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Abstract
Background: Neurocognitive disorders (NCDs) and sleep disturbance are highly prev-
alent in the perioperative period and intensive care unit (ICU). There has been a lack of 
individualized evaluation tools designed for the high- risk NCDs in critically ill patients 
with sleep disturbance.
Objectives: The aim of this study was to develop and validate prediction models for 
NCDs among adult patients with sleep disturbance.
Methods: The R software was used to analyze the dataset of adult patients admitted 
to the ICU with sleep disturbance, who were diagnosed following the codes of the 
International Classification of Diseases, 9th Revision (ICD- 9) and 10th Revision (ICD- 
10) using the MIMIC- IV database. We used logistic regression and LASSO analyses 
to identify important risk factors associated with NCDs and develop nomograms for 
NCDs predictions. We measured the performances of the nomograms using the boot-
strap resampling procedure, sensitivity, specificity of the receiver operating charac-
teristic (ROC), area under the ROC curves (AUC), and decision curve analysis (DCA).
Results: The prediction models shared the 10 risk factors (age, gender, midazolam, 
morphine, glucose, diabetes diseases, potassium, international normalized ratio, par-
tial thromboplastin time, and respiratory rate). Cardiovascular diseases were included 
in the logistic regression, the sensitivity was 74.1%, and specificity was 64.6%. When 
platelet and Glasgow Coma Score (GCS) were included and cardiovascular diseases 
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1  |  INTRODUC TION

Neurocognitive disorders (NCDs), including delirium, mild cogni-
tive impairment (MCI), and dementia, pose a grave public health 
challenge.1,2 NCDs are commonly prevalent among perioperative 
patients with sleep disturbance,3 especially those admitted to the 
intensive care unit (ICU).4,5 Coupled with the impact of sleep distur-
bance,6,7 NCDs in the ICU are associated with increased mortality 
and even continue to deteriorate cognition and sleep after ICU dis-
charge.8 In the ICU, sleep disturbance is widespread in adult patients, 
with some studies reporting a prevalence of sleep disturbance in the 
range of more than 50%.4,9,10 Notably, NCDs are closely associated 
with sleep disturbance and are highly prevalent among periopera-
tive patients in the ICUs.11– 13 Adult ICU patients with sleep distur-
bance have been suffered from serious yet still largely unresolved 
NCDs.4,14 Risk assessment tools for ICU delirium are available,15,16 
not specifically for ICU patients with sleep disturbance. Research 
on MCI and dementia in the ICU, especially their risk assessment, 
is rarely available, not to mention that in ICU patients with sleep 
disturbance. There is currently a lack of an overall risk assessment 
system of NCDs specifically for ICU patients with sleep disturbance, 
including those perioperatively admitted to the ICU.

Accumulating evidence indicates potential bidirectional reg-
ulatory connections between sleep disturbance and cognitive 
impairment.5,14,17– 20 Impaired amyloid- β clearance, increased tau 
levels, aggravation of inflammation, impaired synaptic plasticity, 
and changes in neurotransmitters, may have important roles un-
derlying the potential association between sleep disturbance and 
NCDs.18,21 Additionally, evidence from epidemiological and clinical 
studies reveals that delirium, MCI, and dementia have a close cor-
relation with sleep disturbance. Besides, sleep disturbance is one 
of the diagnostic criteria for delirium.22 Although mechanistic stud-
ies have identified novel biomarkers with high sensitivity and speci-
ficity, they lack popularity in clinical practice. Most importantly, no 
potential clinical biomarkers associated with NCDs have been iden-
tified in patients with sleep disturbance. Sleep disturbance is likely 
to be a precursory and concomitant symptom of NCDs and is likely 

to share clinical markers with NCDs. A study on the prediction for 
postoperative sleep disturbance indicated that gender, midazolam, 
and sufentanil were important clinical markers independently as-
sociated with postoperative sleep disturbance.23 Our previous 
study on predicting sleep disturbance in ICU patients suggested 
that some biomarkers from routine laboratory tests also were in-
dependent predictors.24 In the absence of NCD- related prediction 
markers available in patients with sleep disturbance, based on clin-
ical data including the previously established prediction models 
for sleep disturbance, developing the overall evaluation system of 
NCDs risk has important clinical value for ICU patients with sleep 
disturbance. At present, there are no prediction models for NCDs 
in ICU patients with sleep disturbance, though there have been 
many kinds of research on neurocognitive consequences of sleep 
disturbance. This situation may increase the risk of NCDs in ICU 
patients with sleep disturbance.

As recommended,12 early diagnostic prediction models can ef-
fectively assist healthcare providers in estimating the risk of a spe-
cific disease or present condition. This provides theoretical support 
for the early prediction of NCDs in patients with sleep disturbance. 
Based on the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis,25 our study design 
specifically focused on the prediction of NCDs in adult patients 
with sleep disturbances, who were admitted to the ICU. We aimed 
to develop and internally validate novel models for the prediction 
of NCDs in adult ICU patients with sleep disturbance using the 
MIMIC- IV database.

2  |  MATERIAL S AND METHODS

2.1  |  Data source

This retrospective cohort- based study was conducted using the 
MIMIC- IV database (version 1.0), the most recent update after 
MIMIC- III.26 It is a longitudinal, large, single- center database that in-
corporates contemporary critical care data for over 60,000 patients 

were removed in the LASSO prediction model, the sensitivity was 86.1% and specific-
ity was 82.8%. Discriminative abilities of the logistic prediction and LASSO prediction 
models for NCDs in the validation set were evaluated as the AUC scores, which were 
0.730 (95% CI 0.716– 0.743) and 0.920 (95% CI 0.912– 0.927). Net benefits of the pre-
diction models were observed at threshold probabilities of 0.567 and 0.914.
Conclusions: The LASSO prediction model showed better performance than the 
logistic prediction model and should be preferred for nomogram- assisted decisions 
on clinical risk management of NCDs among adult patients with sleep disturbance in 
the ICU.

