
BioMed CentralBMC Genomics

ss
Open AcceResearch
Genome-wide prediction of cis-acting RNA elements regulating 
tissue-specific pre-mRNA alternative splicing
Xin Wang1,2,3, Kejun Wang1, Milan Radovich4, Yue Wang5, 
Guohua Wang2,3,7, Weixing Feng1,2,3, Jeremy R Sanford8 and 
Yunlong Liu*2,3,6

Address: 1College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, PR China, 2Division of Biostatistics Department 
of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA, 3Center for Computational Biology and Bioinformatics, 
Indiana University School of Medicine, Indianapolis, IN 46202, USA, 4Division of Hematology/Oncology Department of Medicine, Indiana 
University School of Medicine, Indianapolis, IN 46202, USA, 5Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 
46202, USA, 6Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA, 7School of Computer Science 
and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China and 8Department of Molecular, Cellular and 
Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA

Email: Xin Wang - wang60@iupui.edu; Kejun Wang - wangkejun@hrbeu.edu.cn; Milan Radovich - mradovic@iupui.edu; 
Yue Wang - yuewang@iupui.edu; Guohua Wang - wang40@iupui.edu; Weixing Feng - wfeng@compbio.iupui.edu; 
Jeremy R Sanford - sanford@biology.ucsc.edu; Yunlong Liu* - yunliu@iupui.edu

* Corresponding author    

Abstract
Background: Human genes undergo various patterns of pre-mRNA splicing across different
tissues. Such variation is primarily regulated by trans-acting factors that bind on exonic and intronic
cis-acting RNA elements (CAEs). Here we report a computational method to mechanistically
identify cis-acting RNA elements that contribute to the tissue-specific alternative splicing pattern.
This method is an extension of our previous model, SplicingModeler, which predicts the significant
CAEs that contribute to the splicing differences between two tissues. In this study, we introduce
tissue-specific functional levels estimation step, which allows evaluating regulatory functions of
predicted CAEs that are involved in more than two tissues.

Results: Using a publicly available Affymetrix Genechip® Human Exon Array dataset, our method
identifies 652 cis-acting RNA elements (CAEs) across 11 human tissues. About one third of
predicted CAEs can be mapped to the known RBP (RNA binding protein) binding sites or match
with other predicted exonic splicing regulator databases. Interestingly, the vast majority of
predicted CAEs are in intronic regulatory regions. A noticeable exception is that many exonic
elements are found to regulate the alternative splicing between cerebellum and testes. Most
identified elements are found to contribute to the alternative splicing between two tissues, while
some are important in multiple tissues. This suggests that genome-wide alternative splicing patterns
are regulated by a combination of tissue-specific cis-acting elements and "general elements" whose
functional activities are important but differ across multiple tissues.
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Conclusion: In this study, we present a model-based computational approach to identify potential
cis-acting RNA elements by considering the exon splicing variation as the combinatorial effects of
multiple cis-acting regulators. This methodology provides a novel evaluation on the functional levels
of cis-acting RNA elements by estimating their tissue-specific functions on various tissues.

Background
Alternative splicing of pre-mRNA is a major mechanism of
diversifying the protein coding potential of eukaryotic
genomes. According to studies using large-scale expressed
sequence tags (EST), as high as 60% of human genes are
estimated to undergo alternative splicing [1]. Moreover,
recent studies demonstrate that alternative splicing plays
a pivotal role in regulating tissue-specific patterns of gene
expression [2-7]. One mechanism for establishing tissue-
specific alternative splicing is by modulation of the
expression levels and/or intrinsic functions of "general"
RNA binding proteins (RBPs) [8-10]. For instance, previ-
ous studies have reported that modulation in the relative
concentrations of hnRNP A/B proteins and SR proteins
can control both the alternative splice site choice and the
inclusion/exclusion ratio of selected alternative exons [11-
15]. In addition, another mechanism of tissue-specific
alternative splicing is mediated by "tissue-specific RBPs",
which accounts for the restricted expression of many RNA
binding proteins to distinct tissues or developmental
stages. A prototypic example is the role of Nova proteins
which are crucial factors regulating brain-specific alterna-
tive splicing in the formation of synapses [16,17]. More
complicated regulatory mechanisms involving the combi-
nation of large numbers of trans-acting RBPs (RNA bind-
ing proteins that bind to the cis-acting RNA elements to
control pre-mRNA splicing) and cis-acting elements
(binding sites of trans-acting RNA binding proteins)
remain unclear and further studies are warranted.

