrin-B2 or Eph-B2 inhibited the increased adhesion and proliferation caused by
the endothelial-WM cell interaction [20].

4. Mechanisms of Disease Progression
4.1. Proliferation

IL-21 is a type I cytokine commonly found in the WM tumor microenvironment
that rapidly induces the phosphorylation of STAT3 in WM cells (Figure 2) [21]. MWCL-1
cells cultured in the presence of IL-21 for 72 h in vitro demonstrated a dose-dependent
increase in both WM cell proliferation and phosphorylated STAT3 levels in those cells [21].
Additionally, in MWCL-1 cells, 10 min of stimulation with IL-21 displayed a significant
increase in the phosphorylation of STAT3 [21]. Treatment with a STAT3 inhibitor eliminated
the IL-21-mediated increase in proliferation [21].
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Fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR family that
interacts with fibroblast growth factor 3 (FGF3), inducing a cascade of downstream signals
that influence cell proliferation. This is well documented in many types of cancer, including
tongue, colorectal, breast, bladder, and oral cancers [22–27]. In WM, the expression of
FGFR3 on CD19+ cells from WM patients was greater than the expression on B cells
from healthy subjects, and FGFR3 was also overexpressed in the cell lines BCWM.1 and
MEC-1 [28].

In cancer, overexpression of the Akt and mTOR pathways play an important role in the
progression of malignancies through the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian
target of rapamycin (mTOR) pathway. This pathway can enhance cell survival by inhibiting
cell death and stimulating cell proliferation [29,30]. The activation of this pathway ulti-
mately leads to growth, angiogenesis, resistance to apoptosis, and therapy resistance [31,32].
In WM, constitutive activation of the PI3K/Akt pathway exists and leads to increased cell
proliferation and resistance to apoptosis [33]. Phosphatases and tensin homolog (PTEN) are
haploinsufficient tumor suppressors; therefore, partial loss-of-function mutations can have
a dramatic effect on cancer progression. PTEN acts to deactivate the PI3K/Akt/mTOR
pathways, therefore loss-of-function can lead to constitutive activation. Studies in mouse
models have shown that even a small reduction in PTEN expression can significantly
increase cancer risk [34,35]. Unfortunately, PTEN loss-of-function mutations are frequent in
human cancers, leading to the perpetual activation of AKT. Furthermore, the role of PTEN
in WM has not been reported.

IL-6 plays an important role in normal B cell proliferation and maturation and in
B-cell malignancies including diffuse large B-cell lymphoma [36], Hodgkin lymphoma [37],
and multiple myeloma [38], where it has been shown to regulate the growth of malignant
cells. Previous studies have shown that serum IL-6 levels are increased in patients with
WM compared to healthy patients [39]. IL-6 has shown a significant upregulation of IgM
secretion by WM cells through the CCL5-IL-6-IgM axis in the TME [40,41]. CCL5 signaling
has been shown to induce the expression of the transcription factor GLI2 through the PI3K-
AKT-IκB-p65 pathway. GLI2 is required to modulate IL-6 expression in vitro and in vivo
through this pathway [40]. Targeting the IL-6 receptor with Tocilizumab to block IL-6
effects on WM tumor cells was shown to reduce IgM levels and deter tumor growth in WM,
while not inducing toxicity [42]. This suggests that blocking IL-6 may provide therapeutic
efficacy in WM. Despite this, targeting IL-6 in WM patients has not been investigated.

The role of bone marrow stromal cells has been extensively studied in WM and are
attributed to the growth of WM cells [33,43–45]. Ephrin-B2 was demonstrated to be highly
expressed on endothelial cells from the bone marrow of patients with WM compared with
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healthy controls [20] and activation of the Eph-B2 receptor did not directly increase the
proliferation of WM cells, but it increased the adhesion of WM cells to endothelial cells,
promoting WM cell proliferation [45]. This increase in WM cell proliferation is dependent
on downstream activation of focal adhesion kinase (FAK) and Src and inhibition of ephrin-
B2 on endothelial cells or inhibition of Eph-B2 on WM cells reduced the adhesion of WM
cells to endothelial cells, preventing the proliferative induction from occurring [45].

B-lymphocyte stimulator (BLyS) is a TNF family member expressed by dendritic
cells, neutrophils, monocytes, and macrophages and has been shown to be necessary for
normal B-cell development. BLyS binds to the receptors B-cell-activating factor of the TNF
family receptor (BAFF-R), transmembrane activator and CAML interactor (TACI), and
B-cell maturation antigen (BCMA) in WM patients. Expression of BLyS in WM patient bone
marrow and elevated serum BLyS levels have also been noted, as well as upregulated IgM
secretion upon BLyS addition. In vitro, BLyS was shown to enhance the proliferation and
survival of WM cells [46].

