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To decipher the genotype-phenotype correlation of auditory neuropathy (AN) caused by AIFM1 variations, as well as the
phenotype progression of these patients, exploring the potential molecular pathogenic mechanism of AN. A total of 36 families
of individuals with AN (50 cases) with AIFM1 variations were recruited and identified by Sanger sequencing or next-generation
sequencing; the participants included 30 patients from 16 reported families and 20 new cases. We found that AIFM1-positive
cases accounted for 18.6% of late-onset AN cases. Of the 50 AN patients with AIFM1 variants, 45 were male and 5 were female.
The hotspot variation of this gene was p.Leu344Phe, accounting for 36.1%. A total of 19 AIFM1 variants were reported in this
study, including 7 novel ones. A follow-up study was performed on 30 previously reported AIFM1-positive subjects, 16 follow-
up cases (53.3%) were included in this study, and follow-up periods were recorded from 1 to 23 years with average 9:75 ± 9:89
years. There was no hearing threshold increase during the short-term follow-up period (1-10 years), but the low-frequency and
high-frequency hearing thresholds showed a significant increase with the prolongation of follow-up time. The speech
discrimination score progressed gradually and significantly along with the course of the disease and showed a more serious
decline, which was disproportionately worse than the pure tone threshold. In addition to the X-linked recessive inheritance
pattern, the X-linked dominant inheritance pattern is also observed in AIFM1-related AN and affects females. In conclusion, we
confirmed that AIFM1 is the primary related gene among late-onset AN cases, and the most common recurrent variant is
p.Leu344Phe. Except for the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is another
probability of AIFM1-related AN, with females affected. Phenotypical features of AIFM1-related AN suggested that auditory
dyssynchrony progressively worsened over time.

1. Introduction

Auditory neuropathy (AN) is a special type of sensorineural
hearing loss with a main manifestation of impaired speech
comprehension, accounting for 1.2-10% of cases of hearing
loss, depending on the population [1, 2]. The affected hearing
in AN is mainly low frequency, and the speech recognition
rate is obviously disproportionately lower than the pure tone
threshold (PTA). This type of disease may arise from the

inner hair cells (IHCs) of the cochlea, the synapses between
the IHCs and the auditory nerve, the spiral ganglion neuron
(SGN), the cochlear nerve fibers, and one or more of the
auditory nerves [3].

The pathogenic mechanism of AN is currently unclear,
and genetic factors may account for up to 40% of the patho-
genesis of AN [4]. The inheritance pattern of AN includes
autosomal recessive, autosomal dominant, and X-linked
recessive inheritance. In 2006, our group located the gene
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locus AUNX1 of X-linked recessive hereditary neuropathy in
the Xq23-q27.3 region for the first time [5] and then further
identified AIFM1 as the gene responsible for this kind of AN
using whole exome sequencing technology in 2015 [6].
Apoptosis-inducing factor (AIF) is a flavin protein that is
located in the mitochondrial membrane space. It was origi-
nally discovered as the first apoptotic factor that causes
caspase-independent apoptosis [7]. This protein plays a crit-
ical role in maintaining the normal morphology and physio-
logical functions of mitochondria and causing apoptosis that
is not dependent on caspase.

Since AN was first identified more than 20 years ago,
diagnosis, particularly precision diagnosis with lesion site
identification, remains a challenge. Cases with genetic basis
and the identification of the genes may be helpful for the
lesion site identification, deciphering the underlying mecha-
nism of AN [8–9]. Except for diagnosis, intervention is
another challenge for clinical management for AN. Hearing
aids and cochlear implantations, which are typical interven-
tion strategies for cochlear sensory hearing loss, have variable
outcomes for AN cases depending on the affected lesion sites
[3–10]. Gene therapy may provide possibility for the treat-
ment of AN [11]. Since virally mediated gene expressions in
almost 100% HCs are possible, the treatment of presynaptic
AN is possible [12]. And the virally expressing genes in SGNs
are also feasible, supporting the possibility of treating post-
synaptic AN [13].

Up to date, there is no frequency data of AIFM1-positive
cases in AN cases. In this study, we further identified another
20 AN cases with AIFM1 variants, including 7 novel variants
and one hotspot variant, showing that the proportion of AN
caused by AIFM1 in Chinese patients with delayed-onset AN
was as high as 18.6% (36/194), higher than the 15.53%
(16/103) observed in the previous study [6]. Genotype-
phenotype correlation analyses of AN cases with AIFM1 gene
pathogenic mutations were carried out, including the clinical
hearing vestibular test, comprehensive clinical follow-up
study data, and an in-depth exploration of the clinical char-
acteristics of the disease and the related pathogenesis, to
explore the characteristics of AIMF1 gene-positive AN,
laying the theoretical basis of AN classification diagnosis.
The X-linked dominant inheritance pattern is also firstly
observed in AIFM1-related AN and affects females in the
study as well.

