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Stunting and environmental enteric dysfunction (EED) may be responsible for altered gut
and systemic immune responses. However, their impact on circulating immune cell
populations remains poorly characterized during early life. A detailed flow cytometry
analysis of major systemic immune cell populations in 53 stunted and 52 non-stunted (2 to
5 years old) children living in Antananarivo (Madagascar) was performed. Compared to
age-matched non-stunted controls, stunted children aged 2-3 years old had a
significantly lower relative proportion of classical monocytes. No significant associations
were found between stunting and the percentages of effector T helper cell populations
(Th1, Th2, Th17, Th1Th17, and cTfh). However, we found that HLA-DR expression (MFI)
on all memory CD4+ or CD8+ T cell subsets was significantly lower in stunted children
compared to non-stunted controls. Interestingly, in stunted children compared to the
same age-matched non-stunted controls, we observed statistically significant age-
specific differences in regulatory T cells (Treg) subsets. Indeed, in 2- to 3-year-old
stunted children, a significantly higher percentage of memory Treg, whilst a significantly
lower percentage of naive Treg, was found. Our results revealed that both innate and
adaptive systemic cell percentages, as well as activation status, were impacted in an age-
related manner during stunting. Our study provides valuable insights into the
understanding of systemic immune system changes in stunted children.
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INTRODUCTION

Stunted child growth is a consequence of chronic undernutrition
and remains one of the most important global health problems
worldwide (1). In 2019, an estimated 144 million children under
5 years of age are stunted, with the highest burden being
observed in Sub-Saharan African and South-East Asian
countries (1). Despite decades-long efforts to treat and reduce
malnutrition through nutritional rehabilitation programs,
complementary feeding interventions have been shown to
reduce stunting only by one-third (2).

Several studies have shown that children living in low-to-
middle income countries (LMICs) countries have an altered
immune response to several live-attenuated vaccines, especially
when orally administered (3–8). Various factors may explain
this underperformance: i) higher titers of IgA antibodies in the
breastmilk from mothers in LMICs compared to the mothers in
high-income countries, which may inhibit the viral replication
of lived-attenuated vaccines in the infant’s gut and would
potentially impair their efficacy in eliciting an immune
response (9–12); ii) pre-existing vitamin A deficiency which
has been described as impairing gastrointestinal immunity (13);
and iii) the presence of environmental enteric dysfunction
(EED) (14–18).

EED is considered to be a subclinical disorder of the small
intestine without overt diarrhea. Repeated exposure to a highly
microbiologically contaminated environment and sustained
infectious gastroenteritis are hypothesized to impair the gut
structure and function, leading to a hyperimmune inflammatory
state (17, 19, 20). Currently, existing studies to improve our
understanding of the relationship between EED-related
undernutrition and oral vaccine failure are sparse. However,
there is growing evidence that undernutrition can persistently
compromise children’s immune defenses against infection despite
food rehabilitation (8, 21).

The identification of possible abnormalities in circulating
immune cells in stunted children compared to non-stunted
controls is critical for understanding aberrant immune
responses, such as reduced vaccine responsiveness and/or
increased susceptibility to infection in children living in
LMICs. Moreover, specific phenotypes or proportions of blood
immune cells, in combination with other biological biomarkers
such as alpha1-antitrypsin (AAT), calprotectin, anti-flagellin, or
anti-LPS (lipopolysaccharide) immunoglobulins could prove to
be promising diagnostic biomarkers for EED (22, 23).

In this study, we hypothesized that stunted children may
display circulating immune cells immunophenotypic
abnormalities. To test this hypothesis, we investigated blood
cell populations in children aged 2 to 5 years living in
Antananarivo, the capital city of Madagascar. We studied
innate and adaptive immune cells including monocytes,
neutrophils, B cells, and T cells subsets. As non-genetic factors
and the environment are responsible for 50% to 80% of the
variability observed in circulating immune cells (24, 25), we also
considered anemia, systemic inflammation (C-reactive protein
(CRP) measurement), and asymptomatic pathogen carriage as
covariables that may affect immune cell populations (26–28).
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Fecal markers of intestinal inflammation and barrier disruption
(alpha1-antitrypsin (AAT) and calprotectin) have been reported
as potential biomarkers for EED and are also associated with
subsequent linear growth delay (29). Therefore, we also analyzed
the potential association of these biomarkers with stunting and
the immune blood cell populations.
MATERIALS AND METHODS

Ethics Approval and Consent to
Participate
The study protocol of AFRIBIOTA was approved by the Malagasy
National Biomedical Research Ethics Committee of the Ministry of
Public Health (55/MSANP/CE, May 19, 2015) and the Institutional
Review Board of the Institut Pasteur, Paris (2016-06/IRB). All
participants received oral and written information about the
study, and the legal representatives of the children provided
written consent to participate. A copy of the written consent is
available for review by the Editor of this journal.

Study Participants and Sample Collection
This study was nested within the AFRIBIOTA project (30)
implemented in Madagascar and conducted in compliance with
the principles of the Declaration of Helsinki. Community and
hospital-based recruitment of children occurred between
November 2016 and March 2018. Community recruitment was
conducted in two of the poorest neighborhoods of Antananarivo
(Andranomanalina Isotry and Ankasina), Madagascar. Eligible
children aged 2 to 5 years old who were seeking care at the
“Centre Hospitalier Universitaire Mère-Enfant de Tsaralalàna
(CHUMET),” in the Pediatric Surgery Service of the “Hôpital
Joseph Ravoahangy Andrianavalona (HJRA)” or in the “Centre
de Santé Maternelle et Infantile de Tsaralalàna (CSMI)” and who
met the inclusion and exclusion criteria were also invited to
participate in the study as hospital-recruited children. Exclusion
criteria were HIV-positive status, presence of acute malnutrition or
any other severe disease. Included children were admitted to the
hospital for sample collection and anthropometric measurement.