Despite an increased focus on the factors regulating tissue-
specific alternative splicing, these mechanisms still
remain largely unclear. The advent of genome-wide splic-
ing-sensitive microarrays provides a new perspective to
address issues of combinatorial control of alternative
splicing. Evaluation of global splicing patterns using sta-
tistical approaches has the potential to reveal how combi-
nations of cis-acting RNA elements (CAEs) contribute to
tissue–specific patterns of alternative splicing. These types
of analytical tools are important for elucidating the com-
binatorial code governing splice site selection. We previ-
ously reported a model-based computational approach
called SplicingModeler. This was successfully implemented
to predict cis-acting RNA elements between heart and liver
tissues [18]. SplicingModeler regards the splicing variation
between two tissues as the combinatorial activities of mul-
tiple CAEs. Given the splicing index (SI) [19] of each dif-
ferentially expressed exon and the number of binding sites

for each motif candidate , SplicingModeler predicts the
CAEs as well as their relative functional levels (RFL) by
selecting the most significant motifs with the highest Exon
Inclusion Contribution (EIC) scores. However, when
being placed in a large set of tissues, we are not able to
estimate CAEs' functions across tissues directly. In this
study, we attempt to determine the cis-acting elements
that contribute to tissue-specific alternative splicing and
their functions across multiple tissues. Our method con-
sists of the following steps (Figure 1): 1) For each pair of
tissues, we follow a series of exon array data pre-process-
ing procedures to identify the splicing variants; 2) The
splicing index and regulatory sequences of each differen-
tially expressed exon are then inputted into SplicingMod-
eler to predict elements; 3) A two-step procedure is then
performed to estimate the tissue-specific functional levels
(TSFL) of predicted elements across tissues. The TSFL is a
direct measure of the contribution of each CAE to inclu-
sion or exclusion of an alternative cassette exon from an
mRNA isoform in certain tissue.

We applied this method using Affymetrix GeneChip® Exon
Array data from 11 human tissues [20]. Without loss of
generality, only cassette exon alternative splicing is con-
sidered in this study. Data from the eleven tissues resulted
in 55 paired experiments which predicted 652 statistically
significant cis-acting RNA elements (CAEs) to be involved

Work flow for genome-wide cis-acting RNA elements pre-diction based on SplicingModeler and Affymetrix Human Exon Array dataFigure 1
Work flow for genome-wide cis-acting RNA elements 
prediction based on SplicingModeler and Affymetrix 
Human Exon Array data.
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in tissue-specific alternative splicing. Of all the predicted
CAEs, the majority are located within intronic regions
close to 5'splice site (ss) or 3'ss. Nearly one-third of total
predicted CAEs can be mapped to known RBPs' binding
sites or exonic splicing prediction databases, and another
two-thirds of CAEs may be potential splicing factors.
Bipartite network demonstrates that the predicted ele-
ments can be classified into two different categories; one
group of CAEs functions with RBPs only in a small set of
tissues, while another group plays general but differential
activities across a large number of tissues.

Results
Differential expressions of exons among each pair of 
tissues
The Affymetrix GeneChip® Exon 1.0 ST Array is designed
to monitor alternative splicing using more than 1.4 mil-
lion Probe Selection Regions (PSR) within 1 million exon
clusters, which are constructed from various exon annota-
tions [21]. This study is based on human exon array data
incorporating 11 human tissues with 3 replicates for each
available on Affymetrix website [20]. We compared the
differences of PSR expressions, a fair evaluation on exon
expression levels, between every pair of tissues (55 pairs in
total among 11 tissues). For each tissue pair, a differential
PSR ratio for each transcript is then calculated based upon
the number of differentially expressed PSRs divided by the
total number of PSRs in the corresponding transcript
whose expression levels can be statistically detected on the
array. The number of differentially expressed PSRs and
average differential PSR ratios are demonstrated in Figure
2, where darker red implies greater differences in genome-
wide exon expression between two tissues.

