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SOFTWARE

ShinyGPAS: interactive genomic 
prediction accuracy simulator based 
on deterministic formulas
Gota Morota* 

Abstract 

Background:  Deterministic formulas for the accuracy of genomic predictions highlight the relationships among pre-
diction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive 
cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding 
of how genetic factors control prediction accuracy.

Results:  The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and 
encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simu-
lates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors 
impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: 
https://chikudaisei.shinyapps.io/shinygpas/.

Conclusion:  ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic 
formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-
enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class 
teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an 
intuitive graphical user interface.
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Background
Prediction of breeding values from high-dimensional 
single nucleotide polymorphisms is a primary interest in 
quantitative genetics [1–3]. This is particularly true for 
the application of genomic selection in animal and plant 
breeding programs, where genetic improvement of agri-
cultural species relies on the performance of a model to 
predict unknown breeding values, also known as pre-
diction accuracy. Here prediction accuracy is defined 
as the correlation between true and predicted genomic 
values. A deterministic formula such as the one pro-
posed by Daetwyler et  al. [4] highlights the relationship 
between prediction accuracy and potential factors that 
influence prediction accuracy. In general, deterministic 

formulas compute the expected predictive correlation (or 
squared prediction accuracy R2) on the basis of a number 
of factors that are potentially useful to assess prediction 
accuracy before performing computationally demand-
ing cross-validation (CV). It also allows us to decide the 
optimal design for reference populations (e.g., reference 
population size) to achieve a desired level of accuracy 
in selection candidates. Not only theoretical derivations 
of deterministic formulas but also their applications are 
active research areas. For instance, Brard and Ricard [5] 
recently performed comparison and meta-analysis of 
deterministic formulas. Erbe et  al. [6] inferred param-
eters that influence prediction accuracy in determinis-
tic formulas via maximum likelihood. Collectively, these 
studies have shed new light on alternative aspects of fac-
tors influencing predictive performance that may not be 
obvious from empirical genome-enabled prediction anal-
ysis based on CV.
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In particular, visualizing such deterministic formulas 
may lead to a better understanding of how genetic fac-
tors control prediction accuracy. Typically, visualiza-
tion involves generating a static two-dimensional graph, 
where the y-axis is the genomic prediction accuracy and 
the x-axis is one of the factors influencing prediction 
accuracy, while keeping the other factors constant. Given 
that this type of static graph is a snapshot of a complex 
dynamic system, if users want to change parameters, they 
need to re-type and re-execute the code. To provide an 
overview of the whole landscape of genomic prediction 
simulation, we need an efficient visualization tool that 
is capable of generating interactive as well as dynamic 
graphs. The objective of this article is to describe a Shiny-
based web application called Shiny genomic prediction 
accuracy simulator (ShinyGPAS), which produces inter-
active graphs and offers an intuitive graphical user inter-
face (GUI) for simulating genomic prediction accuracy 
based on deterministic formulas.

Software description
Overview of software architecture
ShinyGPAS is implemented entirely in R, which is an 
open source programming language and environment 
for performing statistical computing and data visuali-
zation [7]. The GUI is provided by the shiny R package 
[8], a web application framework for R. ShinyGPAS is a 
Shiny application that leverages R and the shiny package 

to construct an intuitive framework for deterministic for-
mulas using dynamic interaction and visualization. The 
ShinyGPAS user interface is shown in Fig.  1. Although 
ShinyGPAS is R-based software, it does not require users 
to be familiar with the programming language or down-
load the software on a local computer. The underlying 
R code is encapsulated by Shiny and offered as cohesive 
web-based software to be usable solely by mouse naviga-
tion in a web browser. This increases accessibility to the 
software, especially for users with less R programming 
experience. ShinyGPAS is deployed through the cloud-
based shinyapps.io platform for hosting Shiny web appli-
cations (https://www.shinyapps.io/).