For this immunological study, we first selected children with a
complete epidemiological data set (no missing data for age, sex,
anthropometric measurements, and sampling date), sufficient
blood volume (4 mL) at the collection time, and properly
cryopreserved white blood cell samples. Stunted and control
children were subsequently matched according to age in years,
gender, neighborhood, and season at inclusion (dry or wet
season). At the end of this selection process, the final cohort
included 105 children (52 controls and 53 children with
stunting) in this analysis. A flowchart of the children included
in the analysis is shown in Supplementary Figure S1.

Four milliliters (mL) of whole blood were collected from each
child, in a Lithium-heparin coated vacutainer tube by standard
venipuncture. Blood samples were maintained at room
temperature (RT, 18°C –25°C) until processing. Tracking
procedures were established to ensure delivery to Institut
Pasteur de Madagascar within 2 to 3 hours of blood draw. A
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complete blood count was performed (Sysmex® XT-2000i
Hematology Analyzer) immediately upon reception of samples.

Methods for stool sample collection and examination for the
presence of helminth eggs, helminth larvae, and protozoan
infestation using Kato–Katz smear, formol-ethyl acetate-
concentration methods (MIF), and real-time PCR have been
previously described (31). Real-time PCR was carried out on a
CFX 96 Real Time system (BIO-RAD, France) for the following
parasites: A. lumbricoides, G. intestinalis, E. histolytica,
Cryptosporidium parvum , and Isospora belli , and the
microsporidia species Enterocytozoon bieneusi and
Encephalitozoon spp. Schistosoma mansoni eggs were not
detected in stool samples of children included in this cohort.

Isolation and Storage of White Blood Cells
for Immunophenotyping
White blood cells (WBCs) were isolated using a red blood cell
lysis solution (BD Biosciences, ref. 349202). Briefly, after plasma
collection, blood cells (collected into Li-heparin) were washed by
mixing fresh whole blood and Phosphate-Buffered Saline (PBS,
GIBCO/Life Technologies, ref. 14200-067) at a 1:1 ratio, followed
by centrifugation at 500g for 5 min at room temperature (RT).
Red blood cells were lysed, and WBCs fixed in 1X FACS Lysis
solution (BD Biosciences, ref. 349202) for 15 min at RT protected
from light as recommended by the manufacturer. WBCs were
thereafter spun down for 5 min at 500g and the supernatant was
discarded. WBCs were then washed twice in 2 ml of PBS and
aliquots were cryopreserved in PBS 1X supplemented with 50%
FCS (Fetal Calf Serum, GIBCO/Life Technologies, ref. 10270)
and 10% DMSO (dimethyl sulfoxide, GIBCO/Life Technologies,
ref. D2650) until used.

WBCs Thawing and Staining Protocol for
Cytometric Analysis
WBCs were thawed rapidly in a 37°C water bath and resuspended
in 300µl of PBS 1X. After centrifugation for 5 min at 500g, the
supernatant was discarded, and cells were resuspended in 100 µl of
PBS 1X. Cells were stained with four different 8-color flow
cytometry panels for the characterization of immune blood cell
populations. The antibody panels, based on the panels developed
by the “Milieu Interieur Consortium” (32) are summarized in
Supplementary Table S1. The “lineage panel” enabled the
detection of major immune cell populations, including B cells
(CD45+CD19+) and T cells (CD45+CD16-CD3+), NK cells,
monocytes, and neutrophils (Supplementary Figure S2).
Different subsets of T cells were classified in the “T cell” panel
based on the relative levels of expression of CD27 and CD45RA:
naïve T cells (TN, CD45RA+CD27+), central memory T cells
(TCM, CD45RA- CD27+), effector memory T cells (TEM,
CD45RA-CD27-), and effector memory T cells CD45RA+

(TEMRA, CD45RA+CD27-). We also assessed the expression of
CCR7 (MFI) as this chemokine receptor has been used to define
TN and TCM. Activation status was determined by the Major
histocompatibility complex (MHC) II cell surface receptor (HLA-
DR) expression (MFI) (Supplementary Figure S3). CCR7 or
CD27 are two markers used for naïve and memory T cells
Frontiers in Immunology | www.frontiersin.org 3
characterization. In our analyses, we found only weak signals for
CCR7 antibody, which did not allow us to distinguish the positive
and negative cell populations more accurately. Therefore, we chose
CD27 surface staining to characterize TN/TCM/TEM/TEMRA
subpopulations as this marker is a good substitute for CCR7 (33).
The “T helper cells” (Th) panel enabled the detection of different
Th cell subsets: classical T-helper 1, (Th1, CD183+CCR6-), Th17
(CD183-CCR6+), Th1Th17 subsets (CD183+CCR6+CD183+

CD194+), Th2 (CD183-CCR6-CD294+CXCR5-), and circulating
follicular helper T cells (cTfh, CD294-CXCR5+) (Supplementary
Figure S4). The proportions of regulatory T cells (Tregs) were
defined by CD3+CD4+CD25+CD127- in the “Treg panel”. Based
on CD45RA and HLA-DR expression levels, Treg cells subsets
were characterized as naïve (CD45RA+HLA-DR-), memory
(CD45RA-HLA-DR-), and activated Treg (CD45RA-HLA-DR+).
Relative mean fluorescence intensity (MFI) of the inducible T cell
co-stimulator (ICOS, CD278) was also calculated in these Treg
subsets (Supplementary Figure S5). After the addition of
antibody cocktails to the WBC solution, samples were briefly
vortexed and incubated for 20 min at RT protected from light.
Cells were centrifugated for 5 min at 500g and resuspended in 240
ml of PBS 1X. The entire tube (all events) was immediately
acquired using acoustic focusing Attune™ NxT Flow Cytometer
(Thermo Fisher Scientific, Waltham, MA, USA) and data were
analyzed by FlowJo software (version 10.3., Treestar). Samples
with less than 5000 intact singlet cells were discarded from the
analysis. Thus, among the 105 samples initially selected, we were
able to analyze 98 samples with the “lineage panel,” 102 samples
with the “T cells panel,” 102 samples with the “Th cells panel,” and
103 samples with the “Treg panel” (Supplementary Figure S1).

