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Abstract
The manipulation of chromatin structure regulates gene expression and the flow of genetic information. Histone
modifications and ATP-dependent chromatin remodeling together with DNA methylation are dynamic processes
that modify chromatin architecture and profoundly modulate gene expression. Their coordinated control is key
to ensuring proper cell commitment and organ development, as well as adaption to environmental cues. Recent
studies indicate that abnormal epigenetic status of the genome, in concert with alteration of transcriptional
networks, contribute to the development of adult cardiomyopathy such as pathological cardiac hypertrophy. Here
we consider the emerging role of different classes of chromatin regulators and how their dysregulation in the adult
heart alters specific gene programs with subsequent development of major cardiomyopathies. Understanding the
functional significance of the different epigenetic marks as points of genetic control may represent a promising
future therapeutic tool.
 2013 King Faisal Specialist Hospital & Research Centre. Journal of Pathology published by John Wiley & Sons Ltd on behalf of
Pathological Society of Great Britain and Ireland.
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Introduction

In eukaryotes, the manipulation of chromatin structure
represents a means of regulating access to genetic
information. One way to achieve this is via packaging
of nuclear DNA. This process involves folding of
approximately 2 metres of linear DNA around histone
octamers comprising histone H2A, H2B, H3 and
H4, which forms the basic unit of chromatin named
the nucleosome [1]. DNA packaging is achieved,
in part, by the strength of DNA interaction with
histone proteins that maintain chromatin in a con-
densed (silenced) or relaxed (active) state. Chromatin
undergoes a number of structural re-arrangements that
regulate gene activity and manifest as specific cellular
phenotypes [2,3]. The first level of control is the DNA
sequence subjected to modification by methylation.
The next layer is at the level of the nucleosome
whose positioning together with the expression of
histone variants (e.g. H2A.Z, H2A.X, H3, etc . . . )
and histone post-translational modifications alter
chromatin architecture. Chromatin is further organized
through nuclear compartmentalization; specific nuclear
domains are associated with genes of variable densities
that correlate with active or silenced chromatin states.
Changes in chromatin structure are the basis of many
regulatory processes such as transcription, replication
and DNA repair.

Enzymatic post-translational histone modification
and ATP-dependent chromatin remodeling enzymes
alter chromatin structure [4–6]. Histone chaperones,
inclusion of histone variants, DNA methylation (in
some species) and recruitment of chromatin binding
proteins further influence chromatin architecture [7]. It
has become clear that chromatin is a highly dynamic
structure and that histone modifications are not as
“static” as once thought. In fact, most histone modi-
fications are reversible. Enzymes removing the histone
“marks” act in pathways that oppose those involved
in placing the marks. The existence of a plethora of
factors that modify chromatin illustrates the extent
to which chromatin conformation is integrated into
gene regulatory pathways. These non-genetic changes
that alter gene expression without affecting the DNA
sequence are the basis of epigenetics.

Epigenetic mechanisms have different outcomes in
different organs. Cell-type specificity is achieved by the
selective recruitment of enzymes involved in chromatin
remodeling, histone modification and DNA methyla-
tion that dictate gene expression patterns temporally
and spatially. One organ that illustrates how changes
in the epigenome results in disease associated pheno-
types is the heart. Inadequate orchestration of epige-
netic mechanisms in the developing heart results in
cardiac malformations [8–11] [12,13] [14] [15] [16]
[17]. Recent reports also indicate that chromatin
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remodeling and modifications play vital roles in adult
cardiomyopathy. Here, we summarize this emerging
area of research related to abnormal epigenetic inter-
actions in adult cardiomyopathy. We particularly focus
on epigenetic changes due to histone modifications and
their role in cardiac hypertrophy and heart failure.

Pathological Cardiac Hypertrophy

Pathological hypertrophy is a maladaptive growth of
the heart in response to stress resulting from sev-
eral common disorders such as long-standing hyper-
tension, atherosclerosis, myocardial infarction or muta-
tions in genes encoding proteins of the sarcomere. The
final outcome is reduced cardiac output with increased
risk of heart failure and sudden death [18–20]. The
hypertrophic response is characterized by ventricular
remodeling associated with increased fibrosis and car-
diomyocyte size resulting in enlargement of the heart
and depressed contractile function. At the molecular
level, cardiac hypertrophy involves activation of a wide
range of signaling pathways that culminate in the cell
nucleus [21,22]. There, changes in the activity of tran-
scription factors re-activate fetal cardiac genes while
their adult isoforms are down-regulated. Studies now
indicate that changes in chromatin structure parallel
the “classical” transcriptional reprogramming occur-
ring during pathological cardiac hypertrophy. Below,
we discuss abnormalities of the epigenome implicated
in pathological cardiac growth, especially chromatin
remodelers and histone modifications.