Cerebellum, spleen and testes have the largest diversities
in exon expression when compared to other tissues
(darker color in the lower diagonal of Figure 2). Interest-
ingly, cerebellum and testes don't appear to have large
average differential PSR ratios when compared to other
tissues. Since average differential PSR ratios evaluate the
average percentage of differentially expressed exons per
transcript, this suggests that the alternative splicing events
of these two tissues compared to other tissues is distrib-
uted broadly among transcripts. In contrast, thyroid and
liver are found to have the highest differential PSR ratios
but very low number of differential PSRs, which indicates
that the alternative splicing events on thyroid and liver are
taking place in a more specific set of genes.

Cis-acting RNA elements prediction by SplicingModeler
In this study, we focus our analysis on one of the most
important splicing variants, cassette exons [22], where
exon inclusion and skipping leads to different types of
protein isoforms. First, for each pair of tissue comparison,
we use the estimation of overall gene expression to nor-

malize the expression signals of each exon. The splicing
index (SI), defined by Srinivasan K. et al [19], was then
utilized to evaluate the relative quantity of splicing differ-
ence between two tissues. Second, we applied Splicing-
Modeler, a computational tool we previously developed
[18] to identify putative hexamers whose functional dif-
ferences between two tissues potentially contribute to the
differences in splicing patterns. SplicingModeler results in
two scores for each candidate hexamer; Exon Inclusion
Scores (EIC), indicating the importance of the specific
hexamer; and Relative Functional Levels (RFL), where a
positive or negative value suggests its role in exon inclu-
sion in one of two comparing tissues. The most significant
hexamers, which receive EIC scores that are more than 5 ×
IQR (interquantile range) away from median EIC score,
are selected as the potential cis-acting elements that con-
tribute to the splicing variations between two tissues.

For each pair of tissues, significant hexamers can be sepa-
rated into "relative splicing enhancers" (RFL > 0) and "rel-
ative splicing silencers" (RFL < 0) depending upon their
estimated functional levels. It is important to note that
enhancer and silencer are relative concepts here, which
describe the relative function on exon inclusion in one tis-
sue comparing to another tissue. Figure 3 illustrates the
number of identified enhancers and silencers in each pair.

Heatmap of differentially expressed PSRs and average differ-ential PSR ratio per transcript for each tissue pairsFigure 2
Heatmap of differentially expressed PSRs and aver-
age differential PSR ratio per transcript for each tis-
sue pair. Each unit in lower left diagonal of the heatmap 
denotes the number of differentially expressed PSRs (exons) 
between row tissue and column tissue; while each unit in 
upper right diagonal indicates the average differential PSR 
ratio per transcript, calculated by the number of differential 
PSRs divided by total number of PSRs in each transcript. The 
corresponding color keys for the heatmaps and the histo-
grams for number of differential PSRs and average differential 
PSR ratios are on the right side of the figure.

cerebellum

heart

kidney

liver

muscle

pancreas

prostate

spleen

testes

thyroid

breast

ce
re

be
llu

m

he
ar

t

ki
dn

ey

liv
er

m
us

cl
e

pa
nc

re
as

pr
os

ta
te

sp
le

en

te
st

es

th
yr

oi
d

br
ea

st

Average differential 
PSR ratio

N
um

be
r 

of
 

ti
ss

ue
 p

ai
rs

Number of differentially 
expressed PSRs

N
um

be
r 

of
 

ti
ss

ue
 p

ai
rs
Page 3 of 10
(page number not for citation purposes)



BMC Genomics 2009, 10(Suppl 1):S4 http://www.biomedcentral.com/1471-2164/10/S1/S4
The upper diagonal indicates the number of identified
hexamers that contribute more exon inclusion in row tis-
sue comparing to column tissue, while the bottom diago-
nal demonstrates the number of hexamers that contribute
more exon inclusion in column tissue comparing to the
row tissue. Interestingly, most hexamers identified in cer-
ebellum contribute to exon inclusion comparing to other
tissues, while only a few are identified to be relative silenc-
ers. This trend is reversed in spleen, where most identified
hexamers are predicted to decrease exon inclusion com-
pared to other tissues. Overall, spleen, testes and pancreas
are the top 3 tissues that contain more exon exclusive fac-
tors, while most predicted elements increase exon inclu-
sion in breast and cerebellum.