Optimum concentrations for each antibody have been
established by titration assay. Manual gating was done using
Flowjo (TreeStar) software. Gates were individualized to
participants based on events and to minimize bias introduced
by manual repositioning of gates; magnetic gates were created for
the brightest and most clearly defined antigens (e.g., CD4).

Instrument calibration was checked daily using the Attune
Performance Tracking Beads (Thermo Fisher Scientific, ref.
4449754). Voltages were set such that the center of the
histograms for the unstained control was around 102 MFI
units and the positive peaks for the single stain controls were
around 104 MFI units. The compensation matrix was calculated
using unstained and single-stained cells. Cells stained as
fluorescence-minus-one (FMO) controls were applied to
antibodies that showed weak signals (e.g., CD294) and those
for which it was difficult to define positive from negative
cell populations.

To validate T cell data across the four panels, we calculated
the coefficient of variation (CV) between T cell (CD3+)
percentages for the “T cell” panel and “lineage” panel, and the
CV between Th cell (CD4+) and Tc cells (CD8+) percentages
between the four panels in each sample. Minimal inter-panel
variabilities with intradonor CV below 15% between all the T
cells subsets were observed (i.e., 2·5%, 3·9%, and 8·7% for CD3+,
CD4+, and CD8+ respectively (Supplementary Figure S6A). We
also compared the CD4+ to CD8+ ratio between the four panels
June 2022 | Volume 13 | Article 864084
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and found a strong correlation between the Th/Tc ratio as
measured using a Spearman correlation test (rho > 0.90 for all)
(Supplementary Figure S6B). Thus, cell percentage
measurements were generally constant across all donors and
panels, validating the robustness of the chosen approach.

Assessment of Inflammatory Markers
Fecal calprotectin and alpha-1 antitrypsin (AAT) measurements
were performed at “Hôpital de la Pitié-Salpêtrière,” Paris, France,
and previously published (34). Briefly, stool samples were diluted
1:5 in 0.15M NaCl and vortexed vigorously until complete
homogenization; the homogenate was then centrifuged, and
the supernatant was collected for analysis. Calprotectin
concentrations were assayed in duplicate by sandwich ELISA
using a polyclonal antibody system (Calprest; Eurospital, Italy)
according to the manufacturer’s instructions. Fecal AAT was
measured using an immuno- nephelometric method adapted to
the BN ProSpec system (Siemens, Germany) (35).

To assess serum C-reactive protein (CRP) and ferritin levels,
venous blood was collected using EDTA vacutainer tubes and
tests were performed within 4h after blood collection at the
Clinical Biology Center of the Institut Pasteur de Madagascar.
Ferritin was measured using Chemiluminescent Microparticle
Immunoassay and corrected for systemic inflammation (36).
CRP was assessed by Chemiluminescent Microparticle
Immunoassay implemented on automated analyzers (Abbot
Ilinity). Procedures were detailed in a previous study (37).

Statistical Analysis
All analyses were conducted using R version 4.1.0 using vegan
(38), adonis (39), ggplot2 (40), and mice (41) packages. We
defined two outcomes: (1) relative proportions (%) and (2) mean
fluorescence intensity (MFI). The primary objective of this study
was to determine if the immune cell populations vary by stunting
status in children aged 2 to 5 years. Our first parameter was the
height-for-age (HAZ) z-score, using the WHO Global Database
on Child Growth and Malnutrition z-score cut-off point of < −2
standard deviations (SDs) (42). Mann-Whitney and Spearman’s
tests were conducted to assess the variation between relative
proportions (%) and fluorescence (MFI) of cells related to
children’s stunting status (stunted vs. non-stunted), age, sex,
systemic inflammation (CRP), EED inflammation biomarkers
(calprotectin and alpha-antitrypsin), anemia, and pathogen
carriage. P-values obtained by the Mann-Whitney and
Spearman’s tests for each cell subset were corrected by
recalculating them using the Benjamini-Hochberg false discovery
rate (FDR; p-value<0.05) correction method. The variables
associated with variation of relative proportions or MFI (based on
p<0.20 inMann-WhitneyandSpearman’s test)were selected as the
possible independent variables for multivariable analyses.

For multivariable analysis, we used the continuous version
HAZ score, because it potentially contained more information
than the dichotomized version (stunted/non-stunted). We ran
multivariable linear regression analysis on completed data
following multiple imputations of missing values. Missing
values for outcomes were imputed with half the minimum of
the values. Missing values for exposure were imputed by the
Frontiers in Immunology | www.frontiersin.org 4
mean for continuous variables and by logistic regression
imputation for binary variables using mice package in R
(Buuren, 2011). We have also checked the similarities in the
distribution of original and imputed data using the same package
(mice) in R. After controlling for age and sex, we further adjusted
for the other potential confounders. Multicollinearity between
covariates was examined by assessing the variance inflation
factor (VIF), and only those with VIF < 10 were kept as
variables in the final model. The R2 adjusted of the models, as
well as the unstandardized regression coefficients (B), standard
error (SE), and standardized regression coefficients (b), are
reported in Supplementary Tables S4-S7.