K E Y W O R D S
ICU, LASSO, logistic regression, neurocognitive disorders, nomograms, sleep disturbance
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admitted to ICUs at the Beth Israel Deaconess Medical Center 
between 2008 and 2019. Patient identifiers in MIMIC- IV were re-
moved to maximize patient privacy protection. MIMIC- IV is a pub-
licly available clinical database that allows for data sharing only after 
passing the Collaborative Institutional Training Initiative examina-
tion. One author who had access to MIMIC- IV from our study group 
specialized in data extraction from this database. We constructed a 
clinical dataset of patient hospitalization information, including their 
demographics, laboratory measurements, medications, and other 
health- related information, based on the structured query language 
for data extraction.

2.2  |  Participants

We included adult patients (age ≥18 years) with sleep disturbance 
admitted to the ICUs and extracted their data from the MIMIC- IV. 
According to the third edition of the International Classification of 
Sleep Disorders, sleep disturbance was divided into seven subtypes 
including insomnia, sleep- related breathing disorders, central disor-
ders of hypersomnolence, circadian rhythm sleep– wake disorder, 
parasomnias, sleep- related movement disorders, and other sleep 
disorders (Appendix S1). Furthermore, sleep disturbance was deter-
mined following diagnostic codes of the International Classification 
of Diseases, 9th revised (ICD- 9) and 10th revised (ICD- 10) editions. 
Only patients who met the criteria of the ICU duration of stay 
greater than 24 h were included.

2.3  |  Outcomes

The primary outcomes included the major NCDs during ICUs 
stay. Based on the recommendations in the 5th Edition of the 
Diagnostic and Statistical Manual of Mental Disorders,22 we in-
cluded delirium, MCI, and dementia as the major NCDs. The in-
formation on included NCDs was extracted according to the 
ICD- 9 code (Appendix S2). Given that neuropsychiatric diseases 
may also accompany cognitive impairment, we excluded specific 
neuropsychiatric diseases including craniocerebral diseases, men-
ingitis, encephalitic diseases, epilepsy, cerebrovascular diseases, 
encephalopathy, mental and neurological disorders, alcoholism 
or drug abuse, and other common neuropsychiatric disorders 
(Appendix S3).

2.4  |  Predictors of NCDs

For the prediction of NCDs, clinical and biological variables were 
extracted from the MIMIC- IV. For patients who had been admit-
ted to ICUs multiple times, we only used the information at their 
first ICU admission. Baseline data, vital signs, and system scores 
only within the first 24 h of ICU admission were included in the 
analysis. Additionally, only the first recorded data of laboratory 

measurements were analyzed. The variables included were as fol-
lows: (1) patient demographics, including age, gender, admission 
type, marital status, and ethnicity; (2) vital signs, including heart 
rate, blood pressure, respiratory rate, temperature, pulse oxygen 
saturation (SpO2), and partial pressure of carbon dioxide (pCO2); (3) 
laboratory parameters, including creatinine level, blood urea nitro-
gen, hemoglobin, platelet count, partial thromboplastin time, inter-
national normalized ratio, prothrombin time, white blood cell count, 
lymphocyte, neutrophils, sodium, potassium, pH, and glucose; (4) 
comorbidities were identified according to the ICD- 9 and ICD- 10 
codes, including Charlson Comorbidity Index (CCI), hypertension, 
diabetes, cardiovascular diseases, chronic pulmonary diseases, liver 
diseases, kidney diseases, and immunodepression; (5) medications, 
including analgesics and sedative drugs (morphine, midazolam, 
propofol, etomidate, dexmedetomidine, and haloperidol) and car-
diovascular drugs (norepinephrine, epinephrine, dobutamine, and 
dopamine); (6) system scores, including Simplified Acute Physiology 
Score II (SAPS II), Sequential Organ Failure Assessment (SOFA) 
score, and Glasgow Coma Score (GCS); (7) treatment strategies, 
including mechanical ventilation and renal replacement therapy, 
along with the length of ICU stay.

2.5  |  Sample size

After using the inclusion and exclusion criteria, a total of 4,895 
eligible patients from MIMIC- IV were enrolled in our cohort. This 
cohort was randomly divided in a ratio of 7:3 into two groups, 
namely the primary and validation cohorts. Based on the set 
standard of 10 events per candidate predictor parameters in 
the machine learning algorithm,25 the 60 predictors included in 
this study required at least 600 individuals with their respective 
events. Also, considering other sample size requirements for de-
veloping a clinical prediction model, 3,916 patients in the primary 
cohort met the standard optimal sample size for further statistical 
analyses.

2.6  |  Data cleaning and missing management

Firstly, we searched the “icustays” table in the “icu” module of the 
MIMIC- IV database. The “icu” module contains data sourced from 
the clinical information system of MetaVision. The MetaVision 
table is denormalized to create a star schema, where the 
“icustays” and “id- items” tables are linked to a set of data tables, 
all of which are suffixed with an "event". The data recorded in 
the “icu” module included venous and fluid inputs (input events), 
patient outputs (output events), procedures (program events), in-
formation recorded as dates or times (date time events), and other 
patient chart information (chart events). All event tables had a 
“stay_id” column to identify related ICU patients from “icustays,” 
and an “item- id” column for identification of concepts recorded 
in “id- items”.26 Subsequently, information for 69,619 patients 
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who were admitted to the ICU was retrieved. Further, we only 
included the “stay_id” at the first hospitalization and excluded 
the patients who were repeatedly admitted to the ICU. Finally, a 
total of 50,048 patients were enrolled in the first ICU admission. 
Subsequently, we merged and processed other forms according 
to the patient's “subject_id” number. Throughout the process, 
we removed patients whose vital signs and laboratory param-
eter information were missing value more than 10% and lacked 
the ICD diagnostic codes. Although missing data is frequent in 
data extraction, MIMIC- IV version 1.0 has addressed this issue by 
updating patient data and improving the separate and combined 
uses of module datasets. Finally, for quality control of missing 
data, a data profiling report (Data S1) was used to analyze all pre-
dictor parameters. The percentage of missing values of calcium 
(2.43%), bun (1.86%), pCO2 (1.65%), and the other variables were 
<2%. Additionally, we processed the variables with missing values 
through multiple imputations and filled in the missing data using 
their predictive values.