Permutation analysis
Permutation tests are applied to validate the statistical sig-
nificance of predicted cis-acting elements. For each pair of
tissues, we randomized the order of observed SI values,
and conducted prediction using SplicingModeler. This
approach not only effectively disconnects the functional
relationships between exons and their regulatory
sequences, but also preserves the regulatory element con-
tents and the distribution of the levels of splicing varia-
tion. Wilcoxon test was then conducted on the predicted
EIC scores (Exon Inclusion Score) with the alternative
hypothesis that the predicted cis-acting elements from the
original data have greater EIC scores than those from the

randomized data. Permutation tests between all the tissue
comparisons resulted in significant p-values lower than
2.2e-16, which suggested that SplicingModeler predictions
are biologically meaningful.

Biological relevance of predicted cis-acting elements
In order to test the biological relevance of predicted cis-
acting elements, we compared the sequence similarities
between the predicted elements with the known binding
sites of RNA binding proteins, from documented binding
sites for 14 proteins [23], and predicted binding sites from
splicing regulator prediction databases [24,25]. Overall,
among 652 significant hexamers, 85 match with known
binding sites of 7 RBPs, including hnRNP-B, hnRNP-C,
hnRNP-F, hnRNP-H, hnRNP-I (PTB), SRp40 and Nova. In
addition, 64 elements match with predicted exonic splic-
ing regulators (PESR) by Ast LAB, and 60 elements match
with predicted exonic splicing enhancers (PESE) and pre-
dicted exonic splicing silencers (PESS) as predicted by
Burge LAB. In total, 205 of the predicted elements can be
validated in any of the three databases (Figure 4).

Functional prediction on the significant cis-acting 
elements
In order to estimate the functions of predicted elements in
each tissue (not the relative functions in each tissue pair),
we define Tissue-Specific Functional Level (TSFL), which
is derived from the Relative Functional Levels (RFL) that
are calculated for each hexamer (Equation 4) in each tis-
sue pair. For each hexamer, the TSFL for each tissue is
achieved by solving a reduced linear equation with 55

Matching results from predicted CAEs to known RBPs' bind-ing sites and predicted exonic splicing regulator databasesFigure 4
Matching results from predicted CAEs to known 
RBPs' binding sites and predicted exonic splicing reg-
ulator databases. The percentages of predicted cis-acting 
RNA elements (CAEs) matching to known RBPs' binding 
sites, predicted exonic splicing regulators (PESR by Ast G. 
Lab), predicted exonic splicing enhancers and silencers (PESE 
and PESS by Burge CB. Lab) and any of above three databases 
are represented as barplots with different colors.
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Heatmap of predicted cis-acting RNA elements (CAEs) con-tributing more exon inclusion/exlusion to row tissues than column tissuesFigure 3
Heatmap of predicted cis-acting RNA elements 
(CAEs) contributing more exon inclusion/exlusion to 
row tissues than column tissues. For each pair of row 
tissue and column tissue, each unit in upper right (red 
colored)/lower left diagonal (blue colored) stands for the 
number of predicted CAEs contributing more exon inclu-
sion/exclusion to row tissue than column tissue. Darker red 
and blue colors indicate larger number of predicted elements 
respectively.
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equations (total pairs of comparison) restricted by the rel-
ative relationships of 11 parameters, where each parame-
ter models its function in the respective tissues (See
Method section). The TSFL represents each hexamer's rel-
ative contribution to exon inclusion or exclusion in a spe-
cific mRNA isoform. For each element, the median value
of their functions (TSFL) on exon inclusion among 11 tis-
sues is set as baseline (0).