Data structures of the cell population percentages in the four
panels were explored with a non‐parametric method for
multivariate analysis of variance (PERMANOVA test, adonis
function in vegan) for each variable of interest (HAZ score, sex,
age, parasites carriage, blood, and fecal inflammation
biomarkers) to determine their contribution on the
distribution (of percentages) of non-overlapped cell
subpopulations in each panel (38, 39). The analysis was
repeated and stratified into three age groups: children aged 2
to 3 years old (24-36 months), 3 to 4 years old (37-48 months),
and 4 to 5 years old (49-60 months). All comparisons in the
PERMANOVA tests were corrected for multiple testing using the
Benjamini-Hochberg false discovery rate (FDR; p-value<0.05).
RESULTS

Description of the Study Population
The 105 Malagasy children aged 2 to 5 years selected for this
immunological study represent a subset of those enrolled in the
AFRIBIOTA project (Supplementary Figure S1) (30). The main
characteristics of the study participants of this analysis are
summarized in Table 1. Based on their HAZ scores, individuals
were grouped as stunted (n = 53) versus non-stunted (n = 52) and
subsequently categorized according to their age (2-3, 3-4, and 4-5
years old). Male (51%) and female (49%) children were almost
equally represented in stunted and non-stunted subgroups. In each
age stratum, samples were relatively evenly split between male and
female children (p-value = 0.22). All children included in this study
had normal weight-for-height (WHZ) z-score, as children with
acute malnutrition (WHZ Z-score < -2) at recruitment time or
during the selection process were excluded from this
study (Table 1).

Two fecal inflammatory biomarkers (calprotectin and alpha-1
antitrypsin (AAT)) were analyzed to assess EED associated with
stunting status. C-reactive protein (CRP) level was assessed as a
systemic inflammation marker. We found that stunted children
had higher levels of the mucosal inflammatory EED biomarkers,
fecal AAT, and fecal calprotectin compared to non-stunted
children (Table 1, Mann-Whitney test, p = 0.006 and p <
0.001 for AAT and calprotectin respectively). However, no
significant association was found between the level of serum
CRP, ferritin, or hemoglobin and stunting status (Table 1,
Fisher’s exact test, p > 0.1). Protozoan and helminthic
June 2022 | Volume 13 | Article 864084
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infections were common among all children with a
predominance of Giardia intestinalis (79.3%) and Ascaris
lumbricoides (70.1%). However, no significant association was
found between stunted and not stunted children in terms of
parasite and helminth carriage (Table 1).

Monocyte Subsets Percentages Are
Affected by Stunting Status and Age
Within CD45+ cells (lineage panel), we identified major immune
cell populations, including B cells (CD19+CD16-CD3-), T cells
(T helper/Th CD3+CD4+ and T cytotoxic/Tc CD3+CD8+), NK
cells (CD3-CD56+), monocytes (CD16+SSClow), and neutrophils
(CD16hiSSChi). Classical, non-classical, and intermediate
monocyte subsets were furthermore defined as CD14+CD16low/int,
CD16hiCD14low, and CD16hiCD14+, respectively.

For NK cells subsets, neutrophils, Th cells, Tc cells, and CD4+

to CD8+ cell ratio, no significant associations with stunting status
were found (Supplementary Tables S2-S3). However, we
Frontiers in Immunology | www.frontiersin.org 5
observed that monocyte subclass percentages were associated
with stunting status (Figures 1A–C). Indeed, children with
stunting demonstrated a lower percentage of classical
monocytes compared to non-stunted controls (Figure 1B,
FDR-corrected, p = 0.05). In contrast, the relative percentages
of non-classical monocytes tended to be higher in stunted
children compared to controls (Figure 1C, FDR-corrected, p =
0.07). The relative percentage of intermediate monocytes differs
between stunted and non-stunted children (Figure 1D, FDR-
corrected, p=0.61). Multiple regression analysis adjusted for age,
sex, Encephalitozoon carriage, serum CRP, and anemia was used
to test if HAZ score predicted relative percentages of monocyte
subtypes. The results indicated that the predictors explained 14%
of the variance of the relative proportions of classical monocytes
(adjusted R2 = 0.14, p<0.002). HAZ score was found to be
positively associated with classical monocytes (Supplementary
Table S4, b = 0.21, p = 0.03). In the model predicting the non-
classical monocytes relative proportions, the selected variables
TABLE 1 | Study population.

Description All Non-stunted Stunted p-value

Gender (N= 105) (N= 52) (N=53) 0.85
Male 54 (51%) 26 (50%) 28 (53%)
Female 51 (49%) 26 (50%) 25 (47%)
Age (N= 105) (N= 52) (N=53) 0.91
Median (months, 1st -3d quantiles) 44.6 (36-52) 43.7 (35-51) 44.8 (36-52)
2 years (n, %) 27 (25.7%) 14 (26.9%) 13 (24.5%)
3 years (n, %) 37 (35.2%) 19 (36.5%) 18 (33.9%)
4-5 years (n, %) 41 (39%) 19 (36.5%) 22 (41.5%)
Nutritional status (N= 105) (N= 52) (N=53)
Median HAZ score (variance) -2.02 (1.25) -1.06 (0.32) -3.05 (0.67) < 2.2e-16
Median WHZ score (variance) -0.26 (0.7) -0.04 (0.73) -0.31 (0.69) 0.61
Anemia (N= 105) (N= 52) (N=53)
Ferritin (µg/L) 25.8 (12-43) 27.1 (14-44) 20.9 (11-38) 0.34
Hemoglobin (g/100 mL serum) 11.5 (10.8-12.2) 11.6 (11-12) 11.4 (10-12) 0.17
Presence of anemia (hemoglobin level <11g/100 mL) 31 (29.3%) 13 (25%) 18 (33.3%) 0.4
Inflammation biomarkers (N=96) (N= 47) (N=49)
AAT-mg/g dry fecal weight 59.5 (34-150) 47 (30-72) 82 (45-114) 0.006
Calprotectin- mg/g dry fecal weight 445 (252-2679) 375 (191-534) 544 (158-1330) <0.001