Histone Modifications

Studies from the past two decades have established
that local changes in chromatin structure regulate the
expression of many eukaryotic genes [23]. Chromatin
modifications have become integrated into normal
gene regulatory pathways. Histones can be modified
by post-translational modifications such as acetylation,
methylation, phosphorylation and ADP-ribosylation
(Figure 1) [4–6]. While it is still difficult to decode
the specific post-translational modifications at the
level of single histones and single nucleosomes,
mounting evidence suggests that histone modifications
“communicate” and influence one another [23]. Epige-
nomic studies indicate that local changes in chromatin
architecture alter specific transcriptional programs and
contribute to the development of cardiac pathologies
in the adult (Figure 2, Table 1).

Histone acetylation
Histone acetylation and deacetylation are central mech-
anisms for the control of gene expression [24–26].
With the discovery of coactivator complexes con-
taining histone acetyltransferase (HAT) activity and

co-repressor complexes containing histone deacetylase
(HDAC) activity, acetylation evolved as a paradigm
of gene regulation by histone modifications [27]. The
attachment of an acetyl group to lysine residues neu-
tralizes the basic charge of the residue. Hence, his-
tone acetylation by HATs disrupts intra- and internu-
cleosomal interactions, which in turn “relaxes” chro-
matin structure and activates transcription. In contrast,
deacetylation of histones by HDACs removes acetyl
groups and consequently increases histone-DNA con-
tacts, resulting in condensation of chromatin and gene
repression. More than a decade ago, it was estab-
lished that specific HATs and HDACS control cardiac
growth in response to stress. Major findings show-
ing that histone acetylation\deacetylation is critical to
hypertrophic signaling pathways in heart muscle are
summarized below (see also [8,28]).

Histone Acetyltransferases

Acetylation of histones by p300 or the closely related
CREB-binding protein (CBP) acetyltransfereases is
required for proper heart development. Deletion of
p300 or CBP is lethal in the embryo indicating that
both co-activators are essential for mammalian heart
development [29]. The HAT domain is important in
mediating p300/CBP function, as its’ abolishment leads
to abnormalities of the cardiovascular system [30].
p300 also plays a positive role in cardiac hypertro-
phy and this function requires HAT activity [31,32].
p300 interacts with histones and also specific transcrip-
tion factors such as GATA4. Specific over-expression
of p300 in mouse heart increases GATA4 acetyla-
tion, which results in eccentric cardiac dilation with
depressed systolic function [31,33]. p300 is selectively
recruited at the ANF and BNP promoters in the left
ventricle after pressure overload. This event is associ-
ated with increased H3K9/K14 and H4K5/K8/K12/K16
acetylation. The distinct histone acetylation pattern in
the left and right ventricles indicates that ventricular
cavities are epigenetically different [34].

Histone Deacetylases

HDACs are a class of chromatin remodeling enzymes
involved in a broad range of biological functions. There
are four major HDACs classified according to their
sequence homology, enzymatic activity and tissue dis-
tribution. HDACs remove acetyl groups in the his-
tone “tails”, thus increasing histone-DNA contacts and
causing chromatin condensation and gene repression
[24,25,35]. Several reviews have recently summarized
the function of HDACs in the cardiovascular system
and the use of HDAC inhibitors in clinical setting to
treat a wide variety of diseases [8,36].

Histone methylation
Histone methylation was described for the first time
in 1964 [37]. Thirty-five years later, definite evidence
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Figure 1. Schematic representation of epigenetic mechanisms altering chromatin structure and cardiac gene expression. DNA is packaged
in chromatin composed of nucleosomes each containing an octamer of histone H3, H4, H2A and H2B. The flexible N-terminal histone
‘‘tails’’ are subjected to post-translational modifications such as acetylation, phosphorylation, methylation and ribosylation. These covalent
modifications alter DNA-histone interactions which change chromatin conformation from an ‘‘inactive’’/repressed state to an ‘‘active’’/open
state, allowing for transcription of cardiac genes. Chromatin conformation can be dynamically regulated by ATP-dependent chromatin
remodeling complexes. Changes in DNA methylation can occur in response to stress and contribute to changes in cardiac gene expression.