Bone marrow mast cells are commonly associated with malignant cells in patients with
WM. CD40 ligand (CD40L/CD154) is an inducer of B-cell proliferation and is expressed
on malignant cell-associated mast cells in 94% of WM patients, in contrast with 0% of
healthy patient mast cell samples. It was found that the co-culture of mast cells and
lymphoplasmacytic cells (LPC) induced LPC proliferation and tumor colony formation [16].
Increased Erk phosphorylation and cell growth in malignant B-cells co-cultured with
CD40L-expressing stromal cells have also been reported. GLI2 induced increased CD40L
expression and GLI2 knockdown decreased CD40L expression. GLI2 has been shown to
directly bind to and regulate the activity of the CD40L promoter [47].

4.2. Survival

Myeloid differentiation factor 88 (MYD88) L265P somatic mutation is present in 91% of
WM/LPL patients, per whole genome sequencing results [48,49]. The presence of MYD88
L265P has also been reported in IgM MGUS [50], mucosa-associated lymphoid tissue
lymphoma (9%) [51], and diffuse large B-cell lymphoma [52]. Inhibiting MYD88/IRAK
signaling induced apoptosis of MYD88 L265P-expressing WM cells by blocking MYD88
homodimerization, an essential process for IRAK1 and IRAK4 signaling (Figure 2). This
treatment induced significant apoptosis in BCWM.1, MWCL-1 cell lines as well as primary
WM patient cells. Induction of apoptosis did not occur without the MYD88 L265P muta-
tion [48]. Due to the activation of NF-kB, increased anti-apoptotic Bcl-xL expression has
been observed in both MYD88 L265P and MYD88 L265RPP mutations, promoting increased
survival of malignant cells [53].

4.3. Angiogenesis

Angiogenesis plays an essential role in wound healing and bone repair and regen-
eration. This process forms new blood vessels from existing ones, which allow the body
to re-establish normal blood flow and oxygen/nutrient/growth factor delivery to the
injured or proliferating area [54–57]. In cancer, tumor cells can develop an angiogenic
phenotype through the upregulated pro-angiogenic or downregulated anti-angiogenic
pathways [58,59]. This causes endothelial cells to enter a rapid growth phase, forming
new blood vessels, and providing nutrients, oxygen, and growth factors to the tumor
cells [60]. This process is often rushed in cancer and endothelial cells do not have the time
to form perfect blood vessels, leading to leaky, disorganized blood vessels [61,62]. This is an
essential step of disease progression and serves to initiate the process of metastasis in many
types of cancer [15,61]. VEGF is a well-established growth factor, known for its role in both
physiological and pathological angiogenesis. VEGF-A is the main member of the VEGF
family and plays a key role in promoting angiogenesis during embryonic development and
tissue repair under physiological conditions (Figure 2) [57]. In cancer, VEGF-A production
from tumor cells results in an angiogenic switch, leading way to vasculature growth and
as a result, tumor growth and metastasis [57]. As the tumor mass increases, the oxygen
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availability of decreased and hypoxia occurs, leading to the release of proangiogenic factors
such as VEGF-A [57]. Angiopoietin-1 (Ang-1) and its antagonist, angiopoietin-2 (Ang-2)
serve as the ligands for receptor tyrosine kinase Tie-2 and play a critical role in angiogenesis
in both physiological and malignant conditions [63]. Fibroblast growth factors (FGF) are a
family of heparin-binding growth factors. Basic FGF (bFGF) interacts with endothelial cell
surface receptors and has pro-angiogenic activity [64]. The crosstalk between bFGF, VEGF,
and other inflammatory cytokines plays an important role in mediating angiogenesis in the
tumor microenvironment.

In WM, the bone marrow microvessel density is only elevated in 30-40% of patients [65].
In a study of 56 patients with WM, it was reported that increased levels of angiogenin,
vascular endothelial growth factor (VEGF), vascular endothelial growth factor A (VEGFA),
and basic fibroblast growth factor in sera of patients, compared with healthy controls [66].
A lower level of the angiogenesis antagonist, angiopoetin-1 (Ang-1), was also reported in
WM sera versus healthy controls [66].

4.4. Hypoxia

Hypoxia plays an important role in the progression of many malignancies and ac-
tivated hypoxia pathways are strongly associated with adverse prognosis in cancer [15].
Tumor hypoxia in multiple myeloma activates HIF1α, which promotes cell survival, motil-
ity, invasiveness, drug resistance, and neoangiogenesis [67,68] and is associated with a more
aggressive tumor [69]. In multiple myeloma, the egress of bone multiple myeloma cells
from the bone marrow into the circulation and into new niches was also demonstrated [70].