2. Materials and Methods

2.1. Ethics Statement. The study was approved by the
Committee of Medical Ethics of Chinese PLA General
Hospital. Written informed consent was obtained from
all participants.

2.2. Subject Recruitment and Clinical Evaluation. A total of
50 patients with AIFM1 mutations who were diagnosed with
AN in the Chinese PLA Institute of Otolaryngology, Chinese
PLA General Hospital, from April 1997 to June 2019 were
recruited for this study. The diagnostic criteria were as fol-
lows: The typical audiological characteristics were that the
auditory brainstem response (ABR) had no obvious differen-

tiation waveform or severe abnormality and that the oto-
acoustic emission (OAE) and/or the cochlear microphonic
(CM) potential could be normally extracted. Personal or
family medical evidence of hearing loss, tinnitus, vestibular
symptoms, and other clinical abnormalities of both the
affected members and the unaffected members of these
families was identified. Pure tone threshold (PTA), speech
discrimination score (SDS), ABR, OAE, CM, and electroco-
chleography (ECochG) were carried out as otological exami-
nation batteries to evaluate auditory status. In general, the
low frequencies were primarily affected; thus, we focused
on the low-frequency data and calculated PTA as the average
of the thresholds of 250-1000Hz to avoid bias in the assess-
ment of the degree of AN hearing loss. Vestibular function
evaluation included vestibular evoked myogenic potentials,
oculomotor function tests, positional nystagmus tests, posi-
tioning nystagmus tests, and bithermal caloric tests. High-
resolution computed tomography (CT) scans of the temporal
bone and cerebral magnetic resonance imaging (MRI) were
performed to exclude other possible neuropathic or anatom-
ical disorders.

2.3. Genetic Techniques. Next-generation sequencing and
Sanger sequencing were performed on the patients as previ-
ously described. Variation interpretation (evaluation of the
pathogenicity) was based on the standards and guidelines of
the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology (ACMG and
AMP) [14].

2.4. Statistical Analysis. Statistical analysis was performed
using SPSS 19.0 statistical software, Empower software
(http://www.empowerstats.com, X&Y Solutions, Inc., Bos-
ton, MA) and R software (https://www.R-project.org), as well
as G. Comparisons of the two sets of data were performed
using an independent sample t-test. The comparisons of
multiple sets of data were performed using one-way
ANOVA. p < 0:05 represented a significant difference. Spline
smoothing was performed using GAMM (generalized addi-
tive mixed model) to explore the change in pure tone thresh-
old with the length of follow-up time.

3. Results

3.1. General Clinical Information. Fifty patients with AIFM1
mutations were recruited for this study, including 30 patients
who have been previously studied and 20 novel patients who
were identified recently (Table 1). All patients had no history
of high-risk factors such as hyperbilirubinemia and hypoxia
and denied a history of metabolic diseases such as diabetes.
Nine (18%) patients had a history of ototoxic drug use, and
one patient had a history of exposure to noise. Clinically, 37
patients (74%) complained of tinnitus at the first visit, and
numbness of the extremities was the second most common
symptom (12 patients), while few patients experienced visual
impairment (10 patients) and vertigo (8 patients). Fifteen
patients (30 ears) received cVEMP examination, among
which 19 (63.3%) ears showed ipsilateral sacculus dysfunc-
tion, and 11 (36.7%) ears showed normal function. Nineteen
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patients underwent vestibular function tests; 15 sides (15/38,
39.5%) showed abnormalities, while the other 23 sides were
normal. No abnormalities in temporal CT were found, and
3 patients (42.9%, 3/7) showed bilateral cochlear nerve hypo-
plasia in the MRI test.

