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Abstract: The aim of this paper was to provide a methodological framework for estimating the amount
of driving data that should be collected for each driver in order to acquire a clear picture regarding
their driving behavior. We examined whether there is a specific discrete time point for each driver,
in the form of total driving duration and/or the number of trips, beyond which the characteristics
of driving behavior are stabilized over time. Various mathematical and statistical methods were
employed to process the data collected and determine the time point at which behavior converges.
Detailed data collected from smartphone sensors are used to test the proposed methodology. The
driving metrics used in the analysis are the number of harsh acceleration and braking events, the
duration of mobile usage while driving and the percentage of time driving over the speed limits.
Convergence was tested in terms of both the magnitude and volatility of each metric for different
trips and analysis is performed for several trip durations. Results indicated that there is no specific
time point or number of trips after which driving behavior stabilizes for all drivers and/or all metrics
examined. The driving behavior stabilization is mostly affected by the duration of the trips examined
and the aggressiveness of the driver.

Keywords: driving data collection; driving behavior; driving assessment; smartphone data

1. Introduction

Human factors such as driving under the influence of drugs or alcohol, distraction and inattention,
speeding, aggressiveness and fatigue are proven to be the basic cause of road crashes, with a percentage
of 65%–95% [1–4]. The rest of the factors that have an impact on crash probability include road
environment (pavement, road signs, weather conditions, road design etc.), seatbelt use and vehicles
(equipment and maintenance, damage etc.) as well as combinations of all three contributory factors [5,6].

Among the factors that relate to humans’ actions and reactions on the road, aggressiveness and
distraction in driving behavior are of particular interest, as they become easier to monitor and study
using the latest advances in technology [7–9]. More specifically, literature related to monitoring driving
behavior using modern technology has centered to three attributes describing unsafe driving behavior,
namely mobile phone usage, driving above the speed limit (speeding) and harsh driving [10,11]. Using
the mobile phone while driving greatly influences driving behavior, as drivers show greater changes in
speed, more fluctuations in the accelerator pedal position and they report a higher level of workload,
regardless of the difficulty level of the conversation [10,12]. The same study proposed that drivers also
tend to choose longer distances between vehicles and their reaction times are significantly increased.
Driving above the speed limit is another significant factor that can lead to a crash (e.g., covering
greater distance in case of a hazard, loss of control). According to [13], speeding is a contributing
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factor to 10% of total crashes and over 30% to fatal crashes. Finally, harsh events, namely acceleration,
braking and turns, are important indicators for the assessment of driving risk, especially for assessing
aggressiveness of driving [14]. These characteristics are strongly correlated with an unsafe distance
from adjacent vehicles, accidental occurrences, lack of concentration, increased reaction time, poor
driving judgment or low experience and participation in high risk situations. The association between
harsh acceleration and harsh braking with dangerous driving has been highlighted in the scientific work
published by [11,15–17] and has been widely recognized by the insurance and telecom industry [18].

The rapid technological progress, especially in Telematics [15,19], as well as the ever-increasing
penetration and use of information technology by drivers (e.g., smartphones), can contribute to a
deeper understanding and prevention of the factors that may lead to “near-misses” or actual road
crashes through accurate monitoring, recording, analysis and assessment of driving behavior. Until
recently, it was extremely difficult to collect and manage real-time data and, therefore, to study the
relationship between driving behavior, travel behavior and the probability of crash involvement. This
happened mostly due to the high cost of real-time driving data recording systems, data programs,
cloud computing services, the inability to accumulate and exploit massive data bases (“Big Data”) for
transport and traffic management purposes [20,21] and the low penetration rate of smartphones and
social networks.