In a study demonstrating hypoxia in WM cells, the WM cell line, BCWM.1, was
genetically engineered to express luciferase and mCherry fluorescent protein. The cells
were injected into SCID mice via the tail vein and allowed to grow for 3 weeks to establish
tumor burdens in the bone marrow of the mice [69]. This growth in the bone marrow was
confirmed by flow cytometry. The mean fluorescent intensity (MFI) of hypoxia marker
pimonidazole hydrochloride signal was analyzed and a direct correlation between the
tumor burden in the bone marrow and hypoxia in the WM cells was found. Other cells
in the bone marrow were tested for hypoxic signs as well and found that the mCherry-
negative population was less hypoxic than the WM cells, but still showed hypoxic signs,
and hypoxic signs were more greatly shown at higher tumor burdens [69]. In addition,
the effect of tumor hypoxia on the egress of WM cells from the bone marrow was tested
and a direct linear correlation between the hypoxia in the bone marrow and the number of
circulating WM cells was found [69]. This indicated that the mechanism of WM cell entry
into circulation is regulated by hypoxia.

Hypoxia also plays a major role in regulating WM cell proliferation. BCWM.1 and
MWCL.1 WM cell lines were exposed to normoxic and hypoxic conditions for 24 h in vitro
and found that after 24 h of normoxia, the BCWM.1 and MWCL.1 cells had nearly doubled,
and the hypoxic cells only increased by 1.3-fold [69]. This suggests that hypoxic conditions
do not promote WM cell growth but play a role in other aspects of WM biology.

4.5. Epithelial–Mesenchymal Transition

The epithelial–mesenchymal transition (EMT) describes a process in which epithelial
cells lose their epithelial characteristics and gain a mesenchymal phenotype [71]. This pro-
cess can lead to increased invasiveness of the cancer cells, leading to overall metastasis [72].
This process allows cancer cells to leave the primary tissue site, enter the bloodstream, and
infiltrate other tissues [15].

In a study of WM cells and hypoxia, EMT markers E-cadherin, CXCR4, and VLA-
4 were assessed via flow cytometry to determine the effect of hypoxia on EMT in WM.
BCWM.1 cells were exposed to either normoxic or hypoxic conditions for 24 h, then
analyzed for expression of EMT markers by flow cytometry [69].

The adhesion ability of WM cells to bone marrow stromal cells and to each other
was assessed in vitro and incubation of BCWM.1 or MWCL.1 cells in hypoxic conditions
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reduced their adhesion to a bone marrow stromal cell monolayer by 50% and 25%. This
decrease in adhesion was linked to reduced expression of the epithelial marker E-cadherin
in WM cells [69].

4.6. Tumor Spreading and Tissue Infiltration

Ephrin receptors (Eph) represent the largest family of receptor tyrosine kinases (RTK)
and are divided into 2 classes: Eph-A and Eph-B, depending on their affinity to ligands
ephrin-A and ephrin-B, and they play a critical role in embryogenesis by positioning cells
and modulating cell morphology [73–75]. As these receptors are not typically found in
adult tissue, the presence of EphA1/A2 and ephrin-A1 has been correlated with tumor
malignancy and prognosis. The role of these receptors in cancer is still unknown, as
they have been found over-expressed in some cancers, but downregulated in others. For
example, higher ephrin-A1 expression in liver and colorectal cancer is associated with a
worse prognosis [76,77], but in stage I non-small cell lung cancer patients, higher expression
levels of EphA2 and ephrin-A1 improved their prognosis [78]. In WM patient samples,
the Eph-B2 receptor was found to be overexpressed in WM cells. Inhibition of ephrin-B2
on endothelial cells led to decreased adhesion of WM cells to endothelial cells, therefore
decreasing proliferation, cell-cycle progression, and tumor progression in WM cells [20]. In
a study looking at the effect of Eph-B2 in WM cells, it was found that inhibition of Eph-B2
on WM cells reduced bone marrow infiltration by WM cells [45].

4.7. Disease Progression Complications

Bing–Neel syndrome (BNS) is a rare complication of WM. Two types of BNS exist,
diffuse and tumoral form. In diffuse form, malignant cells are found in the leptomeningeal
space, periventricular white matter, or the spinal cord. The tumoral form is characterized
by an intraparenchymal mass or nodular lesion [79]. BNS is rare, with only 1% of patients
showing BNS during the disease progression. The treatment of BNS requires drugs with
successful infiltration into the central nervous system, such as fludarabine, methotrexate,
and cytarabine. Ibrutinib has shown some CNS-penetrating properties and may have a
therapeutic role in treating BNS [80].

5. Proposed Therapies

There is no standard therapy for the treatment of WM [28] and only two FDA ap-
proved treatments, Ibrutinib and Zanubrutinib, exist [81]. Most treatments were originally
derived from other lymphoproliferative diseases such as multiple myeloma and chronic
lymphocytic leukemia [82].