2.7  |  Statistical analyses

Data normality was verified by the Shapiro– Wilk test. Continuous 
variables were presented as the mean ±standard deviation (for 
normally distributed data) or median [interquartile range, IQR] (for 
non- normally distributed data) and as the frequency [percentage] 
(for categorical variables). All continuous variables in the data-
set showed skewed distribution. Baseline characteristics between 
NCDs and non- NCDs groups in the primary and validation cohorts, 
respectively, were compared using the Mann– Whitney U test or the 
Kruskal– Wallis test for continuous variables with non- normal dis-
tributions or heterogeneity, and the Pearson Chi- squared test for 
categorical variables.

According to significant differences (p < 0.05) in baseline charac-
teristics in the primary cohort, potential variables were used in the 
further multivariate logistic regression and LASSO regression. Odds 
ratio (OR) and 95% confidence interval (CI) in the logistic regression 
and coefficient in the LASSO regression were calculated to iden-
tify significantly associated independent risk predictors for NCDs. 
Based on the results of the LASSO regression and multivariate logis-
tic analyses, two nomograms were constructed. The final prediction 
models were presented as nomograms, which were the main process 
of developing prediction models for individual NCD diagnoses in this 
study. Moreover, the calibration, discrimination, and clinical utility of 
each nomogram were evaluated. The bootstrap resampling proce-
dure with 1,000 repetitions was used to internally calibrate the no-
mogram in the validation cohort, and a calibration curve was plotted 
to analyze the accordance between the predicted probability using 
the nomogram and actual occurrence. The discriminative ability of 
the nomogram was analyzed using the receiver operating character-
istic (ROC) curves and the area under the ROC curves (AUC), which 
were used along with the calibration curve to evaluate the predic-
tive ability of the prediction models. Decision curve analysis (DCA) 

was used to assess the clinical utility of the prediction models for 
decision- making, and we plotted corresponding net benefits for a 
range of risk thresholds.

Statistical analyses were performed using the R software (ver-
sion 3.4.3), and statistical significance was defined as a two- tailed 
p- value <0.05.

3  |  RESULTS

3.1  |  Participants

We analyzed clinical data of ICU patients obtained from the 
MIMIC- IV database, a total of 69,619 individuals between 2008 
and 2019. Of the 50,048 patients admitted to the ICU for the first 
time, 5,582 were diagnosed with sleep disturbances. All patients 
having craniocerebral diseases (n = 345), mental illness (n = 235), 
alcoholism or drug abuse (n = 40), age <18 years old (n = 32), and 
ICU stay <24 h (n = 35) were excluded. Finally, a total of 4,895 pa-
tients with sleep disturbance were divided into the primary cohort 
(3,916 individuals) and the validation cohort (979 individuals) in 
this study; among them, 1,391 developed NCDs during ICU stay 
(Appendix S4).

A total of 1,110 patients in the primary cohort and 281 in the 
validation cohort exhibited NCDs. In the primary cohort, patients 
in NCDs group were younger than those in non- NCDs group 
(61.3 (48.5– 73.7) vs. 63.7 (53.4– 79.0); p = 0.001). Baseline demo-
graphics, including gender (female), admission type (emergency), 
marital status (married), and ethnicity (white) also showed signifi-
cant differences between the two groups. There were significant 
differences in all vital signs (all p < 0.001). Notably, patients in 
NCDs group had lower creatinine levels (1.4 (0.9– 1.7) vs. 1.6 (1.0– 
1.6), p < 0.001), potassium levels (4.1 (3.9– 4.1) vs. 4.3 (4.0– 4.6), 
p < 0.001), and glucose levels (123 (102– 127) vs. 125 (111– 130), 
p < 0.001); shorter partial thromboplastin time (34.7 (27.6– 36.9) 
vs. 36.9 (28.3– 36.9), p = 0.006) and international normalized ratio 
(1.6 (1.2– 1.8) vs. 1.6 (1.2– 2.0), p < 0.001); higher blood urea nitro-
gen levels (26 (17– 29) vs. 24 (19– 29), p = 0.002), hemoglobin levels 
(11.7 (10.4– 13.4) vs. 11.6 (10.5– 12.3), p = 0.001), platelet counts 
(226 (197– 243) vs. 223 (195– 232), p = 0.008), and higher pH val-
ues (7.41 (7.38– 7.44) vs. 7.38 (7.35– 7.42), p < 0.001), than those in 
non- NCDs group. The two groups significantly differed in terms 
of diabetes and cardiovascular disease incidences, but not for CCI. 
Compared with the non- NCDs group, patients having greater use 
of morphine (678 (61.1%) vs. 970 (34.6%), p < 0.001), midazolam 
(601 (54.1%) vs. 716 (25.5%), p < 0.001), and propofol (256 (23.1%) 
vs. 561 (20.0%), p = 0.036) were more likely to suffer from NCDs. 
Moreover, the NCDs group had higher SAPSII scores (36 (31– 45) 
vs. 35 (32– 39), p < 0.001) and SOFA scores (9 (3– 10) vs. 6 (3– 9), 
p < 0.001), while lower GCS (14 (12– 15) vs. 15 (15– 15), p < 0.001) 
values as compared to the non- NCDs group. Baseline character-
istics and details at first admission to ICU for all participants are 
shown in Table 1.
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TA B L E  1  Characteristics of patients in the primary and validation cohorts