We further conducted hierarchical clustering for the 11 tis-
sues based upon the tissue-specific functional level identi-
fied for each significant element. In principle, the splicing
regulatory factors binding on these elements control glo-
bal splicing pattern. Clustering tissue types based upon
the functions of these regulatory elements provides
unique insight in the relationship of alternative splicing
across multiple tissues. The tissues were clustered using
gplots package [26] of R program (http://www.r-
project.org, version 2.7.1) based upon Pearson's correla-
tion between each two rows and columns (Figure 5). Two
major clusters are derived. Surprisingly, high correlations
are observed between liver and prostate, with a correlation
coefficient of 0.415, and between spleen and cerebellum
(correlation coefficient of 0.553). Further, most of the cis-
acting elements (96.5%) are enhancing the inclusion of
exons in cerebellum, and 46.6% of them contribute more
exon inclusion in cerebellum than any other tissue. These
data is consistent with the splicing pattern observed in Fig-
ure 2.

Tissue-specific CAE regulatory network
To elucidate the complex relationships between predicted
cis-acting elements in regulating the splicing patterns

across multiple tissues, a bipartite network is constructed
where predicted elements and regulated tissues are con-
sidered two types of nodes (Figure 6). Each edge connect-
ing between two types of nodes indicates the regulatory
relationship between the predicted elements and the spe-
cific tissue. The color demonstrates the predicted tissue-
specific functional levels.

In total, we predicted 555 intronic elements with only 97
exonic elements. Interestingly, numerous exonic factors
are found in cerebellum (34/98) and testes (47/223)
including PTB, hnRNP-B and hnRNP-C binding sites. In
addition, a Nova binding site is found at 5'ss intronic
region in cerebellum regulators. Overall, 23% of all pre-
dicted elements regulate multiple (>= 3) tissues, although
most of the elements only connected to two tissues (Fig-
ure 7).

Discussion
In this study, using an extended version of SplicingModeler,
we successfully identified 652 cis-acting RNA elements in
11 human tissues that are important in regulating alterna-
tive splicing. Permutation tests for all experiments suggest
that the predicted cis-acting elements are statistically sig-
nificant and biologically relevant. Thirteen percent of pre-
dicted elements can be mapped to known binding sites of
RNA binding proteins, and 31.4% can be matched in any
one of the three databases that document biologically-
determined known sites and predicted sites using other
bioinformatics approaches.

Previous studies on splicing regulation tends to focus on
exonic regions, our results suggest that intronic regions

Hierarchical clustering of tissue-specific functional levels (TSFL) for all 652 predicted cis-acting RNA elements (CAEs) across all eleven tissuesFigure 5
Hierarchical clustering of tissue-specific functional levels (TSFL) for all 652 predicted cis-acting RNA elements 
(CAEs) across all eleven tissues. TSFL greater than, lower than or equaling to 0 are represented by units with red, blue or 
white color. Darker red/blue indicates higher/lower functional level.
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may also be equally, if not more, important for the regu-
lation of tissue-specific alternative splicing. Consistent
with previous observations [27-29], the majority of cis-
acting elements predicted are in intronic regions, and only
23% are in exonic regions. An important exception, of all
38 elements regulating alternative splicing between cere-
bellum and testes, 32 are exonic regulators. Interestingly,
of all the exonic regulators in cerebellum and testes, only
one contributes more exon inclusion in testes than cere-
bellum, indicating that a large set of exonic cis-acting ele-
ments are regulating exon skipping in testes. Although
alternative splicing is frequently observed in human brain
and testes [3,6,30], the differentially expressed exons (Fig-
ure 2) show that these two tissues undergo different splic-
ing patterns. Compared to other tissues, more exonic

elements are found to regulate alternative cassette exons
in testes.