Due to the crucial role of B cell receptor (BCR) signaling in B cell development and
pathogenesis of B cell malignancies, efforts to drug the BCR signaling pathway have been
extensively researched for the treatment of B cell malignancies [83]. Due to the criticality of
Bruton’s tyrosine kinase (BTK) in BCR signaling, BTK is an important therapeutic target and
as a result, several BTK inhibitors have been developed and have shown remarkable results
in treating other B cell malignancies, such as chronic lymphocytic leukemia (CLL) [84,85],
mantle cell lymphoma (MCL) [84], marginal zone lymphoma (MZL) [86], and Waldenström
macroglobulinemia (WM) [86].

5.1. BTK Therapy

Due to the abnormal B-cell receptor signaling in disease progression in WM, Bruton’s
Tyrosine Kinase inhibitors have proved successful in treating these malignancies [87].
BTK inhibitors work by blocking BTK activation, therefore inhibiting NF-κB and MAP
kinase activation, leading to reduced survivability and proliferation. In a 2015 study of
Ibrutinib in 63 symptomatic patients with WM who had at least one previous treatment
was conducted. Ibrutinib was administered orally (420 mg daily) until disease progression
or unacceptable toxic effects were observed. After Ibrutinib treatment, median serum
IgM levels decreased (3520 mg/dL to 880 mg/dL), median hemoglobin levels increased
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(10.5 g/dL to 13.8 mg/dL), and bone marrow involvement decreased (60% to 25%). The
overall response rate (ORR) was 90.5% and the major response rate (MRR) was 73.0%.
These rates were dependent on the mutational status of the patients, with the highest rates
among patients with MYD88 L265PCXCR4WT (100% overall response rate and 91.2% major
response rate). Patients with MYD88 L265PCXCR4WHIM experienced an ORR of 85.7% and
MRR of 61.9% and patients with MYD88 WTCXCR4WT status had an ORR of 71.4% and
MRR of 28.6% [3,88].

Zanubrutinib, a selective BTK inhibitor, was FDA approved in 2021 for the treat-
ment of WM. In a phase 1/2 study of patients with WM, either treatment naïve or re-
lapsed/refractory, the overall response rate was 95.9% at 36 months post-treatment initia-
tion [89]. In a randomized phase 3 trial of Zanubrutinib versus Ibrutinib in WM, patients
with MYD88 L265P disease were randomly assigned to treatment with Ibrutinib or Zanubru-
tinib. More patients in the Zanubrutinib group (28%) versus the Ibrutinib group (19%)
achieved a very good partial response, and side effects of BTKi therapy, including con-
tusion, diarrhea, edema, atrial fibrillation, and other adverse effects leading to treatment
discontinuation were lower in Zanubrutinib patients versus Ibrutinib [90].

Noting the mutational status of WM patients has proved to be critical in BTKi treat-
ment. In patients with MYD88 L265P mutation, favorable prognostic effects were noted. In
a study of 219 patients, patients with the MYD88 L265P mutation status led to favorable
overall survival in patients who received BTKi treatment. TP53 mutation was associated
with significantly poorer overall survival and progression-free survival in treated patients.
The CXCR4NS/MS mutation was associated with a significantly shorter time to treatment
and 93.3% of patients had an intermediate/high-risk International Prognostic Scoring
System for WM score [91].

As mutational status research continues to guide our clinical decision-making, it is
becoming easier for physicians to prescribe treatment regimens that will be most beneficial
for patients.

5.2. Anti-CD20 Therapy

Rituximab is a mouse anti-human CD20 monoclonal antibody used to treat low-grade
and follicular lymphoma, CLL, diffuse large B-cell lymphoma and WM [92]. Anti-CD20
therapy has shown effective due to the high presence of the CD20 antigen on malignant
B-cells, allowing for effective targeting and depletion of CD20+ malignant B-cells. The
most common clinical combination of rituximab and other drugs involves alkylating agents
such as cyclophosphamide or bendamustine, or the nucleoside analog, cladribine in WM.
Novel proteasome inhibitors, thalidomide, and everolimus have shown positive therapeutic
potential in WM, but mostly in combination with rituximab. Rituximab/chemotherapy is
one of the cornerstones in the treatment of relapsed patients with WM [4].