The pure tone thresholds of each frequency were not
significantly different between the left and right ears in all
50 patients (Figure 1(a)). The disease durations at the first
visit ranged from 0 to 33 years (9:7 ± 7:7 years), and the
PTAs among the 5-, 5- to 15-, and >15-year disease duration
groups were not significantly different (p > 0:05) (Figure 1(b)).
The onset ages of AIFM1-positive patients ranged from 5 to
20 years (13:4 ± 3:9). In addition, the earlier the onset, the
more severe the hearing impairment. The pure tone averages
(PTAs, 250-1000Hz) of the <12-year-old group, 12- to 16-
year-old group, and >16-year-old group were 55.7, 51.2,
and 47.7 dB HL, respectively. The most severe hearing loss
was observed in the youngest age group. However, the differ-
ences in hearing loss between the three onset age groups were
not statistically significant (Figure 1(c)).

3.2. Mutation Spectrum of AIFM1 (Table 2). Among the 20
novel cases found with AIFM1 variations, seven novel and
three reported variations were found, located in the FAD,
NADH, and C-terminus. Pathogenicity was assessed using
SIFT (http://sift.jcvi.org/), PolyPhen-2 (Polymorphism Phe-
notyping V.2, http://genetics.bwh.harvard.edu/pph2), LRT
(http://www.genetics.wustl.edu/jflab/lrt_query.html), and
MutationTaster (http://www.mutationtaster.org).

The seven novel variations were all pathogenic with the
evidences of “PS×1+PM×2+PP×2” according to the ACMG
and AMP guidelines [14]. Firstly, 18.6% of late-onset AN
cases had variants in AIFM1, while the variations were absent
in our sensorineural hearing loss group (PS4). Secondly,
these variations were absent or at extremely low frequency in
ESP, ExAC, gnomAD-EAS, or 1000genomes (PM2). Thirdly,
in these families, the variations were cosegregated with AN
phenotype, with proband’smother carrying variation but hav-
ing no AN performance (PM). Fourthly, these variants were
predicted to be deleterious with SIFT, PolyPhen-2, LRT,
MutationTaster, and so on (PP3). In addition, in terms of
phenotype, these patients were all reported as AN(PP4). Fur-
thermore, cells with the AIFM1 mutation led to decreased
dimerization and impaired mitochondrial functions (unpub-
lished data), which may indicate that themutations inAIFM1
gene may affect auditory function, providing PS3 evidence.

The recurrent variants were p.Ile304Met, p.Leu344Phe,
p.Arg422Trp, and p.Tyr560His, among which the most com-
mon variant in the AN population was p.Leu344Phe, which
was present in 36.1% (13/36) of the positive cases, followed
by p.Arg422Trp (13.9%, 5/36).

In total, 18 variations in AIFM1 variations were related to
the AN phenotype, with 9 variations located in FAD, 6 vari-
ations in NADH, and 4 variations in the C-terminal region.
There was no overlap with the other AIFM1 variations that
caused other syndromes [6, 15–28] (Figure 2).

3.3. Genotype and Phenotype Correlation Analysis of the 20
Newly Identified Cases

3.3.1. Clinical Features of the 20 Newly Identified Cases with
AIFM1 Variants (Table 1). Except for families 0804755 and
1507328, who had a family history, 18 other cases with
AIFM1 variants were sporadic cases. The age of onset ranged
from 6 to 20 years, with only one case (1507426) not com-
plaining of childhood-onset AN. Except for one female case
with unilateral AN, all other patients showed bilateral AN.
The audiograms varied, with 31 ears (83.8%, 31/37) showing
upsloping types. Seven of 20 patients underwent inclined sag-
ittal MRI of the internal auditory canals, with 3 patients
showing bilateral cochlear nerve hypoplasia.

3.3.2. Female Patients with AIFM1 Variants (Possible X-
Linked Dominant Inheritance Pattern). All of the female
cases had the same variant, c.1030C>T (p.Leu344Phe), which
was also the most common variant among AN-related
AIFM1 variations. Except for 0804755 (Figure 3(a)), the
other female patients had no family history. There was no
hearing threshold difference between male and female AN
patients with this variant (Figure 3(b)). However, the audio-
grams of the females affected varied from normal to pro-
found, including flat, upflopping, and downflopping as time
went on (Figure 3(c)).

3.3.3. Phenotype Follow-Up of the 30 AN Patients with AIFM1
Mutations. Sixteen patients (53.33%) underwent follow-up
pure tone audiometry tests, and the follow-up period was
1-23 years, with a mean time of 9:75 ± 9:89 years. The hear-
ing threshold change varied between patients (Figure 4).
The average thresholds of low and high frequencies in the
different follow-up groups were significantly different in all
of the patients who had been followed for more than one year
(Figure 1(d)). For the patients with a short-term follow-up
period (1-10 years), the hearing deterioration was not appar-
ent at all frequencies (Figure 1(e)), but with the prolongation
of follow-up time (more than 10 years), the low-frequency
(0.25 and 0.5 kHz) and high-frequency (4 and 8 kHz) hearing
thresholds showed a significant increase (Figure 1(f)).