(N= 105) (N= 52) (N=53)
Elevated CRP (> 10 mg/L serum) 12 (11.4%) 4 (7.7%) 8 (15%) 0.36
Complete Blood Count (N= 105) (N= 52) (N=53)
Leucocytes number/mm3 9050 (7320-1140) 8830 (7320-11160) 9160 (7290-11020) 0.77
% Lymphocytes 43 (36-51) 42.2 (36-53) 44 (36-49) 0.83
% Monocytes 7.1 (6-8.5) 6.35 (5.6-8.4) 7.3 (6.1-8.5) 0.21
% Neutrophils 36 (28.8-45) 36.9 (29.8-45) 34.8 (28.5-44.7) 0.38
% Basophils 0.5 (0.3-0.7) 0.5 (0.4-0.7) 0.5 (0.3-0.7) 0.37
% Eosinophils 11 (5.6-15.3) 9.85 (5.43-12.9) 12.4 (7-17) 0.06
Parasites carriage (PCR results), n (%) (N= 86) (N= 41) (N=45)
Giardia intestinalis 68 (79%) 35 (85%) 33 (73%) 0.19
Ascaris lumbricoides 60 (70%) 25 (61%) 36 (78%) 0.1
Trichuris trichiura* 56 (65%) 24 (59%) 32 (71%) 0.26
Enterocytozoon spp. 26 (29%) 10 (24%) 15 (33%) 0.48
Encephalocytozoon bieneusi 13 (15%) 5 (12%) 7 (17%) 0.76
Isospora belli 19 (22%) 6 (15%) 13 (29%) 0.12
Cryptosporidium parvum 14 (16%) 7 (17%) 7 (16%) 1
Entamoeba hystolytica 9 (22%) 3 (7%) 6 (13%) 0.49
June 2022 | Volume 13 | Artic
Values are expressed as median (1st and 3rd quantiles) for continuous variable, or as counts for categorical variables. Statistical analysis was performed using Mann Whitney test
(continuous variable) or Fisher’s exact test (categorical variable). P-values indicate differences between non-stunted and stunted children. P-values <0.05 was considered statistically
significant. Hemoglobin was adjusted by altitude (− 0.2 g/100 mL to account for the height above sea level). Parasite carriage was evaluated by qPCR and only presence of T. trichuria* was
examined microscopically as the robustness of their eggs hampers optimal DNA isolation. AAT, alpha-1 antitrypsin; HAZ, height-for-age z-score; WHZ, weight-for-height z-score; CRP,
C-reactive protein.
Significant differences (p<0.05) are indicated in bold.
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explained only 9% of the variance (adjusted R2 = 0.09, p<0.02),
And HAZ score tends to be negatively associated with non-
classical monocytes (Supplementary Table S4, b = - 0.18, p =
0.07). In addition, the HAZ score was not found to be a
significant predictor of the relative proportion of intermediate
monocytes (Supplementary Table S4, b = 0.11, p = 0.26). Thus a
1-unit increase in HAZ score is associated with a lower
proportion of classical monocytes by 0.21 SDs and a higher
proportion of non-classical monocytes by 0.18 SDs.

Stunting Is Related to Lower Surface
Expressions of HLA-DR in Memory
T Cell Subsets
We next investigated the memory phenotype of T helper
(CD3+CD4+) and T cytotoxic (CD4+CD8+) cells classified
based on their expressions of CD45RA and CD27 as naïve
Frontiers in Immunology | www.frontiersin.org 6
(TN , CD27+CD45RA+ ) , c e n t r a l memo r y (TCM,
CD27+CD45RA-), effector memory (TEM, CD27-CD45RA-),
and CD45RA+ effector memory (TEMRA, CD27-CD45RA+)
cells. No differences between the two groups of children
(stunted vs. non-stunted) were observed for CD4+ and CD8+

memory T cells (Supplementary Tables S2-S3). Conversely, we
found that HLA-DR expression (MFI) on all memory T cell
subsets was significantly lower in stunted children compared to
non-stunted controls: CD8+ naïve (FDR adjusted p = 0.01),
CD8+CM (FDR adjusted p = 0.04), CD8+EM (FDR adjusted
p = 0.03), CD8+EMRA (FDR adjusted p = 0.02), CD4+ naïve
(FDR adjusted p = 0.009), CD4+CM (FDR adjusted p = 0.01),
and CD4+EM (FDR adjusted p = 0.05) and CD4+EMRA (FDR
adjusted p = 0.06, trend only) (Figures 2A–D).

We furthermore estimated the effect of stunting in the
expression of HLA-DR (MFI) using multivariable linear
A

B

D

C

FIGURE 1 | Characterization of monocyte subsets in non-stunted vs. stunted children. (A) Representative flow cytometry dot plots of CD14 and CD16 expression
on monocyte subsets from non-stunted (left) and stunted (right) children. Classical, non-classical and intermediate monocyte subsets were defined as
CD14+CD16low/int, CD16hiCD14low, and CD16hiCD14+, respectively. (B–D) Relationships between stunting status and the percentages of classical, non-classical, and
intermediate monocyte populations. NS, non-stunted; S, stunted. Significance (p<0.05) was determined by Benjamini-Hochberg correction after Mann-Whitney test.
N total = 98, N non-stunted = 50, N stunted=48.
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regression analysis, adjusted for age and sex, and corrected with
the two confounders selected in bivariate tests (Spearman
correlation tests): Encephalocytozoon carriage and AAT. No
associations between HAZ score and the variation of HLA-DR
expression on CD4+ and CD8+ T cells were observed in any of
the multivariable models (p > 0.05 for HAZ score).
Frontiers in Immunology | www.frontiersin.org 7
Th1/Th17 Cell Subsets Tend to be Lower
in Stunted Children
T helper cell subsets were identified using different chemokine
receptors: classical T-helper 1, Th1 (CD183+CCR6-), Th17
(CD183-CCR6+) and Th1Th17 subsets (CD183+CCR6+CD183+