linking histone methylation and transcription was pro-
vided when the histone H3 arginine-specific methyl-
transferase CARM1 was found to interact with the
steroid-hormone-receptor coactivator GRIP-1 in tran-
scriptional initiation [38]. Histones can be methylated
on arginine but also on lysine residues. The major-
ity of studies on cardiac hypertrophy and heart failure
have focused on histone lysine methylation. Sites pre-
dominantly methylated in histones H3 include lysines
4, 9 and 27, and 36. Lysine 20 is methylated in H4
[39]. These lysines can be mono-, di- or tri- methy-
lated in histones, adding another level of complexity to
the posttranslational status of the histone tails. While
histone acetylation is universally linked to an “open”
chromatin state and to gene activation, methylation of
histones has a more diverse outcome; it can be asso-
ciated with active, “poised” and repressive states of
chromatin. This has resulted in considerable attention
in the scientific community with an explosion of studies
investigating the biological function of histone methy-
lation. The specific epigenetic changes in embryonic
stem cells (ESCs) were recently reviewed as well as
the role of histone methylation in cardiac development
[2,8,40,41]. Below, we focus on the less well-studied
role of histone lysine methylation in cardiac hypertro-
phy and heart failure.

H3K4 and K9 methylation

Recent studies indicate that H3K4me3 is important for
the normal function of adult cardiomyocytes. Reduc-
tion of H3K4me3 level in the adult heart after cardiac-
specific deletion of the PAX interacting protein 1
(PTIP), a cofactor for H3K4 methylation, alters car-
diac gene expression. Among the genes affected by
PTIP ablation is the Kv channel-interacting protein
2 (Kcnip2 ). PTIP deletion reduces cardiac repolar-
ization (Ito) gradient and sodium current (INa). This
also prolongs the duration of action potentials, which
increases L-type calcium current (Ica,L) and increases
intracellular calcium, resulting in increased cardiac
contractility [42]. Thus, appropriate H3K4me3 level
is critical to maintain cellular homeostasis in differ-
entiated cardiac cells. Few studies have tackled the
involvement of histone methylation on hypertrophic
phenotype induction. H3K4 trimetylation (H3K4me3)
is a “mark” typically associated with gene activation.
During cardiac hypertrophy, H3K4me3 increases at
the promoter and transcribed regions of the β-MHC
(myosin heavy chain) gene while H3K4me3 decreases
at the α-MHC promoter [43]. This indicates that the
“classic” transcriptional reprogramming occurring dur-
ing cardiac hypertrophy not only involves re-activation
of fetal cardiac genes but also changes in methylation
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Figure 2. Epigenetic changes in cardiomyopathy. Epigenetic mechanisms such as DNA methylation, histone modifications and ATP-
dependent chromatin remodeling alter chromatin structure and modulate gene expression. Histone acetylation by p300/CBP histone
acetyltransferases (HATs) changes nucleosome conformation and increases accessibility of transcription factors, resulting in relief of
transcriptional repression. Histone deacetylases (HDACs) have the opposite effect and are usually involved in gene repression. Both HATs
and HDACs play a role in cardiac hypertrophy. Histone methylation is associated with activation or repression of transcription depending
on the residue and the degree of methylation. The functional outcomes of histone methylation and the action of histone demethylases
on cardiac gene transcription are shown. Chromatin remodelers such as Brg1 use the energy of ATP to change chromatin structure. These
different epigenetic mechanisms are reversible and act in concert to regulate cardiac transcription. Dysregulation of these processes can
result in cardiac abnormalities. HDAC4/5/9: histone deacetylases 4,5,9; CBP/p300: histone acetyltransferases; PTIP: PAX interacting protein
1; UTX: histone H3K27 demethylase; JMJD2A: jumonji C domain containing histone demethylase; DOT1L: histone H3 methyltransferase;
Brg1: brahma-related gene 1; PARP-1: poly(ADP-ribose) polymerase 1; RNAPII: RNA polymerase II; CaMKII: calcium/calmodulin-dependent
protein kinase II; PKD: protein kinase D.

patterns at the very same gene loci re-activated under
pathological stress. H3K4me3 is also elevated at the
angiotensin-converting enzyme 1 promoter in the heart
of spontaneous hypertensive rats. This correlates with
H3 acetylation status and reduced H3K9me2 [44]. Dif-
ferent H3K4me3 and H3K9me3 levels are observed
in rodent failing hearts and in patients with end-stage
heart failure [45,46].