In addition, we performed spline smoothing by using
GAMM to explore the change in the pure tone threshold with
the length of follow-up time. Figure 5 illustrates the shape of
the relationship between the hearing outcome at a frequency
of 0.5 kHz and the follow-up time (edf = 1:427, p = 0:0096).
This result suggested that the hearing threshold of 0.5 kHz
in both ears worsened gradually over time. The hearing
thresholds of 0.25, 1, 2, 4, and 8 kHz changed in a similar pat-
tern as that of 0.5 kHz, although statistical significance was
not reached in either ear (Figure 6).

Twenty-three patients (46/60 ears, 76.67%) with AIFM1
mutations underwent binaural speech testing, and 10
patients (20 ears, 43.5%) were followed up. A total of 10
patients (20 ears) were followed up for SDS (Table S1), with
a follow-up period of 1-15 years (6:80 ± 4:47 years). Of the
46 ears, 50% of patients with mild hearing loss had zero
SDS, which was a much higher figure than that in the
moderate and severe groups. Overall, the SDS of the mild
hearing loss group was significantly lower than that of the
moderate and severe groups (p < 0:05). Therefore, the
degree of SDS decline in these patients with AN was not
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proportional to the pure tone hearing threshold, and SDS was
more severe in patients with mild hearing loss than in
patients in the moderate and severe hearing loss groups
(Table S2). Disease duration was another risk factor; of the
9 patients with a disease duration less than 5 years, none
had an SDS score of zero. In patients with disease duration
of more than 5 years, the proportion of patients with an
SDS score of zero increased significantly, accounting for
50% of all ears (Table S3). This finding indicates that SDS
decreased significantly with the prolongation of the disease
course, and the difference was statistically significant
(p < 0:05). The mean values of the left and right ears before
and after follow-up were greater than zero, indicating that
the SDS exhibited a downward trend before and after
follow-up, but the difference between the two ears was not
statistically significant (p > 0:05).

Among the 30 patients, 7 ears from 5 patients were able
to elicit V-waves, but the waveform differentiation was poor,
the amplitudes were reduced, and the latencies were pro-
longed. The PTAs of the 7 ears with the V-wave were rela-
tively better, and the course of the disease was shorter than
that of the unexposed ABR waveform, but the difference
was not statistically significant (p > 0:05) (Table S4). Three
of five patients had follow-up ABR data; their V-wave

latencies were gradually extended, and the V-wave of ABR
was unextracted in the follow-up of one ear (left ear of
1007170-1) (Table S5).

All 30 patients underwent DPOAE; 29 patients passed
with the elicitation of at least five frequencies, while one
patient had no response at any of the frequencies. This
individual was a member of family 1007170 and had a dis-
ease duration of 33 years. AN may progress to sensorineu-
ral hearing loss, with outer hair cell impairment as time
goes on.

A total of 22 patients (44 ears) underwent electrocochleo-
graphy examination, among whom, 6 patients underwent
follow-up observation. The -SP waves were found in 21
patients, except for one person who had an unobvious wave.
Nine patients (20.5%, 9/44) showed the -SP wave only, with-
out an obvious CAP wave, while the remaining 35 ears
showed both -SP and CAP waveforms, with absolute values
of ‐SP/AP > 0:4 (Table S6). The degree of hearing loss in
patients with AN who did not elicit CAP waveforms was
significantly higher than that in patients with CAP, and the
difference was statistically significant (p < 0:001). For the 6
cases (12 ears) with a follow-up ECochG test (Figure S1),
there were no differences between the absolute values of
SP/AP.
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Figure 1: Pure tone test of the AIFM1-positive cases. (a) Average threshold of the 50 cases with AIFM1 variations. (b) Mean PTA in the
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4. Discussion

AN is a special type of hearing dysfunction disease, which is
one of the critical diseases that cause speech communication
disorders in infants and adolescents [3]. In the auditory sys-
tem, HCs and SGNs are very important for hearing ability;
HCs convert the sound waves into electrical signals, and
SGN transmit the electrical signals into the auditory cortex
for hearing ability [29]. In a mammal’s cochlea, HCs and
SGNs are vulnerable for multiple damages, including noise,
gene mutation, ototoxic drugs, inflammation, and aging
[30–34]; while the mammal’s cochlea only have very limited
HC and SGN regeneration ability, majority of the damaged
HC and SGN cannot be spontaneously regenerated [35–
41]. Thus, hearing loss is usually irreversible, and AN may
come from the damage of IHC and SGNs.