Primary cohort Validation cohort

NCDs group, 
n = 1,110

Non- NCDs group, 
n = 2,806 p

NCDs group, 
n = 281

Non- NCDs group, 
n = 698 p

Age 61.3 (48.5– 73.7) 63.7 (53.4– 79.0) 0.001 61.6 (49.6– 76.1) 63.5 (53.8– 72.8) 0.359

Gender, n (%)

Female 563 (50.7) 1,152 (41.1) <0.001 152 (54.1) 293 (42) 0.001

Male 547 (49.3) 1,654 (58.9) 129 (45.9) 405 (58)

Admission_type (%)

Emergency 601 (54.1) 1,390 (49.5) <0.001 151 (53.7) 332 (47.6) <0.001

Observation 296 (26.7) 581 (20.7) 64 (22.8) 159 (22.8)

Elective 39 (3.5) 96 (3.4) 9 (3.2) 26 (3.7)

Urgent 70 (6.3) 221 (7.9) 32 (11.4) 56 (8.0)

Others 104 (9.4) 518 (18.5) 25 (8.9) 125 (17.9)

Marital_status (%)

Married 455 (41.0) 1,512 (53.9) <0.001 109 (38.8) 377 (54.0) <0.001

Single 452 (40.7) 792 (28.2) 108 (38.4) 203 (29.1)

Divorced 101 (9.1) 191 (6.8) 26 (9.3) 55 (7.9)

Ethnicity (%)

White 857 (77.2) 2,030 (72.3) 0.001 221 (78.6) 512 (73.4) 0.185

Black 122 (11) 434 (15.5) 30 (10.7) 102 (14.6)

Others 131 (11.8) 342 (12.2) 30 (10.7) 84 (12.0)

Vital signs, [IQR]

Heart rate (bpm) 110 (101– 123) 104 (100– 108) <0.001 98 (95– 102) 98 (95– 102) 0.434

Diastolic blood pressure 
(mmHg)

47 (44– 50) 45 (42– 48) <0.001 44 (41– 47) 45 (41– 47) 0.725

Systolic blood pressure 
(mmHg)

94 (81– 102) 93 (88– 97) <0.001 94 (92– 98) 94 (92– 97) 0.725

Respiratory rate (bpm) 25 (22– 29) 27 (23– 30) <0.001 25 (23– 28) 26 (23– 28) 0.564

Temperature (℃) 37.3 (37.1– 37.6) 37.2 (36.9– 37.6) <0.001 37.1 (36.9– 37.4) 37.2 (36.9– 37.4) 0.237

SpO2 (mmHg) 129 (88– 133) 123 (99– 127) <0.001 122 (88.5– 127) 123 (91.8– 128) 0.546

pCO2 (mmHg) 46 (40– 49) 41 (37– 44) <0.001 41 (38– 44) 42 (39– 44) 0.225

Laboratory parameters, [IQR]

Creatinine (mg/dL) 1.4 (0.9– 1.7) 1.6 (1.0– 1.6) <0.001 1.6 (0.9– 1.8) 1.6 (1.0– 1.8) 0.674

Blood urea nitrogen 
(mg/dL)

26 (17– 29) 24 (19– 29) 0.002 27 (17– 30) 28 (19– 29.3) 0.399

Hemoglobin (g/dL) 11.7 (10.4– 13.4) 11.6 (10.5– 12.3) 0.001 11.1 (10.8– 12.1) 11.1 (10.9– 11.6) 0.417

Platelet (×109/L) 226 (197– 243) 223 (195– 232) 0.008 228 (218– 247) 227 (190– 230) 0.001

Partial thromboplastin 
time (s)

34.7 (27.6– 36.9) 36.9 (28.3– 36.9) 0.006 32.2 (27.4– 36.8) 36.6 (28.4– 36.9) 0.002

International normalized 
ratio

1.6 (1.2– 1.8) 1.6 (1.2– 2.0) <0.001 1.4 (1.2– 1.6) 1.4 (1.2– 1.7) 0.090

Prothrombin time (s) 14.5 (12.3– 15.4) 14.7 (12.5– 15.4) 0.872 14.3 (12.2– 15.4) 14.7 (12.5– 15.5) 0.059

White blood cell count 
(×109/L)

11.1 (8.2– 13.5) 11.5 (8.8– 12.2) 0.678 11.0 (8.6– 11.2) 11.0 (8.8– 11.2) 0.606

Lymphocyte (%) 21.6 (15.3– 26.7) 21.6 (15.0– 26.0) 0.710 21.6 (15.8– 26.7) 21.6 (14.0– 25.1)

Neutrophils (%) 69 (62.5– 75.4) 69 (63.7– 75.5) 0.468 69 (62.5– 75.0) 69 (63.7– 77.5)

Sodium (mmol/L) 138 (137– 139) 138 (138– 138) 0.206 136 (134– 139) 137 (134– 139) 0.550

Potassium (mmol/L) 4.1 (3.9– 4.1) 4.3 (4.0– 4.6) <0.001 4.2 (3.9– 4.4) 4.2 (3.8– 4.3) 0.240

(Continues)
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3.2  |  Model construction