H3K27 methylation

H3K27me3 is a “mark” associated with gene repres-
sion [47,48]. This modification has been particu-
larly well studied in self-renewing ESCs where it
down-regulates the expression of several developmen-
tal genes. During angiogenesis triggered by hypoxic
conditions, H3K27me3 decreases globally and locally
at the endothelial nitric oxide synthase (eNOS) pro-
moter. This increases the ratio of active H3K4me3 to
inactive H3K27me3 marks and enhances the expres-
sion of histone demethylase JMJD3 which in turn
suppresses angiogenesis [9]. The JumonjiC-domain-
containing protein UTX is a H3K27 demethylase that
regulates Hox genes [49] and interacts with a panel of
cardiac-specific transcription factors (i.e. SRF, Tbx5,
NKX2.5 and GATA4). UTX facilitates recruitment

of Brg-1, a component of the ATP-dependent chro-
matin remodeling Swi/Snf complex, to cardiac specific
enhancers. UTX-deficient mice exhibit severe heart
malformation showing that removal of H3K27me3 by
UTX is critical for proper heart development [50].

H3K36 and H3K9 demethylation

Demethylation of H3K9me3 and H3K36me3 is cat-
alyzed by trimethyl lysine demethylase JMJD2A,
another member of JumonjiC-domain containing fam-
ily of demethylases. The impact of these modifi-
cations in adult cardiomyopathy was studied indi-
rectly by investigating the effect of modulating JMJD2
expression. The generation of mice lacking or over-
expressing JMJD2 in cardiac muscle revealed a role
of JMJD2 in pathological cardiac hypertrophy [51].
JMJD2A deficient mice display increased level of
H3K9me or H3K36 methylation and have a normal
phenotype under basal conditions. However, JMJD2A-
null mice are resistant to cardiac stress. Conversely,
JMJD2 transgenic mice have an exacerbated hyper-
trophic response after pressure overload hypertrophy
[51]. JMJD2 enhances cardiac hypertrophy by bind-
ing and activating the target gene, four-and-a-half LIM
domains 1 (FHL1), and by increasing the binding
of myocardin and SRF to the FHL1 promoter. This
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Table 1. Summary of Epigenetic Modifications Involved in Adult Cardiomyopathy.
Epigenetic Mark Complexes Targets Modifications Effect References

Acetylation CREB-binding
protein(CBP) /p300

H3 K4, K19 H4 K5, K8,
K12, K16

Cardiac hypertrophy
regulation

[31,32,34]

Deacetylation Class II HDACs
(HDAC-4, -5, -9)

Histone tails Inhibit the activity of
myocyte enhancer
factor 2 (MEF2)

Negative regulation of
cardiac hypertrophy

[8,36]

Methylation PTIP H3 K4me3 Fetal cardiac gene
activation

[43]

PTIP H3K4me2 Angiogenesis and
heart failure

[45]

------------- H3 K9me3 Angiogenesis and
heart failure

[45]

------------- H3 K27me3 Suppresses
angiogenesis

[9]

DOT1L H3 K79me Dilated
cardiomyopathy

[46]

Demethylation JMJD2A H3 K9me3 Cardiac hypertrophy
stimulation

[51]

------------- H3 K4me3 Alters cardiac gene
expression

[45]

JMJD2A H3 K36me3 Cardiac hypertrophy
stimulation

[51]

UTX H3 K27me3 Heart malformation
and embryonic
lethality

[49,50]

Phosphorylation Aurora, Rsk2, Msk1,
IKKα ,PIM1, Akt ,

H3 S10/S28 Mitotic activity,
cellular
proliferation,
cardiac hypertrophy
regulation

[75]

CaMKII HDACs/ H3S10 Cardiac hypertrophy
stimulation

[28,80]

JAK2, AMPK H4Y41 and H2B Transcriptional
activation

[76,77]

PKD HDACs Cardiac hypertrophy
stimulation

[81]

Ribosylation PARP-1 Histones and PARP-1 Cardiac hypertrophy
and heart failure

[88]

HDACs and Brg1 Form a complex with
Brg1 and HDACs
and increase
expression of fetal
β-MHC

[89]

DNA methylation ------------- CPG islands Modulate gene
expression of
angiogenic factors

Heart Failure

[57,96]

ATP-Dependent Remodelers SWI/SNF (Brg1 and
Baf60c Subunits)

PARP-1/HDACs Fetal cardiac gene
activation

[89]

Modulate extracellular
matrix

[103]

effect is associated with reduced H3K9me, emphasiz-
ing the importance of H3 tri-methylation as a major
epigenetic mark critical for proper cardiac transcription
and remodeling after pathological insult.