Deterministic formulas
ShinyGPAS currently delivers eight simulators based on 
deterministic formulas described in (a) Daetwyler et  al. 
[4, 9], (b) Goddard [10], (c) Goddard et al. [11], (d) Rabier 
et  al. [12], (e) Rabier et  al. [12], (f ) de los Campos et  al. 
[13], (g) Karaman et al. [14] and (h) Wientjes et al. [15]. 
The first seven formulas predict accuracy within popula-
tions whereas the last one is designed for multipopulation 
scenarios, including multi-environment and multitrait. 
Deterministic formulas are functions derived from the 
combinations of the number of individuals in a reference 
set, the number of independent chromosome segments 
underlying the trait, the effective population size, the 
number of markers, the proportion of genetic variance 

Fig. 1  Each deterministic formula is implemented in a tab on the top. The y-axis is the prediction accuracy and the x-axis is one of the parameters. 
Parameters such as heritability, the number of individuals, the number of independent chromosome segments, and the number of markers can be 
set by the user

https://www.shinyapps.io/
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explained by the molecular markers, and heritability. 
Shiny-based interactive application offers the implemen-
tation of dynamic deterministic formulas, allowing to 
evaluate the simultaneous impact of all the parameters 
described above on the prediction accuracy. A user can 
click a link located within each deterministic formula sim-
ulator to access original journal articles. Below are deter-
ministic formulas currently implemented in ShinyGPAS.

• • 	 Daetwyler et al. [4, 9] developed the first deterministic 
formula that computes the prediction accuracy of addi-
tive genomic values. The formula was derived by treat-
ing genetic markers as fixed with the following assump-
tions: (a) independence of quantitative trait loci (QTL), 
(b) regression of phenotypes on genotype one locus at 
a time with σ 2

ǫ = 1 and σ 2
g + σ 2

ǫ = 1 (σ 2
g  and σ 2

ǫ  are the 
genetic and residual variances, respectively), (c) identi-
cal accuracy of QTL effect size estimates across QTL 
allele frequencies and (d) perfect linkage disequilibrium 
(LD) between marker and QTL pairs. 

 �where N is the number of individuals in the reference 
population, h2 is the heritability, and Me is the number 
of independent chromosome segments.

• • 	 Goddard [10] developed an alternative formula by 
treating markers as random and assuming complete 
LD between marker and QTL pairs. The QTL effects 
were assumed to be sampled from a normal distri-
bution. In addition, the equation assumes that QTL 
with high minor allele frequencies have more accurate 
effect size than QTL with low minor allele frequen-
cies. 

 �where � is Me/(h
2 ln(2Ne)), α is 

1+ 2(Me/Nh
2 ln(2Ne)), and Ne is the effective pop-

ulation size. The definition of � was adopted from 
Hayes et  al. [16, 17]. Note that here Me and Ne are 
related because Me can be expressed as a function of 
Ne [10].

• • 	 Goddard et  al. [11] extended the equations in [4, 9, 
10] so that the deterministic formula accounts for 
incomplete LD between markers and QTL. This 
equation also accounts for the fact that the number of 
markers is finite. 

r =

√

Nh2

Nh2 +Me
,
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α
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,

r =

√

b
Nbh2/Me
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,

 �where b = M/(M +Me) is the proportion of genetic 
variance explained by the markers and M is the num-
ber of markers. Note that when b is equal to 1, this 
deterministic formula is identical to that of Daetwyler 
et al. [4, 9].

• • 	 Rabier et al. [12] developed a deterministic formula by 
relaxing the assumption of σ 2

ǫ = 1 and σ 2
g + σ 2

ǫ = 1 
in Daetwyler et  al. [4]. This formula can be applied 
with any value of σ 2

g  and σ 2
ǫ . 

 �Moreover, under the ridge regression best linear 
unbiased prediction framework, Me/N  is equal to 
E(||x′nTRN+1

X
′
V
−1||2), where x′nTRN+1

 is the vector of 
markers belonging to the testing set individual, X is 
the training set allele content matrix, V = XX

′ + �I , 
� is the regularization parameter, and ||.||2 is the 
squared norm. Therefore, an alternative form of pre-
diction accuracy when fitting the all markers simulta-
neously in a high-dimensional setting [18] is obtained 
by replacing Me with N · E(||x′nTRN+1

X
′
V
−1||2) [12]. 

 Note that if we can assume individuals in train-
ing and testing sets were sampled from the same 
population, Ê(||x′nTRN+1

X
′
V
−1||2) ≤ 1 then, 

N ∗ Ê(||x′nTRN+1
X
′
V
−1||2) is bounded by N.

• • 	 de los Campos et al. [13] developed an equation that 
yields a theoretical upper limit for the achievable 
accuracy. This formula was motivated by the assump-
tion that the patterns of allele sharing between mark-
ers and causal loci are different. Under the genomic 
best linear unbiased prediction framework 

 �where b is the average regression coefficient of the 
marker-based genomic relationships on genomic rela-
tionships at QTL. This deterministic formula does not 
rely on Me, which is difficult to infer from data.