Nowadays, high quality real-time data can be collected in an efficient way in order to model
both individual and total crash risk. With recent developments in tracking technology, new data
collection methods, such as In-Vehicle Data Recorders (IVDRs) and smartphones, have emerged,
giving the opportunity for large scale and real time monitoring and assessing of the actual driving
behavior. In most studies, data are recorded by either On-Board-Diagnostics (OBD) [21] or smartphone
devices [22] and transmitted to a central database for processing and analysis [23,24]. This allows for
the development of special indicators to estimate driver’s travel and driving behavior. However, the
exact size of the driving data that need to be collected and evaluated to determine the driving behavior
with sufficient precision has not yet been determined. Both small and large data samples are likely
to lead to questionable results by acquiring a sample either biased or computationally expensive to
analyze, thus, making it important to investigate the amount of driving data that should be recorded
by each participant in the experiment.

The aim of this paper was to develop a methodology for estimating the amount of driving data
required to be collected for each driver to evaluate his driving behavior. Nowadays, data are of
incalculable worth, as they can reveal and/or help us better understand driving behavior. Insufficient
data can lead to misleading conclusions and biased results. On the other hand, collecting too much data,
besides the increased experimental and computational costs, can be quite misleading [25]. Therefore,
we examined whether there is a specific discrete time point beyond which the characteristics of
driving behavior are stabilized over time and, as a result, a clear picture of driver’s behavior has been
acquired. This amount was defined as the total driving duration and/or the number of trips that need
to be recorded for each driver in order to obtain a clear picture regarding where the rate of driving
characteristics (e.g., per kilometer or per minute) converges to a fixed point.

2. Materials and Methods

2.1. Data Collection

The basis of this framework is an innovative data collection system that continually records
real-time driving behavior data of each participant using smartphone sensors. The driving behavior
of 68 drivers was monitored and analyzed using several statistical tools to determine the minimum
observation time for each driver and the potential to group drivers based on their driving aggressiveness.

Data were collected using the OSeven mobile application for both iOS and Android devices [26].
The application does not require any user engagement, and therefore, starts to collect raw smartphone
sensor data from the built-in accelerometer, magnetometer, gyroscope and GPS during a trip. The



Sensors 2020, 20, 2600 3 of 15

accelerometer values are in m/s2 counting the gravity acceleration and the gyroscope values in rad/sec
counting the angular velocity. Both sensors record data along three axes (x, y, z). Moreover, the specific
app can automatically identify when the user has completed the trip and send the data to the servers of
OSeven Telematics for processing through machine learning algorithms. Participants in the experiment
should have a smartphone with built-in accelerometer, gyroscope and magnetometer sensor while
commuting. For the specific work, data were collected with 1 Hz frequency. Users were very positive
in using the app and participating in the experiment, since data were anonymized and no further user
engagement while traveling was required.

The database used consisted of 21,610 separate trips collected from 68 drivers, which were
chronologically ordered to observe the change in the magnitude of driving behavior characteristics
over time. It should be noted that all the provided data was processed by OSeven Telematics, thus,
no raw data processing was implemented in this study (i.e., converting data from the gyroscope and
accelerometer to harsh braking events).

2.2. Main Risk Factors in Crash Research

In road crash literature [16], some of the travel and driving risk indicators that have been identified
are: the total distance driven by the user, meaning that the higher the mileage, the higher the risk [15].,
the road network type, as increased crash frequency can be observed in the cities, but increased crash
severity can be observed in rural areas and highways. Furthermore, drivers are more likely to cause
a crash during the so called “risky hours” or when they are driving in an unfamiliar environment
(infrequent trips). Vehicle type and weather conditions are also considered as driving risk indicators,
together with the seatbelt use and mobile phone use while driving. Lastly, the same study [16] indicated
that harsh driving (e.g., harsh braking, acceleration or cornering) and speeding expressed either as a
percentage of kilometers/time driving over the speed limit or a percentage of speeding are important
indicators regarding travel and driving risk.