Different from relative functional levels, derived from
SplicingModeler to estimate the relative activities of cis-act-
ing RNA elements for each pair of tissues, tissue-specific
functional levels are developed in this study to represent
the activities of predicted cis-acting RNA elements on exon
inclusion in one tissue. From the hierarchical clustering
on the tissue-specific functional levels of predicted cis-act-
ing elements across all tissues, we observe positive corre-
lations within each of the two major clusters. The
correlation coefficients between cerebellum and spleen,
and between liver and prostate, even reach high values of
0.553 and 0.415 respectively, indicating that a large

Tissue-specific splicing regulatory networkFigure 6
Tissue-specific splicing regulatory network. Yellow diamonds stand for tissues. The size of diamond is proportional to 
the degree of connections with cis-acting RNA elements (CAEs). Nodes with different colors indicate CAEs in different regula-
tory regions (see legends). Connections between CAEs and tissues suggest the regulatory relationships. Red and blue lines indi-
cate TSFL > 0 and TSFL < 0, respectively. The size of circle is proportional to the number of tissues connected to CAE.
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number of cis-acting RNA elements are playing similar
functions across these tissues.

From bipartite network showing the regulatory relation-
ship of predicted cis-acting elements (CAE) in different tis-
sues (Figure 6), we clearly see that most of the predicted
CAEs (small circles surrounding tissues) are only con-
nected to two tissues; meanwhile, a small number of CAEs
(big circles centered and surrounded by tissues) are regu-
lating multiple tissues. We also demonstrate that the vast
majority of predicted CAEs are only related to two tissues
(Figure 7). Interestingly, 14 CAEs are predicted to be Nova
binding sites, and all of them are only significantly regu-
lating the splicing differences between two tissues. Similar
situations also happen on SRp40, hnRNP-F and hnRNP-H
related CAEs, in which 88.9%, 75% and 100% are found
to regulate only two tissues respectively. This is either
caused by the degenerative features of these binding sites,
which is not considered in the current model, or implies
that the binding sites of these general splicing factors
slightly vary in different tissues. Interestingly, 44.6% of all
hnRNP-B, hnRNP-C and hnRNP-I (PTB) related CAEs are
significantly presented in multiple (>= 3) tissues. These
data indicate that the majority of CAEs may be only recog-
nized by tissue-specific RBPs and only function in a small
set of tissues. By contrast, a small number of CAEs bound
by highly abundant RBPs like hnRNP-B/C/I, could also
contribute to the differential regulation of alternative
splicing across multiple tissues.

Systematic investigation of RNA binding proteins and
their complicated interactions and regulatory roles on
alternative splicing remains a challenging problem. Com-
putational models integrating genome-wide expression

data can assist in the identification of mechanisms influ-
encing tissue-specific alternative splicing. Popular compu-
tational methods of cis-acting RNA elements prediction
are typically based on low- or high-throughput microarray
or sequencing data, and then analyzed to predict binding
sites using the consensus sequences of the studied RBPs
[24,31-33]. Such methods are useful for predicting bind-
ing specificity of specific RBP's, but lack integration of tis-
sue-specific splicing and combinatorial regulatory
mechanisms. Moreover, these methods are mainly
restricted to exonic splicing regulator prediction. Recently,
Das et al developed another computational model to
identify CAEs for tissue-specific alternative splicing, which
uses the correlation of motif parameters together with
gene-level normalized exon expression signals to identify
splicing regulatory motifs [34]. However, combinatorial
effects of different splicing factors were not considered.
Besides, only upstream and downstream intronic regions
are analyzed in that study, however, exonic splicing
enhancers (ESE) and silencers (ESS) are also important
parts of alternative splicing regulators as well. Our
method is based on the assumption that alternative splic-
ing is regulated by RBPs in a combinatorial fashion, and
therefore potentiates an unbiased investigation on the
functions of cis-acting elements in both intronic and
exonic regions.

Compared with previous computational methods for the
prediction of CAEs regulating tissue-specific alternative
splicing [24,31-34], our method attempts to predict cis-
regulatory elements in combination with their functions
and contributions to exon inclusions. Different from
SplicingModeler, this study emphasizes the tissue-specific
rather than relative functional levels between tissues, so
that we are able to compare CAEs' activities in a broader
scale. Further improvements of our model in future
include sequence degeneracy of motif candidates and pre-
mRNA secondary structure.