H3K79 methylation

While the majority of methylated sites are located
in the histone H3 tail, additional residues such as
H3K79 are located in the histone globular domain.
Methylation of H3K79 is catalyzed by the disruptor
of telomeric silencing protein DOT1L. Cardiac-specific

deletion of Dot1L in the mouse increases lethality at
the postnatal and adult stages and causes dilation of
the cardiac chambers. Cardiac remodeling in Dot1L
deficient mice is associated with re-activation of fetal
cardiac genes, increased fibrosis and enhanced apop-
tosis. Dot1L knockout mice also have increased vol-
ume of the cardiac chambers and reduced contractil-
ity. These alterations are reminiscent of patients with
dilated cardiomyopathy (DCM) [46]. Mechanistically,
Dot1L deletion selectively decreases transcription of
the dystrophin gene and reduces H3K79me2/3 at the
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dystrophin promoter. Since Dot1L is down-regulated in
patients with idiopathic DCM, impaired H3K79 methy-
lation may also contribute to reduced cardiac contrac-
tility and DCM in humans.

Genome-wide histone modifications
The rapid expansion of genome-wide studies with the
development of new technologies has allowed inter-
rogation of histone modifications across the genome.
Common methods used to address the role of his-
tone modifications genome-wide combine chromatin
immunoprecipitation (ChIP) with microarray analysis
(ChIP-chip). More recently, ChIP followed by mas-
sive sequencing (ChIP-seq) has become the method
of choice to understand how specific histone marks
affect gene expression on a large-scale. One important
finding from these studies is that different genomic
regions exhibit distinct patterns of histone modifica-
tions and are associated with different gene activity.
Acetylation, a universal mark for transcription activa-
tion, is clearly detected in the promoter region of active
genes. Methylation of histones can be associated with
gene activation or repression, depending on the residue
targeted and the degree of methylation. Thus, an impor-
tant finding that came from large-scale epigenomic
studies is that “active” and “repressive” marks can co-
exist within inactive promoters [47,48,52,53] and in
self-renewing ESCs [54,55]. This has led to the hypoth-
esis that bivalent modifications maintain genes in a
repressive but poised state, ready for future activation.

Until now, two genome-wide studies have evaluated
histone methylation in the normal and failing heart.
H3K4me3 and to a lesser extent H3K9me3, exhibits
differential methylation patterns in the vicinity of
genes regulating calcium signaling and cardiac con-
tractility during the development of heart failure [56].
Changes in the epigenome are also evident in patients
with end-stage heart failure where H3K36me3 is
enriched in actively transcribed regions of the genome
[57]. Thus, distinct epigenetic changes occur in human
heart failure.

Histone phosphorylation
Protein kinases transmit extracellular signals from
the cell surface to the nucleus. Kinases not only
phosphorylate cellular proteins, transcription factors
and components of the transcription machinery, but
also signal to chromatin to regulate major cellular
processes such as transcription, mitosis, DNA damage
and apoptosis (reviewed in [58]). While the majority
of studies have focused on the role of histone acety-
lation and methylation in the control of cardiac gene
transcription, histone phosphorylation remains less
studied and understood. Histones are phosphorylated
upon stress signals and many kinases are critical
mediators of cardiac hypertrophy. However whether
they act as true physiological histone kinases to
modulate transcription remains controversial.

H3 S10 and S28 phosphorylation

Phosphorylation of H3 serine-10 (S10) is a mark orig-
inally associated with mitosis and chromosome con-
densation [58–61]. Subsequently, H3S10 was linked
to activation of transcription by the observation that
H3S10 phosphorylation increases rapidly in response
to growth factors [62]. The condensation of chromatin
during mitosis and its relaxation during transcriptional
activation initially appeared as a paradox. This con-
tradiction was reconciled by the discovery that H3S10
is phosphorylated in every H3 during mitosis whereas
H3S10 phosphorylation after stress occurs transiently
and does not involve every H3 [58,62]. Serine 28 in
H3 is another site phosphorylated upon cellular stress
[58,60]. The mechanism by which histone phosphory-
lation contributes to transcriptional activation involves
the generation of negatively charged phosphate groups
that neutralize basic charges on the histone tails. As a
result, the affinity of histones for DNA is reduced in a
similar way to that proposed for acetylation. Increased
accessibility to nuclear factors and coupling of histone
phosphorylation with acetylation is another suggested
mechanism linking histone phosphorylation and tran-
scription activation [62,63]. Histone acetylation may
also create epitopes recognized by phospho-specific
interaction partners such as 14-3-3 proteins [64].