On a research level, there are several indicators both for travel behavior (vehicle maintenance
condition, safety rating of the vehicle from the IIHS (Insurance Institute for Highway Safety)) and
driving behavior (harsh cornering, alcohol, ecological driving etc.) that affect crash risk as well, but
are not yet incorporated in risk modeling. Eco-driving for instance, is a significant factor for crash
risk estimation [27]. According to the manufacturer’s specifications, conclusions can be drawn about
how a person is driving (aggressively, over the speed limits etc.) if fuel consumption estimated by
the manufacturer is compared to the real fuel consumption recorded. Furthermore, the simultaneous
existence of two driving traits, namely, excessive speeding during the risky hours timeframe or braking
harshly while using the mobile phone, might excessively affect crash risk. It should be mentioned,
however, that some of the indicators mentioned above, such as the use of alcohol, cannot be considered
in the driving behavior models of the present analysis as they cannot be captured efficiently yet.
Nevertheless, it is very likely for scientists to be able to monitor these factors in an easy and reliable
manner in the near future and therefore exploit this information as well.

As for the indicators used in today’s Usage Based Insurance (UBI) models, the predominant among
them are mileage, speeding, road network type and risky/rush hours driving. It is anticipated that apart
from these, more behavioral parameters e.g., the number of sudden braking/acceleration/cornering
events, mobile phone usage etc., will be used a lot in future models because they represent the crash
probability better.

It can be deduced from the above that the most significant human factors that were found to affect
driving risk, which will be further used to identify the amount of data that should be collected to
understand a driver’s behavior, are: i. mobile phone distraction, ii. speed limit exceedance and iii. the
number of harsh braking and acceleration events that occurred while driving [16]. Harsh cornering is
not explicitly utilized as a metric in this study, as its contribution as a driving behavior indicator can be
grouped in that of the harsh braking events.
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2.3. Methodological Approach

Identifying Driving Behavior Convergence

As previously mentioned, the driving metrics used in this study to identify driving behavior
convergence are the number of harsh acceleration (HA) and braking events (HB), the time of mobile
usage (MU) and the time of driving above the speed limit (SP). Cumulative sums of those metrics
(per kilometer for harsh events and as percentage of driving duration for mobile usage and speeding)
were used to reveal when driving characteristics stabilize or fluctuate around a fixed value over time.
This trend is also captured in the convergence figures provided below.

The analysis was conducted on a trip basis, and three distinct trip duration categories were
used (5-, 10- and 20-min trips). The variability of the above metrics is then examined to observe
driving behavior evolution over time. For this purpose, the measures of simple moving average and
volatility were used along with statistical limits (hart charts, [28]) and conditions that need to be met to
identify convergence. We utilized the basic convergence principles of Shewhart charts, which set the
“confidence intervals” for identifying the area where convergence was achieved.

For each of the sub-databases originating from the initial database of the 68 drivers, it was checked
whether and when all of the following conditions were met simultaneously:

• The moving average is within the range “mean ± 1 * standard deviation.”
• For five consecutive trips, the percent change (in absolute terms) between successive values of the

moving average is less than or equal to 1.5%.
• The value of the moving average in the corresponding trip is a local extreme (this criterion ensures

that the neighboring values of the moving average are smaller or larger than the selected one, and
therefore, it does not belong to a sequence of points that have a particular trend e.g., ascending
or descending).

These criteria were separately applied on the cumulative sum measures and to their volatility
measures. For each driver, each time step was iteratively checked to examine when the above criteria
were met. The first trip, for which all of the above conditions are met, was assigned to the drivers’
database as the first time point at which the particular attribute converged to a certain value. At
the same time, the values at which the cumulative sum metrics and their volatility converged were
also recorded.

To calculate volatility, the ratio of the Gain/Loss of each driver was calculated and defined as
the gain (= improvement) or the loss corresponding to drivers driving behavior among successive
journeys. If k is the metric that is examined (number of HA events, duration of MU, duration of SP etc.),
i is each driver (i = 1, 2, 3, . . . ., N) and t the number of his trips t = {1, 2, 3, . . . ., n}, then the Gain/Loss
ratio for each trip is calculated as:

rt,i = ln
(

kt,i

kt−1,i

)
(1)

This ratio is negative when a driver is improving their driving behavior (for example when
the number of HA events per km is reduced compared to the previous trip and positive when the
opposite happens).