Methods
Data source
Human Exon Array dataset, containing exon array data for
11 tissues (including breast, cerebellum, heart, kidney,
liver, muscle, pancreas, prostate, spleen, testes, and thy-
roid) with 3 replicates for each, were obtained from
Affymetrix Exon 1.0ST Array Sample Dataset [20]. Affyme-
trix Power Tool [35] (APT Release 1.8.5) were used to pre-
process exon array data such as probe intensity normaliza-
tion, probeset and transcript expression summarization,
implementation of MiDAS algorithm [36] etc. Since our
analysis focuses primarily on cassette exons, Affymetrix
core PSR dataset, which contains annotated RefSeq tran-
scripts and full-length mRNAs, were used to filter out exon
clusters with multiple PSRs. UCSC known gene database

Histogram describing the distribution of number of tissues regulated by predicted cis-acting RNA elements (CAEs)Figure 7
Histogram describing the distribution of number of 
tissues regulated by predicted cis-acting RNA ele-
ments (CAEs).
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and annotation files [37] were retrieved from UCSC
Genome Browser.

Identification of differentially expressed exons

For each pair of tissues (  pairs in total), we iden-

tify the differential expressed exons, following the work-
flow suggested by Affymetrix technique note [21]. First,
probe intensities are adjusted based upon the median
intensity of background probes with similar GC content.
Quantile-normalization is then applied within tissues on
the assumption that probe intensities in different repli-
cates of same tissue follow the same distribution. Intensi-
ties of probesets and transcripts are then summarized
based on Plier [38] and Iter-Plier [39] methods respec-
tively. For each sample, PSRs with DABG (Detection
Above Background) p-values [40] less than 0.05 are
treated as present. For each tissue type, PSR is regarded as
present across replicates if it is present in more than two
replicates of a tissue. PSRs that are absent in one of the
pair of tissues will be filtered out. Transcript is regarded as
present if more than 50% of all PSRs are present. Tran-
scripts not expressed in both tissues are removed; this
effectively removes the false positive identification of
alternatively spliced exons due to unbalanced gene expres-
sion. MiDAS algorithm [36] is then used to test the signif-
icance for each present PSR to be differentially expressed;
PSRs with p-values less than 0.05 are considered as differ-
entially expressed. In order to compare the exon inclusion
rate in two tissues, Splicing Index (SI) is calculated based
on the gene-level normalized intensities (NI) [19].

Exons with |SI|>= 2.0 are selected as splice variants
between these two tissues; this can be translate into four
times splicing difference.

Regulatory sequences
It has been reported that splicing factors works primarily
in exonic and intronic regions that are adjacent to splice
sites [41-43]. As such, SplicingModeler only considers
intronic regions within 300-bp and exonic regions within
150-bp to 5' and 3' splice sites as four potential cis-regula-
tory regions. SplicingModeler requires the SI values as well
as regulatory sequences to perform the prediction of regu-
latory cis-acting elements. The differentially expressed
exons are mapped to UCSC known gene annotation [37]
to obtain their genomic loci. Sequences in regulatory
regions, including intronic/exonic regions upstream and
downstream of 5' and 3' splice sites, are then retrieved
from Human Genome Database (hg18) [44,45].

Cis-acting RNA elements prediction based on 
SplicingModeler

SplicingModeler [18] is conducted to predict critical cis-act-
ing elements that contribute to splicing pattern differ-

ences between each of  tissue pairs. It is designed

to predict cis-acting RNA elements based on the regulatory
sequences and corresponding SI values of differentially
expressed exons. The model regards the exon inclusion
variations between two tissues as the combinatorial effects
of multiple splicing factors. The quantitative relationship
between SI value of the k-th exon and occurrences of can-
didate hexamers is modeled as:

where, nr indicates the number of regulatory regions (nr =
1 to 4 corresponding to 3'ss-intronic region, 3'ss-exonic
region, 5'ss-exonic region, and 3'ss-intronic regions); Sk, r
is the total set of functional candidate elements in regula-
tory region r; Sk, i, r is the number of binding sites of candi-
date element i in regulatory r-th region on the k-th exon;
RFLi, r stands for the relative functional level of motif i in
regulatory region r; a positive and negative value implies
its function on exon inclusion in one of the two compar-
ing tissues.