CD194+), Th2 (CD183-CCR6-CD294+CXCR5-) and circulating
A

B

DC

FIGURE 2 | HLA-DR expression (MFI) on helper T (CD4+) and cytotoxic T cells (CD8+). (A) Representative dot plots of the gating strategy of T cells subsets based
on their surface expression of CD27 and CD45RA markers. In each T cell subsets, naïve (CD27+CD45RA+), central memory (CM, CD27+CD45RA-), effector memory
(EM, CD27-CD45RA-), and CD45RA+ effector memory (EMRA, CD27-CD45RA+) cells were defined. Representative dot plots from a non-stunted child are shown.
(B) Representative histograms of HLA-DR expression on surface of naïve, CM, EM, EMRA T cells in stunted (red) versus non-stunted (blue) children. (C, D) Boxplot
displaying the MFI values within all the T cell subsets in stunted (red) versus non-stunted (blue) children. Significance (p<0.05) was determined by Benjamini-
Hochberg correction after Mann-Whitney test. N total= 101, N non-stunted = 50, N stunted=51.
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follicular helper T cells (cTfh, CD294-CXCR5+) (Supplementary
Figure S5). In bivariate analyses (Mann-Whitney test), we found
no significant associations between stunting status and the
percentages of Th1, Th2, cTfh, nor Th17 cells (Supplementary
Table S2 and Supplementary Figure S7). Only the percentage of
Th1Th17 was significantly lower in stunted children
(Supplementary Table S2 and Supplementary Figure S7,
FDR adjusted p = 0.04). However, we did not observe a
significant association between HAZ score and Th1Th17
percentage in the multiple linear regression analyses adjusted
for age, sex, CRP, AAT, anemia, Ascaris, and Encephalitozoon
carriage (b = 0.1, p = 0.35, adjusted R2 = 0.13, p-value for model =
0.005 in linear regression, Supplementary Table S6). Thus, even
though stunted children have a lower percentage of Th cell
subsets compared to controls, the differences were
not significant.

Regulatory T Cell Subset Percentage Was
Associated With Stunting, Age, and
Asymptomatic Isospora Carriage
Finally, we determined the percentage of regulatory T cell (Treg,
CD4+CD25+CD127-) populations in stunted and non-stunted
children. Stunted children showed a higher percentage of Treg
cells than non-stunted controls (Figures 3A–B, FDR adjusted
p = 0.04). Relative proportions of Treg did not significantly differ
between age subgroups (Figure 3C, Kruskal-Wallis test, p =
0.65). Interestingly, when we compared the percentages of Treg
by age and stunting status, we observed that children aged 2 to 3
years old with stunting had a significantly higher relative
percentage of Treg cells compared to age-matched controls
(Figure 3D, FDR adjusted p = 0.01).

Subsequently, we assessed the association between Treg
percentages and HAZ score (adjusted for age and sex) by
multivariable linear regression analysis. The covariates selected for
the models included serum CRP, fecal AAT concentrations, Ascaris,
and Isospora’s carriage (Supplementary Table S7). HAZ score was
found to be negatively associated with lower relative percentages of
Treg (b = -0.24, p = 0.02, adjusted R2 = 0.17, p-value for model =
0.009). We further investigated the association between relative
proportions of Treg cell subpopulations and stunting status. Treg
cells were subdivided into naïve (CD4+CD25+CD127-

CD45RA+HLA-DR-), memory (CD4+CD25+CD127-CD45RA-

HLA-DR-), and activated Treg (CD4+CD25+CD127-CD45RA-

HLA-DR+) subsets. In bivariate analyses with stunting status
(Mann-Whitney test), no differences were observed within the
naïve, memory, and activated Treg cell relative proportions
(Figure 4A). However, the association with HAZ score was
significant when investigated in a multivariable regression analysis
of the naïve and memory Treg cells proportions (Supplementary
Table S7). HAZ score was found to be negatively associated with
relative percentage of naïve Treg (b = -0.23, p = 0.01, adjusted R2 =

0.29, p for model <0.001) and positively associated with relative
percentage of memory Treg (b = 0.21, p = 0.04, adjusted R2 = 0.003,
p for model =0.14). No significant associations between stunting
status and relative percentage of activated Treg were identified in
our model (Supplementary Table S7).
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Percentages of naïve Treg were significantly higher in stunted
children aged 2 to 3 years (FDR adjusted p < 0.001) and significantly
lower in stunted children aged 3 to 4 years (FDR adjusted p = 0.04)
compared to non-stunted, age-matched children (Figure 4B).
Conversely, percentages of memory Treg were significantly lower
in stunted children aged 2 to 3 years (FDR adjusted p < 0·001) and
significantly higher in stunted children aged 3 to 4 years (FDR
adjusted p = 0.02) compared to non-stunted, age-matched controls
(Figure 4C). No significant differences were found in the activated
Treg cell subset (Figure 4D).