5.3. Combination Therapy

A study was completed in 2017 on the effects of combination treatment of Ibrutinib-
rituximab and the results were promising. One hundred fifty patients were randomly
assigned to receive either Ibrutinib-rituximab or placebo-rituximab. At 30 months post-
treatment, the progression-free survival rate for the Ibrutinib-rituximab group was 82%,
versus 28% with placebo-rituximab. These results were also independent of the MYD88
or CXCR4 genotypes. The rate of major response was also significant, with 73% in the
Ibrutinib-rituximab group experiencing this, versus only 41% in the placebo-rituximab
group [10]. Additionally, the median IgM level declined more rapidly and significantly;
after only 4 weeks of treatment, the median IgM level was reduced from the baseline
by 56% in the Ibrutinib-rituximab group, compared to an increase of 6% in the placebo-
rituximab group. In a five-year follow-up of this study, the Ibrutinib–rituximab combination
remained the superior treatment option over placebo-rituximab in both treatment-naïve
and previously treated patients, regardless of genomic factors [93].
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In a randomized trial with 64 patients, R-CHOP (rituximab, cyclophosphamide, dox-
orubicin, vincristine, prednisone) was a well-tolerated and effective first-line treatment for
WM [94]. In this study, R-CHOP was compared to CHOP treatment and R-CHOP patients
had a significantly higher overall response rate (94% vs. 67%) in the LPL patients and in the
WM subgroup (91% vs. 60%). R-CHOP also induced a significantly longer time to treatment
failure than CHOP (63 months vs. 22 months) [94]. This study was also conducted by
the Eastern Cooperative Oncology Group trial and showed that 91% of R-CHOP patients
achieved a median partial response (PR) of 1.6 months, with a median follow-up time of
18.3 months. These studies indicated that rituximab with CHOP is highly effective and
well-tolerable in some patients. Medically fit patients can generally tolerate R-CHOP well,
but in many patients, R-CHOP is too toxic because of the myelosuppressive effects [4].

In attempts to minimize the toxicity of R-CHOP treatment, different treatment com-
binations were assessed. The outcomes of symptomatic patients with WM who received
R-CHOP with CVP-R (cyclophosphamide/vincristine/prednisone/rituximab), or CP-R
(cyclophosphamide/prednisone/rituximab) were studied. The baseline characteristics
were the same for all three cohorts; age, previous therapies, bone marrow involvement,
hematocrit, platelet count, and serum B2-microglobulin were all similar. Serum IgM levels
were higher in patients treated with R-CHOP, however. The overall response rates and
complete response rates were as follows: R-CHOP (96% and 17%), CVP-R (88% and 12%),
and CP-R (95% and 0%). CP-R was the safest treatment, with adverse reactions the least
common [95].

In a study of Dexamethasone followed by rituximab intravenously on day 1 and
cyclophosphamide on days 1–5 (DRC), this was found to be highly effective in a phase II
trial in 72 previously untreated patients with symptomatic WM. The overall response rate
was 96%, and the major response rate was 87%. DRC is a promising chemotherapeutic
regimen, due to the low comparative cost of DRC treatment, versus other therapeutic
combinations [96,97].

The combination of subcutaneous cladribine with rituximab was investigated in
patients who were either treated or untreated previously. Rituximab was administered on
day 1, followed by subcutaneous cladribine for 5 consecutive days, administered monthly
for four cycles. The median follow-up was 43 months, and the overall response rate was
89.6%, with 7 complete responses, 16 partial responses, and 3 minor responses [98].

Bendamustine plus rituximab (BR) therapy has become increasingly popular as a
treatment for WM and other B-cell lymphomas. In a study of BR on WM, after a median
follow-up of 23 months, disease progression was present in six patients, but overall survival
and progression-free survival were 97.1% and 87%, respectively. The presence of MYD88
and CXCR4 mutations did not impact survival in the BR treatment group, indicating
positive results for this treatment option [99].

5.4. Novel Therapies

The management of WM has advanced tremendously with recent genomic findings
that can help guide treatment approaches [93]. The current diagnosis of WM requires bone
marrow infiltration by lymphoplasmacytic lymphoma cells, increased IgM levels, and the
noted presence or absence of the MYD88 L265P mutation [100]. Bone marrow involvement
and serum levels of IgM, albumin, and β2-microglobulin are often used to guide proper
treatment initiation time [100].

Novel covalent and noncovalent BTK inhibitors, BCL2 antagonists, and CXCR4-
targeting agents are being developed and show promising futures for the treatment of WM.
BTK inhibitors are Tirabrutinib, Vecabrutinib, LOXO-305, and ARQ-531. The BCL2 antago-
nist is Venetoclax, and the CXCR4-targeting agents are Ulocuplumab and Mavorixafor.

Tirabrutinib is a second-generation Bruton’s tyrosine kinase inhibitor with greater
selectivity than Ibrutinib. In a phase II study of Tirabrutinib on patients with treatment-
naïve or relapsed/refractory WM, it was shown that Tirabrutinib monotherapy is a highly
effective therapy option for both untreated and relapsed/refractory WM patients [101].
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Vecabrutinib is a selective, reversible, and non-covalent BTK inhibitor that has been
studied in multiple B-cell malignancies [102]. A phase 1B study, conducted in 2019 on
twenty-one patients with CLL, two patients with MCL, three patients with WM, and one
patient with MZL showed promising results. No patients experienced serious adverse
events from Vecabrutinib treatment, and all patients showed improvement in symptoms
and decreased tumor burden [102].