The prediction models for NCDs were developed using 1,110 major 
NCD events in the primary cohort. Clinical and biological vari-
ables with p < 0.05 (Table 1) were assessed for the development of 
the new NCDs risk prediction models. The variables were further 

examined using multivariate logistic regression of NCDs risk. The 
strongest predictor was midazolam used with an OR of 2.820 (95% 
CI 2.411– 3.229, p < 0.001). Predictors including gender (OR 1.271, 
95% CI 1.109– 1.1458, p = 0.001), respiratory rate (OR 1.041, 95% 
CI 1.027– 1.055, p < 0.001), partial thromboplastin time (OR 1.004, 
95% CI 1.001– 1.008, p = 0.020), international normalized ratio 

Primary cohort Validation cohort

NCDs group, 
n = 1,110

Non- NCDs group, 
n = 2,806 p

NCDs group, 
n = 281

Non- NCDs group, 
n = 698 p

pH 7.41 (7.38– 7.44) 7.38 (7.35– 7.42) <0.001 7.39 (7.36– 7.41) 7.38 (7.36– 7.40) 0.645

Glucose (mg/dL) 123 (102– 127) 125 (111– 130) <0.001 123 (107– 127) 123 (108– 127) 0.992

Comorbidity, n (%)

CCI 4 (2– 6) 4 (3– 6) <0.001 4 (3– 7) 4 (3– 7) 0.768

Hypertension 608 (54.8) 1,595 (56.8) 0.253 146 (52.0) 388 (55.6) 0.321

Diabetes 268 (24.1) 924 (32.9) <0.001 66 (23.5) 241 (30.7) 0.001

Cardiovascular diseases 225 (20.3) 661 (23.6) 0.028 55 (19.6) 181 (25.9) <0.001

Chronic pulmonary 
diseases

310 (27.9) 718 (25.6) 0.136 81 (28.8) 180 (25.8) 0.119

Liver. diseases 81 (7.3) 213 (7.6) 0.788 14 (5.0) 54 (7.7) 0.781

Kidney. diseases 148 (13.3) 439 (15.6) 0.074 38 (13.5) 129 (18.5) 0.074

Immunosuppressive 15 (10.4) 315 (11.2) 0.461 23 (8.2) 80 (11.5) 0.136

Medications, n (%)

Analgesic and sedative drugs (%)

Morphine 678 (61.1) 970 (34.6) <0.001 132 (47) 274 (39.3) 0.031

Midazolam 601 (54.1) 716 (25.5) <0.001 135 (48) 273 (39.1) 0.012

Propofol 256 (23.1) 561 (20.0) 0.036 111 (39.5) 298 (42.7) 0.390

Etomidate 215 (19.4) 563 (20.1) 0.657 96 (34.2) 217 (31.1) 0.364

Dexmedetomidine 189 (17.0) 516 (18.4) 0.333 116 (41.3) 298 (42.7) 0.721

Haloperidol 129 (11.6) 365 (13.0) 0.262 48 (17.1) 106 (15.2) 0.497

Cardiovascular system drugs (%)

Norepinephrine 74 (6.7) 173 (6.2) 0.560 15 (5.3) 45 (6.4) 0.559

Epinephrine 13 (1.2) 49 (1.7) 0.255 1 (0.4) 9 (1.3) 0.297

Dobutamine 7 (0.6) 20 (0.7) 1.000 0 (0) 3 (0.4) 0.562

Dopamine 17 (1.5) 34 (1.2) 0.436 4 (1.4) 6 (0.9) 0.485

Score system, [IQR]

SAPSII 36 (31– 45) 35 (32– 39) <0.001 34 (31.5– 37) 34 (32– 38) 0.695

SOFA 9 (3– 10) 6 (3– 9) <0.001 6 (3.5– 9) 6 (4– 9) 0.764

GCS 14 (12– 15) 15 (15– 15) <0.001 13 (11– 14) 13 (11– 15) 0.612

Treatment measures

Mechanical ventilation, 
n (%)

51 (4.6) 136 (4.8) 0.803 13 (4.6) 29 (4.2) 0.729

Renal replacement 
therapy, n (%)

12 (1.1) 44 (1.6) 0.297 11 (3.9) 43 (6.2) 0.215

Length of stay in ICU, days 1.0 (1.0– 3.0) 1.0 (1.0– 3.0) 0.007 1.0 (1.0– 3.0) 1.0 (1.0– 3.0) 0.494

Hospital mortality, n (%) 20 (1.8) 42 (1.5) 0.480 3 (1.1) 9 (1.3) 1.000

Note: p < 0.05 means significant different.
Abbreviations: CCI, Charlson Comorbidity Index; GCS, Glasgow Coma Scale; ICU, intensive care unit; NCDs, neurocognitive disorders; pCO2, partial 
pressure of carbon dioxide; SAPSII, simplified acute physiology score; SOFA, sequential organ failure assessment; SpO2, pulse oxygen saturation.

TA B L E  1  (Continued)
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(OR 1.104, 95% CI 1.015– 1.201, p = 0.021), potassium (OR 2.191, 
95% CI 1.910– 2.514, p < 0.001), glucose (OR 1.002, 95% CI 1.000– 
1.003, p = 0.034), diabetes diseases (OR 1.430, 95% CI 1.223– 1.671, 
p < 0.001), cardiovascular diseases (OR 1.303, 95% CI 1.104– 1.602, 
p = 0.002), and morphine use (OR 2.144, 95% CI 1.815– 2.532, 
p < 0.001) were also significant independent risk factors of NCDs. 
Age (OR 1.003, 95% CI 0.997– 1.008, p = 0.314) was also considered 
as an important variable (Table 2). A total of 50 potential risk vari-
ables were further included in the LASSO analysis (Appendix S5). A 
total of 12 independently associated risk variables including gender, 
platelet count, glucose, potassium, international normalized ratio, 
partial thromboplastin rate, respiratory rate, age, diabetes disease, 
GCS, morphine use, and midazolam use were selected through the 
LASSO analysis (Appendix S6). Subsequently, 11 risk predictors from 
the logistic regression and 12 variables from the LASSO analyses 
were included in the final prediction models.