As a difficult and popular topic in international research,
research on AN has been performed for 20 years, from pre-
liminary reports to various explorations of its pathogenesis,
and it is beginning to be gradually understood accurately.
The etiology of AN varies with age, genetic factors, hyperbi-
lirubinemia, low birth weight, premature birth, and hypoxia.
More patients may be discovered as the use of genetic testing
in the diagnosis of auditory neuropathy becomes more wide-
spread [4–8]; however, no prevalence studies have been per-
formed to date. In our previous study, we confirmed that
OTOF is the most common gene-causing congenital auditory
neuropathy [42]. In contrast, for patients with late-onset AN,
the etiology varies and is associated with optic atrophy, sen-
sorimotor neuropathy, and other peripheral neuropathies.
Among the late-onset cases, AIFM1 is reported to be the
most common genetic cause [6]. In this study, we further
confirmed that AIFM1 is the most common genetic cause
of all noninfant-onset AN cases. The identification of genes
is helpful to identify related lesion sites of AN and contrib-
utes to a better understanding of the underlying pathogenic
mechanisms [8, 9].

The AIFM1 gene, also known as AIF, PDCD8, COXPD6,
etc., is located in the human chromosome Xq25-q26 region,

with a full length of 36.471 kb and 16 exons encoding a full-
length 613 amino acid protein. In the mitochondria, AIFM1
acts as a FAD-dependent NADH oxidoreductase and plays
a critical physiological role in the stable and mature mito-
chondrial oxidative respiratory chain complex I and the elim-
ination of peroxide. In this study, we further expanded the
mutation spectrum and long-term phenotypes of AIFM1-
related cases. We found another 20 AN cases with AIFM1
variants by whole genome sequencing and Sanger sequenc-
ing, including 7 novel variants. All 18 AN-related variations
had no overlap with the other phenotype-related AIFM1 var-
iations (Table S7). In addition, we confirmed that the most
common variation is AIFM1 c.1030C>T (p.Leu344Phe).
Due to its location in the loop region, this variation may
have an influence on folding.

In this study, we found 5 female AN cases with AIFM1
variants, the phenotype of whom was similar to those of the
male cases with the same variant. AIFM1 gene mutation
AN may also be inherited in an X-linked dominant inheri-
tance pattern. In our previous study, except for the patients
undergoing whole exome sequencing, we did not pay atten-
tion to female AN cases; only male cases were tested for the
AIFM1 gene.

To decipher the phenotype progression of AIFM1-related
AN, a follow-up study was performed. Further genotype-
phenotype correlation analysis can effectively help physicians
and patients understand the disease-causing mechanism,
process, and outcome of disease by research methods. To fur-
ther assist in the consultation and evaluation of prognosis in
patients with clinical AN, the clinical phenotypes of AIFM1-
related cases were as follows:

(1) For the pure tone threshold, AN patients have large
individual differences in audiologic phenotype.
Although the ascending audiogram is the typical
audiometric pattern of AN patients, audiograms with
various configurations and varying severities may
occur. The hearing of some patients may improve,
while others’ hearing loss may remain stable for a
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long time or even worsen. Among the very limited
reports involving the follow-up characteristics of
AN patients, the hearing outcomes in a long-term
follow-up remain elusive [43]. Not surprisingly, we
found, in the 50 AIFM1-positive cases, that the low
frequency spectra were mostly affected, especially in
the 0.25-1 kHz range. Hearing impairment ranged
from mild to moderate. No significant differences
were detected in the hearing thresholds tested
between the first and final visits within 1-10 years of
follow-up. However, when the follow-up periods
were prolonged to over ten years, hearing thresholds
in both the low frequencies (0.25-0.5 kHz) and the

high frequencies (4-8 kHz) showed significant wors-
ening. In addition, the pure tone threshold tended
to deteriorate over time, especially at a frequency of
500Hz