5.4.1. PI3K Inhibitors

Due to the commonality of WM patients with mutations in MYD88 or CXCR4, which
activate downstream PI3K signaling [103], the PI3K/Akt signaling pathway is a promis-
ing target for WM treatment. Idelalisib is a potent inhibitor of the phosphatidylinositol
3-kinase isoform-delta (PI3Kδ). Idelalisib is a preferred treatment because of related bleed-
ing episodes in patients with B-lymphoproliferative disorders receiving Ibrutinib [104].
However, Idelalisib has been cited to play a role in significant adverse effects, including
hepatic and infectious effects [105,106]. Buparlisib (BKM120), a 2,6-dimorpholino pyrimi-
dine derivative, is a potent pan-class I PI3K inhibitor with 50-fold selectivity against other
protein kinases. Treating WM cells with buparlisib decreased the activation of signaling
proteins pAkt, pS6R, pP70S6K, and p-mTOR in a dose-dependent manner. Increasing
concentrations of buparlisib also induced apoptosis and significantly decreased the rate of
tumor progression [107]. A siRNA knockdown of the different isoforms of PI3K represents
the importance of PI3K inhibitors, where the survival rate of treated WM cells was 50% of
that of the control [108].

5.4.2. AKT Inhibitors

Perifosine is a novel Akt inhibitor belonging to a class of lipid-related alkylphospho-
lipids [108,109]. Perifosine inhibits proliferation and induction of apoptosis in WM cells
in vitro [110] and produces a significant reduction in WM tumor growth, demonstrated in
a subcutaneous murine xenograft model, through its inhibition of Akt phosphorylation
and downstream targets [110]. In vitro migration and adhesion and in vivo homing of
WM cells to the BM microenvironment are also reduced with Perifosine treatment [110].
One of the first phase II clinical trials studying Perifosine activity found that all patients
exhibited response, and the median time to progression and progression-free survival
was 12.6 months, longer than most other targeted agents in similar conditions. Perifosine
also reduced the expression of several genes involved in adhesion and migration, as well
as molecules important in the NF-κB pathway. The most common side effects included
gastrointestinal symptoms, fatigue, cytopenias, and flare of arthritis/joint effusions [47].

Growth receptor stimulation in the presence of Perifosine may lead to Phospholipase C
(PLC) and RTK activation [110], which induces PIP2 activation, leading to activation of PKC
and inducing growth stimulation. PKC is associated with the activation of downstream
RAF proto-oncogene serine/threonine-protein kinase (c-Raf) and Mitogen-activated protein
kinase (MAPK)/ERK. Inhibition of ERK or MAPK by U0126 in combination with Perifosine
leads to synergistic inhibition of growth and induction of cell death.

Bortezomib, an inhibitor of the ERK/MAPK pathway, and Perifosine, an Akt inhibitor
that induces activation of the ERK/MAPK pathway, were tested together in vitro. The
combination was able to inhibit the pathway activation of the other agent and led to a
decrease in both p-Akt and p-ERK activity. Perifosine and bortezomib significantly inhibit
the phosphorylation of downstream target proteins of Akt, phospho-S6 ribosomal protein,
and phospho-GSK-3α/β, in a dose-dependent manner. The combination of Perifosine and
bortezomib increased cytotoxicity from 31% for Perifosine alone to 59–69% in combination.
This significantly decreases the survival of WM cells [46].

In a phase II trial of Perifosine, the median progression-free survival was 12.6 months
and 54% of patients maintained stable disease. No patients achieved complete response,
but 35% of patients did exhibit at least a minimal response. In vivo inhibition of pGSK
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activity was noted, warranting further studies of perifosine in combination with other
therapeutics [47].

NVP-BEZ235 inhibits phosphorylation of Akt, GSK3α/β, and ribosomal protein S6 in
a dose-dependent manner. It also inhibits phosphorylation of mTOR, and its downstream
targets, p70S6 and 4EBP1. Apoptosis is induced through intrinsic and extrinsic apoptotic
pathways through the cleavage of PARP, caspase-3, caspase-8, and caspase-9. NVP-BEZ235
through targeting the PI3K/Akt signaling pathway exerts anti-tumor activity. NVP-BEZ235
also abrogates bone marrow-derived mesenchymal stem/stromal cell (BMSC) adhesion-
induced phosphorylation of Akt and mTOR. This indicates that NVP-BEZ235 can exert its
antitumor activity even when WM cells were in contact with the BM mitigating the pro-
tumorigenic adhesion effects. Specifically, NVP-BEZ235 inhibits phosphorylation of focal
adhesion kinase, paxillin, and cofilin, proteins that act as key regulators of adhesion and
cell migration. Treatment of WM cells with NVP-BEZ235 resulted in significant inhibition
of homing of WM cells to the BM at different time points after injection [35].