Then, the magnitude of volatility is calculated as the standard deviation of the Gain/Loss ratio in
order to examine how consistent the driver is between different trips introduced in [1] as follows:

Volatility =

√∑n
t=1(rt,i − ri)

2

n− 1
(2)

where rt,i is the Gain/Loss ratio for every trip t of every driver i, r is the mean value of the ratio
Gain/Loss for the driver i and n is the number of his trips. In order to calculate the mean value of the
ratio, the number of trips should first be defined. For example, if all trips of a driver are to be used,



Sensors 2020, 20, 2600 5 of 15

then volatility will be calculated compared to the whole sample. However, since the actual case is that
different drivers had a different number of trips, using the whole sample would not be realistic. As a
result, a constant moving window of 20 trips was chosen, taking into account that no driver and no
characteristic can converge earlier than 20 trips. This is supported by the analysis of the data that also
proved that none of the participants in the experiment exhibited a driving behavior that would allow
them to converge earlier than 20 trips. Intuitively, this amount of data is the equivalent of monitoring
an average driver for at least 2 weeks, which can be considered enough for statistical analysis. It is
seen, therefore, that each value of volatility of driver i compared the driving behavior of each trip rt,i to
the mean value ri of the 19 next observed trips of the same driver.

Finally, the Shewhart control chart principles were used [28], which examine whether a variable
remains stable over time and within two given upper and lower limits. The two limits, the upper
control limit (UCL) and lower control limit (LCL), are defined as follows:

UCL = Accepted value + k ∗ process standard deviation (3)

LCL = Accepted value − k ∗ process standard deviation (4)

3. Results

The procedure described above is applied to the initial database of 68 drivers, for trips with an
average duration of 5, 10 and 20 min. The analysis was conducted only for the above average trip
durations, since the number of trips with a duration over 25 min is significantly lower, resulting to an
extremely low number of trips for all drivers (less than three trips for 93% of the drivers). Therefore,
no duration category above 20 min was used in the analysis since this would then lead to statistically
insignificant and uncertain results. The final analysis performed included data from 29 drivers who
were used to obtain the results illustrated in Table 1. These 29 drivers were those having sufficient
number of trips in all trip duration categories examined in this study (5-, 10- and 20-min duration).
The threshold used to determine whether or not an adequate number of trips has been recorded for a
driver was 20 trips, which is equal to the moving window’s number of trips.

Table 1 presents the descriptive statistics of the minimum number of trips for all three trip
duration categories studied. After applying the methodology, the specific number of trips after which
convergence of the driving behavior metrics was established for the above 29 drivers. “Trip duration 5”
refers to the trips that lasted less than 5 min, “Trip duration 10” to the trips that lasted between 5 and
15 min (average duration of sub-database: 10 min) and “Trip duration 20” to trips that lasted between
15 and 25 min (average duration of sub-database: 20 min). The results of Table 1 are grouped by trip
duration category and drivers’ aggressiveness level i.e., the number of harsh acceleration/braking
events per 100 km driven and the percentage of mobile usage and time speeding while driving.

The results in Table 1 demonstrate that no single time point at which driving behavior stabilizes
exists for all drivers and/or all driving behavior metrics. This finding, although expected, because drivers
differ in driving aggressiveness, hints that the identification of a driver’s observation time—before
forming his driving profile—should be preceded by an analysis of the aggressiveness profile. Results
indicate that the most aggressive drivers (i.e., the ones with a larger number of harsh events per
km) tend to converge at a faster rate than the less aggressive drivers, confirming the results of the
literature [9,15]. More specifically, it is noticed that, on average, more aggressive drivers tend to
converge (for all metrics and their volatility) at around 80 trips, while less aggressive drivers converge
at around 100 trips. For instance, the average number of trips required that the convergence of all
metrics of trips with an average duration of 5 min is 102 and 86 for less and more aggressive drivers,
respectively. Consequently, the metrics that generally converge with the slowest rate refer to cautious
drivers and are usually the volatility of HA events, the number of HB events per kilometer and the
percentage of MU while driving. In addition, slower convergence rate in their volatility measures as
well (regarding all metrics) was observed for cautious drivers.