In cardiac muscle, phosphorylation events occur
in actively proliferating cardiomyocytes during fetal
life and in the diseased adult heart [65]. This mitotic
activity is indicative of regenerative capacity of the
adult myocardium mostly attributed to a small pool
of cardiac progenitor cells that replace damaged tissue
after pathological insult [66,67]. H3 phosphorylation
is also high in cardiomyocytes during the first week of
post-natal life, which indicates a unique regenerative
capacity of the neonatal heart [68]. H3S10 phospho-
rylation is detected in the heart of cardiomyopathic
animals in both the hypertrophic and failing phase of
the disease [69].

Histone Kinases

Aurora kinase and its counterpart protein phosphatase
1 maintain the balance of H3S10 during the conden-
sation/decondensation cycle of chromosomes [70].
NIMA is another kinase that phosporylates H3S10
during mitosis [71]. Central kinases targeting H3S10
during stress and growth factor stimulation include
Rsk2, Msk1, IKKα, PIM1 and Akt [62,63,72–74] (for
review [75]). JAK2 and adenosine monophosphate-
activated protein kinase (AMPK) directly activate
transcription by phosphorylating H4Y41 and H2B
respectively [76,77]. Although recruitment of these
enzymes to specific chromatin regions clearly
contributes to transcriptional activation and many
central kinases are critical regulators of cardiac
hypertrophy, direct signaling to histones has not
been established in the heart [21,78,79]. Recently,
a specific nuclear isoform of calcium-dependent
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protein kinase II (CaMKIIδB) was shown to bind and
phosphorylate histone H3 at serine-10. Increased H3
phosphorylation is detected in ventricular myocytes
during cardiac hypertrophy and at hypertrophic gene
loci. This phosphorylation event increases chromatin
accessibility and is required for chromatin-mediated
transcription of the Mef2 transcription factor [80].

Kinases targeting chromatin remodelers

One mechanism by which kinases modify chromatin
architecture is by interfering with the activity of
HDACs. Protein kinase D (PKD), protein kinase C
(PKC) and CaMKII regulate cardiac hypertrophy by
signaling to class II HDACs. This promotes HDACs
nuclear export and prevents them from acting as
transcriptional repressors [81–84]. Casein kinase-2α1
(CK2α1)-dependent phosphorylation of class I HDAC2
is also essential for the development of cardiac hyper-
trophy [85]. Thus, kinases regulate pathological cardiac
hypertrophy by many mechanisms including interfering
with the activity of chromatin remodeling enzymes.

Histone Ribosylation
Histone ribosylation is mediated by Poly(ADP-ribose)
polymerase-1 (PARP-1), which transfers ADP-ribose
groups from nicotinamide adenine dinucleotide
(NAD+) onto acceptor substrates [54]. Substrates
of PARP-1 include PARP-1 itself and the tail of
histones H1, H2A, H2B, H3 and H4 [86]. Histone
ribosylation induces relaxation of chromatin, which
facilitates the recruitment of repair enzymes to the
site of damaged DNA. Besides a role in DNA repair,
PARP regulates cell death, cell cycle progression and
genome stability [54]. In cardiac muscle, PARP-1
promotes cardiac hypertrophy and increased PARP-1
activity leads to heart failure in both mice and humans
[87]. In contrast, Parp-1 null mice are resistant to
angiotensin II-induced cardiac hypertrophy [87,88].
The mechanism by which PARP-1 induces patholog-
ical hypertrophy is by interacting with HDACs and
with the chromatin remodeller Brg-1 and by inducing
α-MHC to β-MHC switch [89]. In addition to its
effect on fetal cardiac genes, PARP controls cardiac
hypertrophy by modulating p38 MAP kinase, ERK1/2,
PI3 kinase-Akt-Gsk3β and JNK signaling pathways
[90,91]. The protective effects of PARP inhibitors
suggest the potential use of PARP blockade for the
treatment of cardiomyopathies.