5.4.3. mTOR Inhibitors

Rapamycin and its analogs function as allosteric inhibitors of TORC1 and cause up
to 45% partial remission of WM in patients [111]. Abrogation of feedback circuits by
rapamycin results in increased phosphorylation of Akt, leading to enhanced survival
and chemoresistance [112–116]. However, these drugs only partially inhibit TORC2 in
most tumor cells, and often leave the signaling cascades downstream of both TORC1/2
complexes active [117–119]. Drug-related pneumonitis is also a well-recognized side-effect
of mTOR inhibitors [120].

Everolimus is a rapalog that inhibits mTOR and exerts antitumor activity [111]. An
in vitro study found that Everolimus inhibited cell proliferation, regardless of the presence
of endothelial cells, and induced cytotoxicity in a dose-dependent manner. Everolimus also
inhibited WM cell growth in the BM milieu, migration toward SDF-1, and cell adhesion.
Everolimus-induced reduction of endothelial cell morphogenesis caused upregulation of
pro-survival signaling pathways in WM cells, while endothelial cells increase the prolifera-
tive rate of WM cells by 32%. At higher concentrations of the drug, tube formation was
blocked almost completely [121]. The overall response rate (ORR) in a phase II study of
Everolimus was high with initial therapy, but the ORR was between 30% to 40% in the sal-
vage setting. The median progression-free survival (PFS) was 21 months in a separate study,
where patients with major responses exhibited longer PFS than those with minor responses
or stable disease [122]. In relapsed WM, Everolimus results compare favorably with other
single-agent trials [123]. Everolimus was found to have common but manageable [111,123]
toxicities. Grade 3 or higher toxicities, primarily hematologic toxicity, have been observed
in 67% of patients. Symptoms improved with the addition of steroids and reduction in
Everolimus dose [123]. A prospective, multicenter study of WM patients found that rapid
increases in serum IgM levels were common following discontinuation of Everolimus [123].
A separate study noted that 58% of patients developed relapsed or refractory WM31.

Everolimus does not completely inhibit TORC2 in most cells, however. This leads to
enhanced survival and chemoresistance through loss of S6K inhibition and Akt activation.
The lack of complete response from Everolimus treatment suggests that some of the lym-
phoplasmacytic cells might be resistant to mTOR inhibition that combination therapies
may target. When bortezomib was used in combination with Everolimus, the cytotoxicity
of WM cells almost doubled from 24%. Significant inhibition of NF-κB/p65 DNA-binding
activity (84%) was documented in WM cells exposed to the combination of Everolimus
and bortezomib compared to Everolimus alone [121]. An increase in specific lysis was
also observed in combination treatment of Everolimus, rituximab, and bortezomib, which
increased to 73.1%. Significant inhibition of phosphorylation of S6R, an mTOR downstream
targeted protein, was also observed [121].

TAK-228 (formerly MLN0128/INK128) is a selective adenosine triphosphate (ATP)
site kinase inhibitor of both TORC1 and TORC2 [124,125]. A study found that two WM
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patients treated with TAK-228 achieved stable disease (SD), and one achieved a partial
response. However, the study was limited to only 4 WM patients [126].

5.4.4. PKC Inhibitors

Enzastaurin, an acyclic bisindolylmaleimide derived from Staurosporine, is a PKCβ-
selective inhibitor that inhibits the PI3K/Akt pathway acting as an Akt competitor [127].
Akt phosphorylation is inhibited in a time-dependent fashion by Enzastaurin and subse-
quently induces ERK phosphorylation. This also inhibits VEGF–induced angiogenesis [128].
Bone marrow cytotoxicity has also been documented with Enzastaurin treatment. In a
xenograft mouse model of human WM, Enzastaurin significantly inhibited Akt and GSK3β
phosphorylation in tumor cells and inhibited the growth of tumor WM cells in a SCID sub-
cutaneous tumor model [129]. Enzastaurin enhanced rituximab, bortezomib, fludarabine,
and dexamethasone antitumor activity, suggesting that combining these agents may be
therapeutically useful [129].

5.4.5. SYK Inhibitors

SYK inhibitors include Tamatinib (R406), the active metabolite of fostamatinib [130],
and entospletinib. Studies in vitro showed that Tamatinib and entospletinib blocked SYK,
STAT3, and Akt phosphorylation in MYD88 L65P WM cells [131]. Fostamatinib reduced
the viability of WM cell lines by inducing cell cycle arrest and apoptosis, and dramatically
reduced phospho-Ser473 Akt levels by up to 95–98% [132].