Sensors 2020, 20, 2600 6 of 15

Table 1. Aggregated table of minimum number of trips required for convergence.

Trip
Duration

Metric
Limits

Metric Volatility No of
Driversmin max Average Median StDev min max Average Median StDev

5

HA ≤ 15 63 112 92 92 17 49 169 95 81 35

27

HA > 15 52 136 86 85 27 36 97 65 70 19

HB ≤ 5 60 196 110 109 44 50 271 85 70 58

HB > 5 56 157 97 94 31 52 103 81 85 19

MU ≤ 10% 76 167 102 94 26 43 112 76 75 18

MU > 10% 52 104 76 73 17 38 187 73 67 38

SP ≤ 3.5 % 69 145 104 104 29 41 157 79 70 34

SP > 3.5 % 64 138 86 76 23 34 172 65 50 38

10

HA ≤ 15 58 109 84 84 14 74 235 115 103 40

29

HA > 15 49 134 80 75 26 43 119 67 62 22

HB ≤ 6 71 213 118 97 50 62 251 102 90 47

HB > 6 65 135 90 77 22 41 96 69 66 18

MU ≤ 7% 41 291 110 98 61 58 203 86 79 35

MU > 7% 67 134 95 87 21 46 105 64 63 16

SP ≤ 5 % 18 154 89 88 32 62 201 99 83 46

SP > 5 % 53 123 85 85 23 41 99 68 71 19

20

HA ≤ 12 14 103 61 69 35 61 188 117 102 44

16

HA > 12 29 81 59 63 17 42 50 46 46 6

HB ≤ 5 84 102 94 97 9 60 184 102 87 40

HB > 5 51 109 69 65 17 - - - - -

MU ≤ 10% 72 156 106 96 31 34 118 73 65 30

MU > 10% 58 103 80 80 19 38 116 65 41 44

SP ≤ 10 % 56 126 87 88 27 40 166 85 83 40

SP > 10 % 36 106 71 74 26 46 52 49 49 4

Apart from the aggressiveness, the number of trips for which drivers are required to be monitored
to extract their overall driving profile also varied in terms of the average duration of the trips being
studied. For example, it is clear from Figure 1 that the minimum number of trips required for
convergence is generally smaller for trips with an average duration of 20 min than the corresponding
number for shorter trips (e.g., 5- or 10-min trips). This means that, even for the same driver, the rate of
convergence of the same characteristic varied considerably, depending on the average duration of the
trips that are being studied, e.g., 10 min or 20 min. Driver with ID “257” is highlighted in Figure 1 for
the three different trip durations mentioned above. Thus, it becomes apparent that the relative position
of the same driver on the chart might be altered even for the same characteristic, and thus, it can be
said that the minimum number of trips that should be collected for each driver depends not only on
their aggressiveness, but also on the duration of their trips.

The driving behavior metric that converges later for each driver is the critical driving characteristic
that determines the minimum number of trips that need to be collected to obtain a clear picture for his
driving behavior. In many cases, this may correspond to the magnitude of volatility of a characteristic,
since the convergence rate of a characteristic for the same driver generally differs from the convergence
rate of the volatility of the same characteristic Figure 1 illustrates the number of trips required for
the convergence of the magnitude of the cumulative number of HA events to the cumulative total
distance travelled versus the number of trips required for the convergence of the volatility measure of
this magnitude for the three different duration categories studied.