(2) For SDS, the AN patient’s prominent complaint is
that he/she can hear voices without understanding
the meaning. Our study found that patients with mild
hearing loss had a high proportion of a score of zero
when testing SDS, which was much more severe than
the SDS in the moderate and severe hearing loss
groups, and the degree of SDS was not consistent
with the pure tone threshold. This fact suggests that
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Figure 3: Family trees and audiological characteristics of the five female cases. (a) Family trees of the family 0804755. (b) Mean hearing
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in clinical audiology assessment, the SDS perfor-
mance of AN patients is much more critical than that
of PTA. The evaluation of the degree of hearing loss
by PTA alone may underestimate the patient’s condi-
tion. Furthermore, we followed up on the SDS of this
type of AN patient and found that SDS decreased sig-
nificantly with the prolongation of the disease course.
This result indicates that the neurological synchroni-
zation of the AIMF1 gene-related AN is gradually
aggravated

(3) ECochG revealed that -SP and CAP waves existed
together in 80% of cases, but the SP/AP values were
higher than normal. Patients showed worse hearing
loss when their CAP waves disappeared. Compared
with DPOAE, cochlear electrograms can help us
locate the lesions of AN [44]. The -SP wave reflects
the fractional depolarization process after the inner
hair cells are subjected to the acoustic signal and is
the maximum amplitude recorded by the needle
electrode placed on the cochlear or round window

through the tympanic membrane [45]. The -SP waves
are mainly derived from inner hair cells, and their
amplitude and latency are objective indicators of the
function of inner hair cells. Except for one patient
without obvious one-time single-SP, the -SP wave of
all of the other AN patients could be seen, suggesting
that the AN lesion caused by AIFM1 gene mutation
may be located in the auditory conduction pathway
outside the inner hair cells. CAP is produced in
cochlear spiral ganglion cells and is an afferent nerve
response. The decrease in CAP amplitude can prove
the synchrony decline in auditory nerve activity. We
observed that the -SP and CAP waveforms were pres-
ent in 80% of patients at the same time, but the abso-
lute value of -SP/AP was >0.4, which was higher than
normal, suggesting that there was a loss of synchroni-
zation of auditory nerve activity. This also explains
why the SDS decline in this type of patient is more
marked than the decrease in PTA from the perspec-
tive of physiology and pathology. Furthermore, we
analyzed the patient’s auditory condition based on
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the presence or absence of CAP waves, showing that
the degree of hearing loss without CAP waveform
was more serious. Clinically, the detection value
should be increased, and the degree of hearing loss
should be comprehensively judged

Individuals with lesions affecting the auditory nerve
showed poor performance with cochlear implantation, since
the neural transmission was affected [2]. The audiological
phenotype features of AIFM1-related AN suggested that
auditory dyssynchrony progressively worsened over time.
Electrophysiological examinations of the cochlear nerve
indicated that lesions would be located on the auditory path-
way from postsynapses to acoustic fibers [3]. Further, the

diffusion-weighted MRI (dMRI) analysis techniques may
contribute to the microstructure of the auditory tracts
in vivo in individuals with AN [3, 46]; from the dMRI of
some patients, we can see a reduction in apparent fiber den-
sity within the auditory brainstem tracts, which is consistent
with the assumed pathophysiological mechanism of postsy-
napses to acoustic fibers (unpublished data). Thus, AN
patients with AIFM1 mutation may have poor efficiency
from cochlear implantation.

The molecular disease-causing mechanism of AIFM1
mutation-related hearing loss is still unclear; the mitochon-
drial function and the caspase-independent apoptosis to neu-
ronal development and adult neurogenesis play a critical role
in previous studies [47, 48]. In our recent study, we found
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that the AIFM1 mutation led to decreased dimerization and
further impaired mitochondrial functions, such as increase
of ROS production and impairment of mitochondrial mem-
brane potential, thereby activating caspase-independent apo-
ptosis (unpublished data). However, the complete and clear
pathogenesis of AN and the genotype-phenotype correlation
need to be further clarified.

In conclusion, (1) AIFM1 is the most common genetic
cause of late-onset AN, with the hotspot mutation of
c.1030C>T (p.Leu344Phe). (2) In addition to the X-linked
recessive inheritance pattern, the X-linked dominant inher-
itance pattern is another probability of AIFM1-related AN,
which affects females. (3) The hearing threshold of ANpatients
with AIFM1 mutation tends to worsen when the follow-up
period is prolonged. Phenotype features of AIFM1-related
AN suggested that auditory dyssynchrony progressively
worsened over time. Electrophysiological examinations of
the cochlear nerve indicated that lesions would be located
on the auditory pathway from postsynapses to acoustic
fibers.
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