5.4.6. IRAK Inhibitors

R191, a newly developed IRAK1/4 inhibitor, has been studied in pre-clinical WM
models. R191 exposure decreased Akt activation and downstream Glycogen synthase
kinase 3α/β (GSK3α/β) activation. Other Akt signaling intermediates showed decreased
activation, including PDK1, mTOR, and S6, consistent with an inhibitory effect on the entire
pathway. Cells expressing a constitutively active Akt mutant were more resistant to R191,
while cells expressing dominant negative Akt showed slightly increased sensitivity [133].
A combination of R191 and Akt inhibitor Afuresertib was able to enhance the reduction of
viability in cell lines [134].

5.4.7. SHIP1 Inhibitors

The use of miRNA155 knockdown has shown promising results in vitro, as the
miRNA155 normally targets SHIP1 and acts as a negative regulator of the PI3K/Akt
and mTOR pathway [135]. miRNA155 knockdown strongly inhibits ERK, Akt, GSK3α/β,
and S6R phosphorylation [136]. miRNA-155 demonstrated a link between NF-κB and
PI3K/Akt signaling cascades [137,138]. This complements evidence that following TNFα-
induced activation of PI3K, Akt activation is responsible for phosphorylation of IKKα and
subsequent activation of NF-κB.

5.4.8. HMG-CoA Inhibitors

Statins, a family of 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, act by
interfering with the mevalonate pathway [139]. Simvastatin inhibits proliferation and
induces cytotoxicity in WM cells, specifically by inhibiting the phosphorylation of Akt and
ribosomal protein S6 in a dose-dependent fashion [140].

5.5. microRNAs

MicroRNAs (miRNAs) are non-coding RNAs that can influence protein expression
through specific targeting of mRNA molecules through base-pairing between the miRNA
and the 3′ untranslated regions of the target mRNA. This leads to degradation of the mRNA,
or translational repression, leading to decreased protein expression [141].

The role of miRNAs in WM has been studied. miR-23b-3p was found to be down-
regulated in patients with WM and has been found to target SP1 3′UTR, which positively
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affects the NF-kB pathway [142] Upon transfection of miR-23b-3p, a decrease in WM cell
proliferation and survival was noted. The 13q14 chromosomal region deletion has been
noted in 10% of WM patients. This genomic region is host to miR-15a-5p and miR-16-5p,
two miRNAs that have been characterized as pro-apoptotic miRNAs by downregulating
BCL2. These two miRNAs also have been shown to downregulate the NF-kB pathway,
leading to less WM cell proliferation and survival [143].

miR-155-5p is another important miRNA in WM. This miRNA was found upregulated
in WM cells, compared to healthy controls. In studies where miR-155-5p was knocked down,
proliferation, adhesion, and migration of WM cells were increased, through PI3K/AKT
and NF-kB pathways [144].

In experiments where miR-155-5p was knocked down in WM cells and the cells were
treated with Everolimus, inhibition of cytotoxicity was observed, indicating the importance
of miR-155-5p in not only disease progression but also therapeutic response as well [14].

miRNAs have also been reported as potential biomarkers for WM as well [121,144].
miR-206-3p and miR-9-3p expression levels are upregulated and downregulated, respec-
tively, in WM. A study investigating histone deacetylases (HDACs) and histone acetyl-
transferases (HATs) in WM cells after downregulation of miR-206-3p and upregulation
of miR-9-3p showed that miR-206-3p was found to downregulate KAT6A and miR-9-3p
downregulated HDAC4 and HDAC5 [145]. Epigenetic regulation of HDACs and HATs
by miRNAs is important, as deregulation of HDACs and HATs in many malignancies
is common.

6. Summary

Given the complex heterogeneity of Waldenström macroglobulinemia across different
patient populations, it is important to consider all possible immunotherapy pathways
for successful treatment of WM. Genetic mutations and previous treatment can impact
treatment outcomes and various combination therapies may be required for best response.
Intra-tumor heterogeneity (ITH) is commonplace in many cancers and has been noted in
WM. This phenomenon increases the difficulty of detection and proper diagnosis, as well
as complications of treatment. Due to ITH, increased tumor progression, preservation of
oncogenic potential, drug resistance, and increased probability of relapse are all important
factors to consider when treating WM. The insurgence of tumor sequencing has increased
clinical knowledge and led to better outcomes in drug selection and treatment, but single
biopsies from one area of the tumor cannot fully capture the heterogeneity of the entire
tumor. This may lead to increased drug resistance and maintenance of oncogenic potential.
Single-cell sequencing has become more popular in recent years, allowing for the character-
ization of the complete tumor landscape [146]. For proper treatment, identifying, tracking,
and treating the order of mutations may be the future of WM treatment.

While targeted therapy is generally well tolerated, adverse reactions may develop
with long treatment periods, making patient-personalized therapy critical for the successful
management of WM. Currently, Ibrutinib and Zanubrutinib are the only FDA-approved
treatment for WM, but other immunotherapies are creeping into standard practice.
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