Evidently, if a driver is on the diagonal, the convergence rate of the number of HA events per
kilometer (x-axis) is equal to the convergence rate of the volatility of the same magnitude (y-axis). If a
driver is below the diagonal, the minimum number of trips that need to be collected depends on the
number of HA events per kilometer, while if a driver is above the diagonal, it depends on the volatility
of the same metric. Equivalent conclusions also arise from the examination of the corresponding charts
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(Figures 2–4) for the other driving behavior metrics studied, namely the number of HB events, the
percentage of time of mobile usage and the percentage of time speeding while driving.
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As indicated from Figures 1–4, if a driver needs to be monitored for more than 120 trips until the
volatility measure of a driving metric converges, the driving behavior is considered to have converged
relatively slowly. On the other hand, if the volatility measure converges in less than 60 trips, the
driving behavior is considered to have converged relatively fast. However, several differences can also
be observed between the above-mentioned figures. It is obvious that for Figure 3; Figure 4, drivers
are more concentrated around a specific area, with only a few of them being dispersed. This means
that most drivers appear to have a converging behavior at roughly 50–120 trips for mobile usage and
speeding, which is considered to be a relatively large range. Therefore, it can be inferred that there is no
specific time point or number of trips at which driving behavior metrics converge to an average value.

On the contrary, the drivers described in Figure 2 appear to be more dispersed with no specific
pattern in the cloud of points formed. This indicates that their behavior and volatility towards HB
events varies between different duration categories, differs from those noticed in Figures 3 and 4 and is
more similar to that noticed in Figure 1. These results are also confirmed by Table 1.

Table 2 summarizes the results of the analysis performed on the convergence rates of the four
driving metrics examined, which are categorized as fast or slow based on the minimum number of
trips required to be collected. It also illustrates the aggressiveness and volatility limits noticed in each
convergence rate group. To estimate the numbers of Table 2 the minimum and maximum values of
Table 1 were taken into consideration, as well as the median and the standard deviation. These values
were rounded to provide a characterization of drivers as aggressive/cautious and stable/volatile. The
42.24% of the drivers were found to have fast convergence rate regarding their volatility measure, while
for the driving metrics this magnitude ranges from 13.79% (for HB events per kilometer) to 24.14%
(for HA events per kilometer and percentage of time speeding). Regarding slow convergence, both
for the volatility measure and the driving behavior metrics the percentage of drivers in this category
ranges from just above 20% to 27.59%, except from the metric of HA events per kilometer, where the
corresponding percentage is 10.34%. Table 2 also indicates that over 35% of the drivers were found
to have a stable driving behavior in general, and over 30% of them were also cautious regarding HA
events per kilometer and mobile usage. The highest percentages of aggressiveness, though, were found
in the above-mentioned characteristics, being 17.24% and 21.84% of the drivers accordingly.

Table 2. Aggressiveness, volatility limits and convergence rate of driving behavior.

Minimum Required Number
of Trips

Average Conversion Rate of Driving
Characteristics and Volatility

Fast
Convergence

Slow
Convergence Cautious Aggressive Stable Volatile

Harsh Acceleration
events per km <50 (24.14%) >120 (10.34%) <0.11

(33.33%)
>0.23

(17.24%) - -

Harsh Braking
events per km <60 (13.79%) >140 (20.69%) <0.01

(5.75%)
>0.12

(9.20%) - -

Percentage (%) of
Time Mobile Usage <50 (17.24%) >120 (27.59%) <0.04

(32.18%)
>0.16

(21.84%) - -

Percentage (%) of
time Speeding <50 (24.14%) >120 (24.14%) <0.02

(12.64%)
>0.14

(9.20%) - -

Volatility <60 (42.24%) >120 (21.55%) - - <0.005
(35.63%)

>0.05
(23.75%)

The aggressiveness and volatility of drivers were determined from the average values at which
driving behavior characteristics and their volatility converge. A driver may be cautious regarding the
matric being studied (i.e., the mean value at which this characteristic converges is small, for example
the number of HB events per kilometer is less than 0.01), but at the same time exhibiting significant
variations/fluctuations in the travel-related behavior (high volatility index, for example the volatility of
HB events per kilometer is greater than 0.05), and vice versa. This is made clear in Figure 5, which
presents HA events per kilometer, in combination with Table 2.
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Figure 5. Aggressiveness versus volatility of driving behavior—harsh acceleration events.