3.3  |  Model specifications

The prediction models are shown in the form of nomograms in 
Figure 2. In the model based on the 11 risk predictors from the mul-
timodal logistic analyses, the nomogram standard scoring line of 0– 
100 points was the baseline which gave a corresponding score range 
for each predictor, where age, glucose, potassium, international 
normalized ratio, partial thromboplastin rate, and respiratory rate 
ranged from 0 to 100, 0 to 600, 0.5 to 7, 0 to 16, 10 to 150, and 15 to 
55, respectively. By calculating and summing up the weighted scores 
for each predictor included in the model, a total score of 380– 560 
was obtained, which corresponded to an approximately 2.0%– 90% 
overall probability of NCDs (Figure 1A). In the other model based on 
the combination of the selected non- zero variables from the LASSO 
analysis, the total score was 960– 1,080, which corresponded to an 
overall probability of 0.2%– 99.5% (Figure 1B).

3.4  |  Model performance

The performances of the prediction models were internally assessed 
using the validation cohort. First, the calibration plots of the pre-
diction models showed that the apparent and bias- corrected curves 
showed slight deviations from the ideal line (Figure 2), which indi-
cated high consistency between the observations and predictions 
for the predictive value of the nomograms for NCDs. LASSO regres-
sion analysis prediction model calibration curve (Figure 2B) is better 
than logistic regression analysis prediction model (Figure 2A).

Second, the AUC for the logistic prediction model was 0.730 
(95% CI 0.716– 0.743); the sensitivity and specificity based on the 
ROC were 74.1% and 64.6%, respectively (Figure 3A). The AUC of 
the LASSO prediction model was 0.920 (95% CI 0.912– 0.927); it ex-
hibited high sensitivity and specificity at 86.1% and 82.8%, respec-
tively (Figure 3B), which indicated that it had a better discriminative 
ability for the prediction of NCDs.

TA B L E  2  Multivariate logistic analysis of risk factors to NCDs

Multivariate analysis

OR

95.0% CI

p- valuesLower Upper

Age 1.003 0.997 1.008 0.314

Gender, n (%) 1.271 1.109 1.458 0.001

Female

Male

Admission_type, n (%)

Emergency 0

Observation 1.380 0.948 2.009 0.094

Elective 1.608 1.210 2.138 0.001

Urgent 0.985 0.833 1.164 0.857

Others 2.087 1.657 2.628 <0.001

Ethnicity, n (%)

White 0

Black 1.737 1.426 2.117 <0.001

Others 1.096 0.884 1.360 0.403

Heart rate (bpm) 0.977 0.973 0.982 <0.001

Diastolic blood 
pressure (mmHg)

0.988 0.979 0.997 0.008

Systolic blood 
pressure (mmHg)

0.141 0.990 1.001 0.132

Respiratory rate (bpm) 1.041 1.027 1.055 <0.001

Temperature (℃) 0.981 0.875 1.100 0.745

SpO2 (mmHg) 0.985 0.972 0.999 0.032

pCO2 (mmHg) 0.949 0.943 0.956 <0.001

Creatinine (mg/dL) 0.918 0.875 0.963 <0.001

Blood urea nitrogen 
(mg/dL)

0.999 0.995 1.004 0.767

Hemoglobin(g/dL) 1.026 0.990 1.062 0.156

Platelet (×109/L) 0.998 0.997 0.999 <0.001

Partial thromboplastin 
time (s)

1.004 1.001 1.008 0.020

International 
normalized ratio

1.104 1.015 1.201 0.021

Potassium (mmol/L) 2.191 1.910 2.514 <0.001

pH 0.004 0.001 0.010 0.003

Glucose (mg/dL) 1.002 1.000 1.003 0.034

Diabetes diseases, 
n (%)

1.430 1.223 1.671 <0.001

Cardiovascular 
diseases, n (%)

1.303 1.104 1.602 0.002

Morphine, n (%) 2.144 1.815 2.532 <0.001

Midazolam, n (%) 2.820 2.411 3.229 <0.001

Propofol, n (%) 0.661 0.558 0.782 <0.001

SAPS II 0.981 0.973 0.989 <0.001

SOFA 0.967 0.946 0.988 0.002
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Finally, DCA was used to evaluate the clinical utility of the pre-
diction models. The DCA curve represented a continuum of thresh-
old probability (x- axis) for major NCDs risk and net benefit (y- axis) 
of model applicability for potential patients at risk relative to the as-
sumption that no patients would have NCDs. The DCA showed that 
the threshold probability of net benefit was 0.567 for the logistic pre-
diction model (Figure 4A) and 0.914 for the LASSO prediction model 
(Figure 4B). For the range of NCD risk, the net benefit of the LASSO 
prediction model was larger than that of the logistic prediction model. 
In addition, the DCA of midazolam use in predicting NCDs risk showed 
better performance at a threshold probability of 0.475 (Appendix S7).