Association Between T Cell Populations,
Environmental and Clinical Factors
To identify environmental, clinical, or other factors that might
influence the distribution of the measured cell phenotypes, we
performed a PERMANOVA analysis of non-overlapping cell
populations in each panel against selected variables putatively
contributing to EED/and negatively affecting childhood
nutritional status (Supplementary Figure S8A–C and
Figure 5). Apart from HAZ score, age, sex, and anemia, we
also assessed two putative EED inflammatory biomarkers (fecal
AAT and calprotectin) and the systemic inflammatory marker
(serum-CRP), along with asymptomatic parasites and protozoan
carriage. For the “lineage,” “T cells,” and “T helper” panels,
stunting status was not significantly associated with cell
percentage distributions (Supplementary Figure S8A–C).
Interestingly, stunting status and Isospora carriage were
significantly associated with cell percentages in the “Treg”
panel (Figure 5, partial variance explained 8%, FDR-corrected
p = 0.02 for stunting and 15%, FDR-corrected p = 0.02 for
Isospora carriage). To investigate the association with age in
PERMANOVA, we repeated the analysis using age category
stratification. Notably, impacts of HAZ score and Isospora
carriage were significant in children aged 2 to 3 years. Stunting
status explained 44% of the variance (FDR-corrected p = 0.01)
while Isospora explained 40% of the variance (FDR-corrected p =
0.04) in the younger children. None of the inflammatory
biomarkers nor the other parasites explained the variations in
the differentiated cell percentages in older children (Figure 5).
DISCUSSION

Undernutrition, chronic exposure to pathogens, and immune
response dysfunction are three components of a deleterious
vicious cycle that greatly impact development during childhood.
Indeed, it has been suggested that (i) undernutrition impairs innate
and adaptive immune functions, increasing susceptibility to
infectious diseases; (ii) in turn, energy and micronutrients are
diverted to fight recurrent infections, resulting in impaired
growth; and (iii) chronic exposure to various pathogens through
unsanitary environments and/or leaky gut syndrome resulting from
EED can lead to chronic systemic inflammation (8, 43). Yet, despite
several studies (review in (8, 21, 44)), it is still not fully understood
how systemic immune responses may be impacted during EED
and stunting.
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Monocytes are crucial in innate immunity for their high
capacity to phagocyte, digest, process, and present antigens to
lymphocytes. Phenotypically, monocytes can be distinguished by
their expressions of CD14 and CD16. The classical monocytes
(CD14hiCD16-) are known to be the main scavenger cells. Their
major function is phagocytosis and the production of high levels
of anti-inflammatory cytokines (IL-10) to counteract microbial
Frontiers in Immunology | www.frontiersin.org 9
infection (45). The intermediate monocytes (CD16hiCD14+)
have the highest expression of genes associated with antigen
presentation and seem to be the most efficient in presenting
antigens to T cells (46, 47). The non-classical monocytes
(CD16hiCD14low) are the effective producers of inflammatory
cytokines (TNF-a and IL-1b) in response to microbial activation
and are involved in FcR-mediated phagocytosis and adhesion
A

B

D

C

FIGURE 3 | Characterization of peripheral blood regulatory T cells (Treg) and their subsets in non-stunted vs. stunted children. (A) Representative flow cytometry
dot plots showing the differences of Treg cell percentages from one non-stunted vs. one stunted child. Regulatory T cells were gated in CD4+ cells based on their
expression of CD25 and CD127 markers. Naïve, memory and activated Treg cell subsets were determined based on their expression of CD127 and HLA-DR.
(B) Relationship between Treg cell percentages and stunting status and (C) child age in years. (D) Representative graphs of regulatory T cell percentages by age
sub-groups (years) and stunting status. Significance (p<0.05) was determined by Benjamini-Hochberg correction after Mann-Whitney test. N total= 103, N non-
stunted = 51, N stunted= 52. ns, not significant.
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(46). Our findings revealed that stunted children between 2 and 5
years of age tend to have a lower proportion of classical
monocytes (CD14hiCD16low/int) and tend to have a higher
percentage of non-classical monocytes (CD16hiCD14low). The
impacts of undernutrition on monocyte evolution and their
subpopulations have not been sufficiently investigated in
humans (21). It has been shown that non-classical monocytes
were increased in patients with inflammatory diseases such as
rheumatoid arthritis (48). We suggest here that the higher
percentage of the pro-inflammatory non-classical monocytes
may regulate the immune response by enhancing cells
proliferation, migration, and receptor expression in stunted
children. Moreover, CD14high monocytes constitute the main
population from which intestinal macrophages are derived as
they have a high ability for migration (49, 50). The lower
proportion of systemic classical monocytes observed in
stunting may be explained by the migration of these cells to
the site of inflammation (for example, the intestinal mucosa in
EED) (49, 51).

Helper CD4+ T cells (Th) and cytotoxic CD8+ T cells (Tc) are
essential for adaptive immunity. Effector T cells play a significant
role in the defense against pathogens, whereas regulatory T cells
Frontiers in Immunology | www.frontiersin.org 10
maintain homeostasis by limiting and/or suppressing effector T
cells’ overactivity. No differences between the stunted vs. non-
stunted children were found for CD4+ T cells and CD8+ T cells.
We also observed that all effector helper T cell percentages (Th1,
Th2, Th17, Th1Th17, and cTfh) tend to be lower in stunted
children compared to non-stunted controls but these
associations were not significant in our cohort of children.
Several other studies in humans and mice have demonstrated a
significant T-cell dysfunction in severe undernutrition or
starvation (52, 53). In a recent study assessing the effects of
undernutrition and Mycobacterium tuberculosis infection on
baseline blood cell percentages, both percentages of CD4+ and
CD8+ T cells were reported in children with low body mass
index (54).

We also observed high circulating Treg cells in stunted
compared to non-stunted children. The main role of Tregs is
to maintain peripheral tolerance and suppress the function of
effector T cells through suppressive cytokines (TGF-b and IL-10)
(55). Increased percentages of circulating and intestinal
regulatory T cells have also been reported in children with
Crohn’s disease and ulcerative colitis, which share many
biomarkers with EED (56–58).
A B

DC

FIGURE 4 | Representative graphs of the percentages of Treg cells subsets stratified by nutritional status and age sub-groups. (A) Percentages of regulatory T cell
subsets children by stunting status. Percentages of naïve (B), memory (C), and activated (D) Treg cells by stunting status and age sub-groups (years). P-values were
FDR corrected after Mann-Whitney test. N total= 103, N non-stunted = 51, N stunted= 52. ns, not significant.
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The significantlyhigherproportionof systemicTregcells in2- to
3-year-old children could be associated with higher early exposure
to microbes. Indeed, in Madagascar, this age period is generally
associated with the beginning of weaning (37) and walking alone to
explore their environment, which could be associated with
increased exposure to an unsanitary environment. Extensive
contact with this pathogen-contaminated environment in poor
neighborhoods of Antananarivo was reflected by the high
prevalence of parasitic infestation (more than 75% of the children
were infected by at least one intestinal parasite) observed in all the
children included in this study.