Figure 5 presents the mean volatility measure (y-axis) in relation to the convergence value (mean)
of the cumulative number of HA events per kilometer (x-axis) to which each driver converges for the
three different trip duration categories considered. As can be seen in Table 2 and regarding the number
of HA events, drivers in the area of Figure 5 with a mean volatility and metric convergence value of
less than 0.02 and 0.17, respectively, present a generally stable behavior (with few fluctuations) and a
low number of harsh acceleration events. This is the area where non-volatile and cautious drivers
belong regarding this driving characteristic. Accordingly, drivers in the area of average volatility and
metric value of more than 0.05 and less than 0.17, respectively, were characterized as volatile, cautious
drivers. On the other hand, those drivers in the area with an average volatility and metric value of less
than 0.02 and greater than 0.23, respectively, were characterized as non-volatile, aggressive drivers.
It is noted that all the above observations refer to the specific driving characteristic of HA events.

Figure 1 shows that the aggressiveness and volatility of a driver depend to some extent on the
average duration of the trips being studied. Even for the same driver, there are differences depending
on trip duration, e.g., 10 min or 20 min. Nonetheless, these differences are usually non-significant,
i.e., drivers seem to maintain approximately the same behavior and behavioral volatility in terms of a
driving characteristic, regardless of the average duration of the trips being studied.

The driver with username “257” has been highlighted as well in Figure 5, for the three different
trip durations studied in this paper, illustrating whether the same driver changes his relative position
on the chart. Equivalent conclusions also arise from the examination of the corresponding figures for
the other driving metrics studied, namely the HB events, the percentage of time of mobile usage and
the percentage of time speeding while driving.

Investigating the critical driving characteristic (i.e., the one that converges more slowly than the
rest) for determining the required amount of driving data to be collected for each driver, out of the
29 that were finally used in the analysis resulted in Table 3. This table shows that for the majority of
drivers the critical characteristic is the volatility of the number of HA events per km as well as the
percentage of time of mobile usage while driving. The number of HB events per km and its volatility
follow, while for a few drivers, it seems that the percentage of time speeding and its volatility is the
critical characteristic.
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Table 3. Cumulative table of percentages of drivers and their critical characteristic for each duration.

Critical Characteristic

Harsh Acceleration
Events per km

Harsh Braking Events
per km

Percentage (%) of Time
Mobile Usage

Percentage (%) of Time
Speeding

Average
Trip

Duration

Cumulative
Sum Volatility Cumulative

Sum Volatility Cumulative
Sum Volatility Cumulative

Sum Volatility

5 min 29.63% 44.44% 29.63% 29.63% 25.93% 14.81% 14.81% 11.11%

10 min 24.14% 27.59% 20.69% 41.38% 37.93% 17.24% 17.24% 13.79%

20 min 18.75% 37.50% 12.50% 18.75% 37.50% 18.75% 31.25% 25.00%

Figures 6 and 7 are indicatively provided to illustrate and compare the convergence of two drivers
regarding the number of harsh acceleration events, for an average trip duration of 10 min. These
two drivers, users “9” and “154,” were randomly selected from the driving sample of the more and
less aggressive drivers, respectively, using a random number generator to produce random user IDs.
The temporal change in driving characteristics and their volatility as well as the time points at which
driving behavior is converged can be noticed in both figures. The results indicate that the HA events
rate of user “9” converged after the 76th trip and that the volatility of the same metric converged after
the 132nd trip. As for user “154,” the methodology indicated that convergence for the HA events rate
occurred after the 134th trip and after the 22nd trip for the volatility of the same metric.
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4. Discussion and Conclusions