4  |  DISCUSSION

Based on specifically collected clinical data from MIMIC- IV version 
1.0, we developed and validated the prediction models for NCDs in 

adult patients with sleep disturbances during critical care. The lo-
gistic prediction model was based on the following 11 predictors: 
age, midazolam use, gender, respiratory rate, partial thromboplas-
tin time, international normalized ratio, potassium, glucose, diabe-
tes, cardiovascular diseases, and morphine use. It comprised of the 
most potentially valuable predictors of the diagnostic information, 
including clinical and biological variables. The LASSO prediction 
model consisted of 12 independent risk variables, among which 
platelet counts and GCS were included, unlike in the logistic predic-
tion model; the remaining 10 variables were the same as that in the 
logistic prediction model. Accordingly, two nomograms were drawn 
to predict the risk of NCDs in the primary cohort. Furthermore, we 
internally validated the performances of the two nomograms for risk 
prediction of NCDs in the validation cohort. Although the predic-
tion models showed similar trends for calibration, the LASSO pre-
diction model had the better discriminative ability as compared to 
the logistic prediction model, which suggested that it could predict 

F I G U R E  1  Nomograms for the prediction models. (A) Nomograms for the logistic prediction model. On a baseline line of 0– 100 points, 
score lines were assigned to age, midazolam, opioids, cardiovascular diseases, diabetes diseases, glucose, potassium, international normalized 
ratio, partial thromboplastin time, respiratory rate, and gender, all of which had their own score ranges. (B) Nomograms for the LASSO 
prediction model score lines were assigned to gender, platelet, glucose, potassium, international normalized ratio, partial thromboplastin 
time, respiratory rate, age, diabetes, GCS, morphine, and midazolam; adding an example for Figure A and Figure B (red dot), the red dots 
on each indicator in the figure, it is the data value of each indicator of the patient; draw a vertical line up to the point line at the position of 
the red dot of each indicator; the score of the vertical line position is the score of the red dot of each indicator. Total score of all indicator 
scores and find the position of the total score on the total points line. Draw a vertical line to the Pr (neurocognitive disorders) line according 
to the total score position, which is the incidence of neurocognitive disorders in the patient. The total point of the nomogram was 442, with 
the corresponding probability of 10.1% for NCDs in (A). The total scores of the nomogram were 1,030 corresponding to the probability of 
0.842% in (B) [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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the risk of NCDs with higher accuracy. Importantly, the prediction 
models also had great clinical utility for the prediction of NCDs risk 
in ICU patients with sleep disturbance as shown by the findings of 
the DCA. The LASSO prediction model had better performance 
as compared to the logistic prediction model in the net benefit of 

nomogram- assisted decision- making at the set threshold probability 
range of 0.567– 0.914.

Nomograms are commonly used risk assessment tools for the 
prognosis of cancers and cerebrovascular diseases.27,28 Interestingly, 
with the ability to predict the individual probability of a clinical 

F I G U R E  2  Calibration plots of the 
prediction models in validation cohort. In 
different prediction probability sections, 
the apparent and bias- corrected curves 
showed good agreement and had a 
certain deviation from the ideal line. (A) 
Calibration plot of the logistic prediction 
model. (B) Calibration plot of the LASSO 
prediction model

F I G U R E  3  The ROC curve for the 
prediction models. (A) ROC curve for 
the logistic prediction model. Sensitivity 
and specificity were 74.1% and 64.6%, 
respectively, and AUC score was 0.730 
(95% CI 0.716– 0.743) in the ROC. (B) 
ROC curve for the LASSO prediction 
model. Sensitivity and specificity were 
86.1% and 82.8%, respectively, and AUC 
score was 0.920 (95% CI 0.912– 0.927) in 
the ROC [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  4  The DCA curve for the 
prediction models. (A) DCA curve for the 
logistic prediction model. A threshold 
probability value was 0.567. (B) DCA 
curve for the LASSO prediction model. 
A threshold probability value was 
0.914 [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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event by integrating diverse potential variables, nomograms have 
now been extended to clinically and biologically integrated diagnos-
tic models, which are an important component of modern medical 
decision- making.25 In this study, we used clinical and biological vari-
ables to construct two visualization nomograms for the prediction 
of NCDs risk in a patient admitted to the ICU having sleep distur-
bance. Although the two nomograms followed the standard pro-
cesses of proofreading, recognition, and clinical application, along 
with good prediction performances, the prospective effects of 
nomogram- assisted decisions for patient satisfaction and outcomes 
remain unclear. Given that, currently, there is a paucity in nomogram 
availability for ICU clinicians, this study provided two alternative as-
sessment tools for high- risk NCDs in ICU patients suffering from a 
high magnitude of sleep disturbance. Notably, despite the internal 
validation which showed good discrimination and calibration of the 
nomograms, they were not assessed externally and prospectively; 
thus, we need to evaluate whether their use could improve patient 
outcomes over clinician judgment in future by conducting a pro-
spective assessment. Software development according to the estab-
lished perfect model, combining medical treatment and engineering 
for clinical transformation, fill in the gaps in study.

The strongest predictors of major NCDs in this cohort of ICU 
patients with sleep disturbance were medications, in particular, the 
use of midazolam and morphine. Critically ill patients, especially 
those with sleep disturbance, often need sedatives and analgesics, 
which are inseparable from the common benzodiazepines and mor-
phine.12 In the population, benzodiazepines, including midazolam, 
have been identified as being independently associated with the 
development of delirium and dementia.29,30 However, the impact 
of midazolam, the most powerful predictor, is changeable owing to 
the use of low- risk sedatives, such as dexmedetomidine and propo-
fol as substitutes.12,31,32 Dexmedetomidine was not significantly 
associated with NCDs in this cohort and even appeared to provide 
potential protection against delirium among adults on mechanical 
ventilators.12,33 Besides, the targeted sedation level of dexmedeto-
midine was not different from that of midazolam in ICU patients; 
dexmedetomidine- treated patients experienced less delirium.32 
Interestingly, in previous findings on sleep disturbance, dexme-
detomidine is known to stimulate natural sleep and improve sleep 
quality,34 which are potentially advantageous for preventing NCDs 
in ICU patients with sleep disturbance, owing to the two- way rela-
tionship between sleep disturbance and major NCDs.4,14,18 Notably, 
propofol, another commonly used alternative sedative, showed pro-
tective characteristics and reduced the risk of NCDs in this study. 
The results supported the superiority of propofol against dexme-
detomidine for the prevention of NCDs. However, this may only be 
suitable for adult patients with sleep disturbance in the ICU. Based 
on current clinical evidence,35 in older ICU patients at risk of delir-
ium, compared with propofol, dexmedetomidine is associated with 
a lower incidence of delirium. However, our findings showed that 
age had no significant association with the risk of NCDs, which was 
not consistent with the PRE- DELIRIC model.16 Although age has im-
portant associations with the development and progression of major 