Dna Methylation

DNA methylation is an important epigenetic mecha-
nism, which, like histone modifications, alters chro-
matin structure and affects gene expression. In differen-
tiated mammalian cells, DNA methylation specifically
targets cytosines mainly located in CpG dinucleotides.
It involves the covalent addition of a methyl group

at the 5th position of cystosine and is catalyzed by
DNA methyltransferases [92]. DNA methylation was
first regarded as a stable heritable mark associated with
silent chromatin. However, DNA methylation is now
known to be a dynamic process that increases with age
and can be reversed by demethylation [93].

The involvement of epigenetic modifications due to
disturbed DNA methylation patterns in cardiac dis-
orders remains elusive [94]. Interestingly, differen-
tial DNA methylation correlates with expression of
angiogenic factor genes, mainly PECAM1, ARHGAP24
and AMOTL2 [95]. Moreover, DNA methylation pat-
terns differ in promoters and gene bodies from normal
individuals and patients with end-stage heart failure.
Reduction of global DNA methylation patterns corre-
lates with the expression of genes that are up-regulated
in heart failure [57,96]. Nevertheless, the causal role of
altered DNA methylation on the progression of adult
cardiomyopathy remains unclear.

Atp-Dependent Chromatin Remodeling Complexes

ATP-dependent chromatin remodeling complexes use
energy derived from ATP hydrolysis to reconfigure
chromatin structure. These enzymes share sequence
homology with the RecA domains of Superfamily II
helicase related proteins [97]. The first ATP-dependent
chromatin remodeling protein identified is SWI/SNF
(switching defective/sucrose nonfermenting) [97–99].
ATP-dependent proteins can be further classified into
24 subfamilies based on their biochemical properties
and the overall sequence similarity of their ATPase
subunits (reviewed in [77,100]). While most of the
subfamilies are conserved across a broad evolution-
ary scale, each has a distinct function. Among the
subfamilies, only four are reported to be involved in
heart development. These are SWI/SNF, ISWI (imi-
tation switch), CHD (chromodomain, helicase, DNA
binding) and INO80 (inositol requiring 80) complexes
[100]. The ATP-dependent chromatin remodelers that
play a role in adult cardiomyopathy are limited to mem-
bers of the SWI/SNF complex.

SWI/SNF complex
The mammalian homologue of yeast SWI/SNF com-
plex is the brahma-associated factor (BAF) complex.
It is a large protein complex composed of 12 subunits,
containing a catalytic ATPase subunit encoded by Brm
(brahma) or Brg1 (brahma-related gene 1). Assembly
of various subunits dictates certain cellular phenotypes
and drives tissue specificity [101].

Brg1

Brg1 plays a critical role in cardiac development
and also in cardiac hypertrophy [89]. Brg1 is highly
expressed in embryonic hearts where it represses α-
MHC expression by interacting with HDACs and

 2013 King Faisal Specialist Hospital & Research Centre. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 147–157
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com



154 SA Mahmoud and C Poizat

PARP, allowing β-MHC expression. In the adult heart,
Brg1 expression is turned off. Once induced by
myocardial stress, Brg1 forms a large protein complex
with other chromatin regulators (i.e. HDACs, PARP).
This induces pathological hypertrophy by switching
MHC to its fetal β-MHC isoform [89]. Preventing Brg1
up-regulation inhibits cardiac hypertrophy and reverses
the switch of MHC. Brg1 expression is also elevated in
patients with hypertrophic cardiomyopathy [89]. Since
Brg1 is part of a large protein complex and interacts
with several chromatin regulators, cooperation of these
factors at specific gene loci is a likely epigenetic mech-
anism that controls pathological cardiac hypertrophy.

Baf60c

Another subunit of the BAF complex, Baf60c, is
required for proper heart morphogenesis. Baf60C medi-
ates the interaction of several cardiac-specific transcrip-
tion factors (i.e.Tbx5, Gata4 and Nkx2.5) with Brg1
to activate a set of cardiac-specific genes [102]. Since
many members of the SWI/SNF complex are well
characterized chromatin modifying factors regulating
cardiac hypertrophy, this suggests that chromatin may
be the ultimate effector that controls the regulation of
MHC genes during pathological hypertrophy.