Sk, i, r can be obtained from the regulatory sequences, SIk
stands for the splicing index of the k-th exon, which will
be measured by the exon array experiment, and calculated
based upon Equation 1. The Relative Functional Level
(RFL) can then be estimated by fitting k equations with nr
parameters using least-squares procedure. The significant
cis-acting elements are selected in an iterative fashion. In
brief, n = 20 candidate elements were randomly selected
from all the candidates. The adjusted reciprocal of sum
square error, calculated following least-squares procedure,
is equally deposited to exon inclusion contribution (EIC)
score of each motif candidate . The estimated RFL values
are also accumulated into the final RFL scores. A detailed
description on the SplicingModeler procedure can be found
in [18].

In this study, to speed up the modeling, motif candidates
whose binding sites occurrences are less than 5% of all
alternatively spliced exons are filtered out. For each tissue
pair comparison, we repeat the procedure for 10 million
times. Motif candidates whose EIC scores are higher than
median + 5 × IQR (interquantile range) are selected as sig-
nificant cis-acting elements.

C11
2 55=

SI
NItissue
NItissue

= log 2
1
2

(1)

C11
2 55=

SI S RFLk k i r i r
i Sr

n

k r

r=
∈= ∑∑ , , ,

,1
(2)
Page 8 of 10
(page number not for citation purposes)



BMC Genomics 2009, 10(Suppl 1):S4 http://www.biomedcentral.com/1471-2164/10/S1/S4
Tissue-specific functional levels estimation for predicted 
cis-acting element
Functional levels of predicted elements in each tissue, or
Tissue-Specific Functional Level (TSFL), is derived from
the Relative Functional Levels (RFL) that are calculated for
each hexamer (Equation 4) in tissue pairs. The TSFL is cal-
culated through the following two steps:

Normalize relative functional levels across 11 tissues
For each tissue pair comparison, the derived RFL for the
m-th element is proportional to the instances that motif
candidate m is selected in the SplicingModeler procedure.
This number could be different since the hexamers whose
binding sites occurrences are less than 5% of all alterna-
tively spliced exons are pre-filtered out. The normaliza-
tion procedure is conducted to eliminate this bias. If there
are totally Mi, j candidate motifs were used in the Splicing-
Modeler when comparing paired tissues i and j, the nor-
malized relative functional level for motif candidate m
can be calculated using following formula:

Estimate tissue-specific functional levels
If TSFLm, i represents the functional level of motif m for tis-
sue i, the relative functional level (RFL) of the same motif
between tissues i and j can be reconstructed as:

For any motif candidate , such equation exists for every tis-
sue comparison. Based on nRFLm, i, j score estimated from
SplicingModeler, TSFL value was solved using least-squares
procedure by randomly selecting one tissue as the stand-
ard and assigning 0 to its corresponding TSFL. For every
predicted motif, the derived TSFL score is further normal-
ized assuming standard normal distribution.

Bipartite splicing regulatory network
To illustrate regulatory relationships of predicted cis-act-
ing RNA elements (CAEs) on regulated tissues, a bipartite
network is constructed using Cytoscape [46]. Predicted
CAEs and tissues are represented by circular and dia-
mond-shaped nodes respectively. Different colors of cir-
cles stand for different types of regulatory regions (green:
intronic region adjacent to 3'ss; blue: intronic region adja-
cent to 5'ss; aubergine: exonic region adjacent to 3'ss; red:
exonic region adjacent to 5'ss). The size of CAE is propor-
tional to the number of connected tissues. CAEs con-
nected to multiple tissues are clustered at the center of
graph, while CAEs only associated with two tissues are
located at surrounding regions. The connection between
each CAE and tissue indicates that there is a regulatory
relationship between them. Colors of connections for

each CAE describe the tissue-specific functional levels
(TSFL) across tissues (Red: TSFL > 0; Blue: TSFL < 0).
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