NCDs,16,36,37 it is irreversible and lacks targeted preventive mea-
sures. However, alternative sedatives are prescribed according to 
age to counteract age- related neurocognitive declines. Additionally, 
in this study, the use of morphine showed a significant association 
with major NCDs, and the association shows similar trends as mor-
phine and delirium in the PRE- DELIRIC model.16 However, the causal 
association between morphine and major NCDs, including delirium 
remains controversial,38 and even, the 2018 Pain, Agitation/seda-
tion, Delirium, Immobility, and Sleep disruption (PADIS) guidelines 
do not propose any high- quality recommendations in this regard for 
the ICU patients.12 Fortunately, morphine use is intervenable and 
replaceable by multimodal analgesics, indicating that even though 
the use of morphine is a powerful risk predictor for major NCDs,39 
non- morphine analgesics, including nonsteroidal anti- inflammatory 
drugs, may be conducive for the prevention of NCDs causing sleep 
disturbance in the ICU patients. Nevertheless, evidence suggests 
that nonsteroidal anti- inflammatory drugs are also associated 
with increased risk of delirium in the elderly,40,41 but not in adults. 
Therefore, when using the prediction model to identify morphine 
use, age also should be fully considered during the selection of low- 
risk alternatives. Notably, in cases of severe pain, opioid therapy can 
be taken, as one should not ignore that pain itself has a prominent 
association with delirium.38

The prediction models incorporated the laboratory parameters 
as potential predictive biomarkers for the processes underlying 
NCDs in sleep disturbance among ICU patients. Despite the lack of 
specific neurological biomarkers, increased concentrations of po-
tassium showed a significant independent association with major 
NCDs in this study. Increased serum potassium is bidirectionally 
correlated with reduced pH value and metabolic acidosis,42 both of 
which are independently associated with delirium in ICU patients.16 
Additionally, biomarkers reflecting coagulation dysfunction, such as 
increased partial thromboplastin rate and international normalized 
ratio, could directly reflecting the decrease in coagulation functions 
and were independent predictors of major NCDs events. A previ-
ous study has evaluated the association between coagulation and 
major NCDs in the ICU,43,44 but the predictive value of biomark-
ers reflecting different coagulation stages remains inconsistent.45 
However, this correlation was largely dependent on the initiation 
of inflammation, underlying mechanisms, including inflammation, 
damaged vascular endothelium, abnormal activation of coagulation 
pathways, inhibition of anticoagulant and fibrinolysis functions, 
and micro- thrombosis finally leading to cognitive decline, even de-
mentia.43,44 Instead, our findings showed that inhibited coagulation 
independently increased the risk of NCDs without any significant 
inflammatory differences. However, biomarkers in these studies 
were limited to specific cytokines of the anticoagulant and fibri-
nolytic systems, such as protein C and plasminogen activating in-
hibitor- 1, which represented increased coagulation in delirium and 
dementia.43,45 We did not test these specific cytokines, but these 
were commonly incorporated clinical coagulation parameters, which 
may be conducive as universally and easily available predictive bio-
markers. Similarly, increased blood glucose manifested as diabetes 
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was an important predictor of the risk of NCDs46; it has previously 
been considered a risk factor for delirium.47 As shown by the results, 
diabetes was also an independent risk factor. Therefore, for ICU pa-
tients with sleep disturbance who are at risk of NCDs, comorbid dia-
betes, in particular, lowering blood glucose within a safe range could 
reduce the probability of NCDs.

Gender, respiratory rate, and other vital signs, in several PRE- 
DELIRIC models,16,48 do not contribute to the risk of delirium and 
are not commonly used. As an important system score for evaluating 
the status of critically ill patients, APACHE II, shows an important 
association with ICU delirium,16 however, this was inconsistent with 
our findings. Nonetheless, the APACHE II score may have potential 
value for predicting delirium in ICU patients with sleep disturbance, 
as in our study, patients with NCDs had higher APACHE II scores 
than those without NCDs in the primary cohort; in addition to delir-
ium, MCI and dementia were added to the primary outcomes, which 
could have reduced the overall specificity and sensitivity of this 
score. Most importantly, based on the integration of several clinical 
variables, the model could identify modifiable risks to facilitate the 
availability of targeted prevention of NCDs in high- risk patients.

However, this study has some limitations. First, although 
MIMIC- IV (version 1.0) included comprehensive clinical data from 
critically ill patients with sleep disturbance and is recently updated, 
this study had inherent limitations of a retrospective cohort, includ-
ing selection bias, low levels of evidence, and data loss. Second, the 
clinical and biological variables were measured at one point on the 
first day of admission to ICU; however, in the development process 
of sleep disturbance to the NCDs, these variables are dynamic and 
change over time; thus, we may have missed the diagnostic impor-
tance of unrecognized variables. Third, due to a lack of prospective 
validation, the external applicability of the model may be limited. It 
needs to be resolved through a prospective external queue in future 
by us. Finally, the single- outcome events were not independently 
analyzed, which could have reduced the specificity of the model for 
single NCD events. Despite the above limitations, early prediction 
of the NCDs may provide response time for clinicians for the imple-
mentation of preventive measures.

5  |  CONCLUSION

In conclusion, the models could predict NCDs for adult ICU patients 
with sleep disturbance. Most importantly, the LASSO prediction 
model had prominent advantages over the logistic prediction model 
in terms of their predictive performances and, therefore, could pro-
vide clinical decision support for neurocognitive protection in ICU 
patients with sleep disturbance.
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