• • 	 Karaman et al. [14] expressed the deterministic equa-
tions of Daetwyler et  al. [4, 9] and Goddard et  al. 
[11] in terms of the correlation between phenotypes 
and estimated breeding values. Note that this equa-
tion and also that of de los Campos et al. [13] can be 
viewed as the measure of prediction accuracy. 

r =

√
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 �where h2M is the genomic heritability, which is the pro-
portion of phenotypic variance that is explained by 
regression on markers.

• • 	 Wientjes et  al. [15] developed the deterministic for-
mula that combines two populations A and B to pre-
dict prediction accuracy in population C. This can be 
used for multipopulation genomic prediction scenar-
ios. 

 �where bAC is the square root of the proportion of the 
genetic variance in predicted population C explained 
by the markers in training population A, rGAC is the 
genetic correlation between populations A and C, h2A 
is heritability in population A, bBC is the square root 
of the proportion of the genetic variance in predicted 
population C explained by the markers in training 
population B, rGBC is the genetic correlation between 
populations B and C, h2B is heritability in population B, 
NA is the number of individuals in population A, NB is 
the number of individuals in population B, rGAB is the 
genetic correlation between populations A and B, and 
MeA,C and MeB,C are the effective numbers of chromo-
some segments shared between populations A and C, 
and B and C, respectively. Note that the b values of 
Goddard et al. [11] are the squares of the b values in 
the above equation.

Prediction of genomic values is a challenging task and 
there is no universally best deterministic formula that 
accounts for all potential factors. Therefore, we will con-
tinue adding newly developed deterministic formula to 
ShinyGPAS.

Program input
A typical workflow starts from selecting one of the tab 
panels on the top (Fig.  1) and then moving to a pre-
ferred deterministic formula simulator. Each deter-
ministic formula captures a different aspect of the 
genotype–phenotype map in the context of genomic 
prediction accuracy. Thus, navigate through interactively 
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visualized deterministic formulas may highlight the com-
mon patterns as well as differences among them. A suite 
of available parameters such as h2, h2M N, Me, Ne, M, and 
b are located in the sidebar panel. Shiny slider provides 
possible input values that can be chosen from pre-defined 
ranges. Users can pick a preferred value by a simple mouse 
navigation. A radio button located on the top offers possi-
ble options for factors that influence prediction accuracy 
to be used to determine the x-axis. The Shiny reactive 
expressions are used in ShinyGPAS to efficiently cache 
results and ease computational burden to ensure high 
speed of processing during an interactive session.

Program output
Rendering interactive graphs from deterministic for-
mulas are achieved by the plotly R package [19]. The 
main engine plotly.js, which is built on top of JavaScript 
and the visualization library D3.js, was used to create 
a scatter plot. The y-axis is pre-fixed with prediction 
accuracy (r). Users can choose the x-axis from one of 
the parameters such as h2, h2M, N, Me, Ne, M, or b. A 
scatter plot is dynamically updated when users vary 
slider input values of factors that influence prediction 
accuracy. The plotly.js generates a scatter plot with a 
toolbar coupled with useful zooming in and zooming 
out capabilities. Also, hovering the mouse pointer over 
a specific point of plot shows the exact values of x and y 
axes. A multipopulation genomic prediction simulation 
is enabled by the plotly 3D scatter plot functionality, 
where x and y axes take parameters from two training 
populations and the z-axis shows prediction accuracy. 
Rotating the 3D scatter plot is possible around all x, y 
and z axes to inspect prediction accuracy from differ-
ent surfaces. In addition, the toolbar provides features 
such as a download button, box select, lasso select, 
autoscale, reset, and toggle spike lines for interactiv-
ity. ShinyGPAS is available at: https://chikudaisei.shin-
yapps.io/shinygpas/.

Conclusions
A Shiny application has great potential to deliver interac-
tive data analysis and visualization in a web browser. Yet 
there is limited application of this type of tool in breeding 
and quantitative genetics. The Shiny framework allows 
users to convert deterministic formulas of genomic pre-
diction accuracy into interactive graphics in an engaging 
and straightforward manner. ShinyGPAS can be used for 
interactive exploration of potential factors that influence 
prediction accuracy in genome-enabled prediction, sim-
ulation of achievable prediction accuracy prior to geno-
typing individuals, or supporting in-class teaching. The 
ShinyGPAS source code has been made publicly available 
on GitHub: https://github.com/morota/ShinyGPAS.
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