We also compared the proportion of Treg subpopulation
subsets among all children, combining CD45RA and HLA-DR
expression. Treg cells can be thymic-derived or differentiated
from naïve CD4+ T cells exposed to non-self-antigens (59). Upon
strong antigen stimulation, naïve Treg (CD45RA+HLA-DR-) are
matured to highly suppressive activated Treg (CD45RA-HLA-
DR+) and long-lasting memory Treg (CD45RA-HLA-DR-) (60).
In our study, we have reported that the percentage of naïve Treg
is significantly higher in young children aged 2 to 3 years,
alongside a lower percentage of memory Treg. Interestingly,
the relative proportions of these two Treg subpopulations are
reversed among children aged 3 to 4 years. This may be explained
by the fact that recurrent exposures to multiple antigens activate
naïve Treg to effector memory Treg as children grow (61).

We also studieddifferent factors thatmaymodulate the immune
systemandhave an impact on linear growth such as age and anemia
(26), the known EED inflammatory biomarkers (fecal AAT and
calprotectin, serum-CRP) (15, 29), andasymptomatichelminthand
protozoan carriage (62–64). Interestingly, we found that the
Frontiers in Immunology | www.frontiersin.org 11
coccidian parasite Isospora belli appears to influence Treg
subpopulations in some children (FDR-corrected p = 0.02 in
PERMANOVA analysis). Isospora belli infection was shown to be
associated with gastrointestinal disease and severe diarrhea in
patients with immunodeficiency syndrome (AIDS) (65, 66). The
number of children carrying the parasite was low (19/86, 22%).
Thus, a study with a larger number of participants carrying the
parasite would help to verify this finding. Altogether, these findings
suggest that stunting may impact, in an age-specific manner, the
proportion of naïve and memory regulatory T cell subsets in the
peripheral blood of younger children.

Our results demonstrate that both innate and adaptive
systemic cell proportions, as well as activation statuses, are
impacted during chronic malnutrition in an age-related
manner. However, our study has some limitations. As stunting
status is a chronic disease, a longitudinal cohort study would be
helpful to explore the temporal dynamics of peripheral immune
cells. Larger sample size would also have been useful for a more
powerful analysis of factors influencing the immune cell
populations. Furthermore, the AFRIBIOTA study was
performed both in Madagascar and in the Central African
Republic. However, due to sample quality and availability, our
study was restricted to the Malagasy children, preventing key
comparisons with children living in another environmental
context. We also selected the continuous version of the
stunting status variable (i.e., HAZ score) in our multivariable
analyses, as it gives more information than the dichotomized
variable (stunted vs. non-stunted). This could introduce bias in
the interpretation because, initially, we matched children
according to the HAZ<-2 cutoff. Additionally, we recognize
FIGURE 5 | Distribution of cell percentages in the T reg panel. Summary of PERMANOVA analysis of the cell percentages in the full dataset, stratified by age and in each
age category individually. The outcomes of the PERMANOVA analysis were the cells percentages in the “Treg panel”. As cell percentages are related to their “parents gate,”
we analyzed the percentages of the five non-overlapped subpopulations: CD8+ Tc cells, CD4+CD25-CD127+ Th cells, Treg naïve (CD4+CD25+CD127-CD45RA+HLA-DR-),
Treg memory (CD4+CD25+CD127-CD45RA-HLA-DR-), and Treg activated (CD4+CD25+CD127-CD45RA-HLA-DR+). The tested variables were as follows: HAZ score
(height-for-age z-score); Age (child’s age in months); Anemia (presence or absence of anemia); AAT (fecal alpha-1 antitrypsin in mg/g dry weight); Calprotectin (fecal
calprotectin in mg/g dry weight); CRP (serum C-reactive protein in mg/l); and parasite carriage. *Starred variables are significant with an FDR-corrected p<0.05. Each
variable was tested individually in the PERMANOVA without other covariates. Coef: the coefficient of variance by PERMANOVA.
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that circulating immune cells do not necessarily reflect the gut
immune system. Simultaneous analysis of blood and mucosal
immune cells in the same children would be very informative to
better understand the relationship between mucosal and
systemic immunity. It should be emphasized that mucosal
biopsies were not possible in our study for practical and ethical
reasons. However, to our knowledge, this is the first study that
examines the phenotype of blood immune cells in stunted
children, thus adding valuable data for a better understanding
of immune changes in the context of chronic undernutrition.

In conclusion, our findings revealed that stunting may lead to
a lower proportion of circulating classical monocytes, a lower
HLA-DR expression (MFI) on all memory T cell subsets, and an
age-specific significantly higher percentage of Tregs. Our data
suggest that stunted children have a distinct circulating immune
cell profile compared to non-stunted children, with both innate
and adaptive blood cells being affected. For the first time, our
results also suggest that the higher proportion of systemic Treg
cells in 2- to 3-year-old children could be associated with early
exploration of the highly pathogen-contaminated environments
potentially requiring the immunosuppressive role of the Treg
populations to counteract this stunting-related inflammatory
process. We also illustrated the possible impact of Isospora
carriage, a neglected enteric protozoan, in systemic Treg cell
variations in a subgroup of children. Together, these findings
bring new insights into the peripheral blood immune cell
populations that could be associated with the susceptibility to
infection in children with stunting.
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