This work attempted to identify a discrete time point or number of trips after which additional
driving data do not add a significant insight for driver’s general behavior. To this end, a methodology
was developed and applied on detailed data collected from smartphone sensors. Various mathematical
and statistical tools were used to process the data and determine the time point at which behavior
converges. Initially, the cumulative sum of the number of HA/HB events per kilometer, the percentage
of time of mobile usage while driving and the percentage of time speeding was created. This procedure
was followed by the calculation of the driver’s behavioral volatility of the above-mentioned metrics
and the use of moving averages of those metrics to determine convergence and the number of trips
required for each metric to converge. Data analysis indicated that for a certain driving characteristic,
the amount of time required to be collected largely depends on the aggressiveness and stability of the
overall driver’s behavior, as well as the average duration of the trips being studied.

In particular, more aggressive drivers require less monitoring than cautious drivers do. It is
inferred that further investigation of the aggression level of drivers and the driving environment should
be preceded. Aggressive drivers are those with a high number of harsh events and high percentages of
time driving over the speed limit. The analysis revealed that drivers with high average convergence
values of acceleration events per kilometer also show high average convergence values of HB events
per kilometer, while those with low average convergence values of acceleration events per kilometer
also exhibit low average convergence values of braking events per kilometer.
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Apart from aggressiveness, another driving characteristic that influences the time of convergence
is the stability or volatility of driving behavior. Knowledge of drivers’ behavioral volatility is of
paramount importance when studying driving behavior, as it provides important insights into their
overall experience and the difference in behavior between trips. The investigation of the critical
observation metric of each driver (i.e., the one that converges slower than the rest) showed that in the
majority of cases, the volatility of behavior was the most critical parameter, reaching a level of 44.44%
for HA events per kilometer in trips with average duration of 5 min.

Regarding a specific driving characteristic, it is extremely difficult to identify the exact time point
where a driver’s behavior converges when the trips being studied do not have a similar duration. Since
data collected are related to driving behavior characteristics on a trip level, overall behavioral change
could not be analyzed and investigated using time series analysis methods, as the driving duration
between successive journeys may vary significantly. It is therefore necessary to group trips travelled
by driving duration and sort them in chronological order. The duration of the trips analyzed was also
found to affect the point of convergence of a driver’s behavior. In particular, it was shown that the same
driver may exhibit significant differences in the amount of data required to be collected with respect to
a particular driving characteristic when considering journeys of different average driving duration.

On the other hand, the duration of the trips analyzed does not significantly affect the average
metric value at which a driver’s behavior converges for a specific driving characteristic. In particular,
when considering the driving behavior of a specific driver with respect to a particular driving
characteristic, no significant changes are noticed in the value at which this driving characteristic
converges at, as the average trip duration changes. Consequently, a different monitoring period is
required when short or slightly longer trips are being studied despite the fact that drivers might
present similar behavior. Nevertheless, this may be due to the fact that drivers who participated in
the experiment conducted mostly drove on urban networks and, therefore, the road environment
and driving conditions were familiar to them. It should be noted that although the trip duration was
studied, no safe conclusion can be drawn regarding the relationship between the type of road network
and the amount of data that should be collected for driving behavior analysis, as this is something that
should be examined separately.

Some of the limitations of this study that should be addressed include the inability to record
other significant crash risk factors such as alcohol and drug use. Moreover, a significant number of
drivers were eliminated from this study and trip duration over 20 min was not studied because of
data limitations coming from the sample size. Therefore, a larger sample of drivers is suggested to be
exploited in the future in order to overcome such limitations.

The findings presented in this work could be exploited either to provide feedback to drivers on
how to improve their driving behavior or to improve the services provided by insurance companies
and car industries, which would bring multiple and significant benefits to the society. Additionally,
they could be used further by researchers to efficiently design their experiment, especially when it
comes to collecting naturalistic driving behavior data.
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