In addition to their direct effect on chromatin com-
ponents, chromatin regulators indirectly affect cardiac
development and disease through modulation of the
extracellular matrix. For instance, Brg1 suppresses
the expression of Adamts1 , a secreted metallopro-
teinase. This repression permits the development of
cardiac jelly that triggers myocardial trabeculation
[103]. Improper trabeculation results in cardiomyopa-
thy and heart failure [104]. Thus, an exciting topic for
future investigation is to understand Brg1 interaction
with other chromatin regulators, and whether such large
protein complexes modulate extracellular matrix and
contributes to specific cardiomyopathies.

Future Directions And Challenges

Chromatin regulation provides a mechanism to control
cardiac gene expression (Table 1). While many stud-
ies have documented correlations between the differ-
ent epigenetic marks and end-stage heart failure [57],
there is now mounting evidence that changes in the
epigenome contribute to the development of cardiomy-
opathies in the adult. Modulation of JMJD2 demethy-
lase in the heart modifies H3 methylation status and
alters the hypertrophic response after pressure over-
load [51]. Dot1L deficiency in mouse heart results in
adult lethality from dilated cardiomyopathy and heart
failure [46]. Chromatin regulators form large protein
complexes and interact with a variety of cardiac tran-
scription factors to suppress fetal cardiac genes in the
postnatal heart. For instance, Brg1/Baf interacts with
HDAC and PARP protein to regulate MHC in the
developing and hypertrophic heart [89]. Perturbation

of these mega-complexes secondary to increased Brg-
1 or PARP expression results in pathological cardiac
hypertrophy. Collectively, these observations indicate
that changes in the epigenome contribute to the devel-
opment of cardiomyopathies. However, how chromatin
regulators together with post-translational modifica-
tions of histones and recruitment of transcription fac-
tors talk to one another to alter gene transcription
is just beginning to emerge. According to the “his-
tone code hypothesis” connections exist between the
different covalent histone modifications. Early studies
defined the histone code in a relatively simple manner
where chromatin marks were associated with activation
or repression of transcription. More recent studies now
indicate that transcription occurs in response to many
marks, some of which are conflicting. Rather than a
simple “code” where the histone marks are turned “on”
or “off”, chromatin is viewed by some as a “language”
in which various histone modifications coexist and are
highly dynamic [3]. The histone code embraces the
idea that some modifications act as docking sites that
enable other modifications or remodeling factors to
bind chromatin, thus introducing gene specificity and
regulatory control. For instance, pathological cardiac
hypertrophy requires the nuclear export of HDACs
subsequent to phosphorylation by CaMKII. Cooper-
ation between ATP-dependent chromatin remodeling
and histone modifications represents another mecha-
nism of transcriptional control. In addition to their
direct influence on chromatin components, chromatin
regulators indirectly affect cardiac development and
diseases through modulation of the extracellular matrix
environment. This is illustrated by the observation that
Brg1 suppresses Adamts1 , and this repression permits
the development of cardiac jelly that triggers myocar-
dial trabeculation [103]. However, it is not yet known if
the role of chromatin regulation in modulating extra-
cellular matrix in the adult heart plays a role in the
responses of cardiac tissue to pathological stress.

An obvious challenge for the future is to understand
the complexity of these interactions in vivo. The
introduction of specific mutations in histone proteins
to dissect their physiological role is possible in simple
organisms but still represents major difficulties in
model organisms due to the large copy number of
histone genes. The use of in vitro transcription studies
with reconstituted chromatin templates together with
the development of animal models lacking or over-
expressing chromatin regulators in a tissue-specific
manner should help understanding the true biological
function of the various histone “marks”. Also, the
variability in penetrance and expressivity of human
phenotypes indicate a major influence of modifier
genes and environmental factors. There is evidence
of inter-individual epigenetic variations among twins
with identical genotypes and proof that environmental
factors can alter the epigenome to contribute to disease
[105–108]. That epigenetic variations and changes
in the environment contribute to cardiac diseases is
now becoming evident. Understanding the molecular
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basis for such variability will necessitate integration of
different networks. This represents another challenge
for the future but also an exciting topic of investigation.

Assessing global and local epigenetic changes in the
normal and diseased heart should provide a deeper
understanding of epigenetic contributions to cardio-
vascular diseases. The identification of major players
controlling chromatin architecture and cardiac regula-
tory networks represents another step towards under-
standing epigenetic mechanisms in the heart. Tracking
epigenetic marks may help in monitoring disease pro-
gression. Targeting specific chromatin remodeling fac-
tors and histone modifiers may represent a promising
strategy for the prevention or at least partial reversion
of some cardiomyopathic processes.
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