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The common understanding of p53 function is a genome guardian, which is activated

by diverse stresses stimuli and mediates DNA repair, apoptosis, and cell cycle arrest.

Increasing evidence has demonstrated p53 new cellular functions involved in abundant

endocrine and metabolic response for maintaining homeostasis. However, TP53 is

frequently mutant in human cancers, and the mutant p53 (Mut-p53) turns to an

“evil” cancer-assistant. Mut-p53-induced epithelial-mesenchymal transition (EMT) plays

a crucial role in the invasion and metastasis of endocrine carcinomas, and Mut-p53

is involved in cancer immune evasion by upregulating PD-L1 expression. Therefore,

Mut-p53 is a valuable treatment target for malignant tumors. Targeting Mut-p53 in

correcting sequence and conformation are increasingly concerned. Interestingly, in

wild animals, p53 variations contribute to cancer resistant and high longevity. This

review has discussed the multiple functions of p53 in health, diseases, and nature

evolution, summarized the frequently mutant sites of p53, and the mechanisms of

Mut-p53-mediated metastasis and immune evasion in endocrine cancers. We have

provided a new insight for multiple roles of p53 in human and wild animals.
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INTRODUCTION

Since 1979, 40 years of research on p53 have shown it regulates complex and adaptable target
gene networks to control broad biological processes (1–3). p53 was first discovered as a 53
kDa protein in SV40-transformed cells (1, 2). p53 protein has five discrete domains with
different functions: two N-terminal transactivation domain (TAD) involved in the recruitment
of transcriptional co-factors, a central sequence-specific DNA-binding domain (DBD) directly
interacting with DNA, a C-terminal oligomerisation domain (OD), and a tetramerization
domain (TET) that mediated p53 working in a tetramer manner (4). p53 directly binds
to p53 response element (p53REs) that consist of two copies of a 10 base pair motif
with the consensus 5′-RRRCWWGYYY-3′ (R= A/G, W= A/T, and Y= C/T) (5, 6). Because
of the high diversity of p53REs, p53 controls abundant sets of target genes (3). Initially,
p53 is defined as a tumor suppressor, induces cell cycle arrest, apoptosis, and senescence
programs to maintain genome integrity in response to genotoxic and oncogenic stresses via
regulating target gene expression, such as Cdkn1a, Puma, and Noxa (3, 7, 8). Recently,
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novel functions of p53 have been found in regulating metabolism
(9–11), stemness (12), antioxidant (13), autophagy (14, 15),
ferroptosis (16), differentiation (17), and embryo implantation
(18)/fitness selection (19) processes. p53 is frequently mutant in
human cancers, which induces aggressive tumors proliferation,
invasion, metastasis and immune evasion (20–23). The TP53
mutation is listed as a potential candidate in disease risk
prediction, personalized, and prognostic treatment (24, 25).
Wild animals harbor p53 variations (same as mutants in
human cancers) that contribute to anticancer and environmental
adaptation, which may provide insights into understanding
targeting p53 (26–28).

p53 Is a Cellular Sensor for Homeostasis
p53 is a crucial regulation hub in many physiological processes
including metabolism (10), autophagy (14), apoptosis (29),
and cell arrest (5) that maintain normal cellular homeostasis
(30). Its target genes also play important roles in these
processes, for instance, Glut1/4 (glucose transporter type
1 and 4), Pltp (phospholipid transfer protein), and Dhrs3
(dehydrogenase/reductase 3) are involved in the formation and
transfer of lipid in mice liver (10); Lpin1 facilitates fatty acids
oxidation (FAO) in low glucose environment but suppresses
in normal conditions (31); Dram (damage-regulated autophagy
modulator 1) and Aen (apoptosis enhancing nuclease) promote
autophagy, while Tiger (TP53-induced glycolysis and apoptosis
regulator) inhibits autophagy in colon carcinoma cell line (14).
In individual cells, the levels of p53 protein exhibit dynamic
accumulation with distinct pulses after DNA damage, both
p53 pulses and target genes mRNA half-life lead to diversified
expression pulses of genes (32, 33). A mathematical model
has been proposed to predict the expression patterns of target
genes under different p53 inputs, which provides a better
understanding of p53 and its target genes interaction (34).
These p53 dynamics can control cell fates. Fast-accumulating p53
can reach apoptosis threshold level and triggers cell apoptosis,
whereas cells with slow-accumulating p53 are unable to execute
apoptosis because they cannot exceed the threshold that increases
with time by the activation of anti-apoptotic genes (32, 35), this
suggests that the dynamics of p53 and target genes may impact
cellular homeostasis.

Furthermore, p53 activates mTOR (downstream mammalian
target of rapamycin) and AMPK (AMP-activated protein kinase)
signal pathways, indirectly modulates lipid anabolism/catabolism
(10, 11), carbohydrate metabolism (11), and autophagy (15).
But, AMPK triggers p53-S15 phosphorylation as an upstream
activator in response to glucose deprivation in primary mouse
embryonic fibroblasts (MEFs) (11). p53 is an obesity regulator,
lack of p53 increases lipid accumulation by restraining aromatase
expression, which leads to high testosterone levels and obesity in
malemice (30). In agouti-related peptide (AgRP) neurons ofmice
hypothalamus, knockout TP53 promotes food-induced adiposity
and decreases the thermogenesis in brown adipose tissue but
overexpressed p53 results in more body weight loss than TP53
KO mice, and c-Jun N-terminal kinase (JNK) is indispensable in
both processes (36).

Mechanism of p53 in Endocrine Diseases
Wt-p53 Involves in Endocrine Diseases
Endocrine and metabolic disorders are common but complex,
which has aroused much concern. There is evidence that wild-
type p53 (Wt-p53) involves diabetes, liver steatosis and endocrine
tumors (30, 37, 38). Wt-p53 impairs insulin secretion signals
in pancreatic β cell via inhibiting autophagic clearance in
damaged mitochondria of diabetes (38). In type 2 diabetes,
Wt-p53 upregulation leads to β cell failure in hyperglycemia
and congenital hyperinsulinism, and promotes insulin resistance
in adipose tissue (37, 39). Furthermore, Wt-p53 is associated
with male-related tumors, the C-terminal lysine methylation
of Wt-p53 repressed its transcriptional activity upon DNA
damage and prevented cycle arrest in testicular germ cell
tumor (40). Androgen restricts Wt-p53 function and causes p53
trans-localization by activating p53 SUMOylation in prostate
cancer (41).

Mutation Sites in DBD of p53 Occurred in

Endocrine Cancers
Genomic data from more than 20,000 patients have confirmed
that the TP53 is the most commonly mutated gene in all
human cancers (42–44), such as hepatocellular carcinoma (45),
colorectal cancer (46), lymphoma (47), and mucosal melanoma
(48). Data in this review has collected seven endocrine cancers
data from The Cancer Genome Atlas (TCGA) in cBioPortal
(http://www.cbioportal.org/) (49, 50), and analyzed amino acid
(AA) sites of Mut-p53 in these endocrine carcinomas (Figure 1).
The frequency of p53 mutations in endocrine cancers is varying,
it is ∼55% in pancreatic adenocarcinoma and ovarian serous
cystadenocarcinoma, only 0.4% in thyroid carcinoma and 3.2%
in thymoma (Figure 1A). R175, R213, Y220, R248, R273, and
R282 of p53 DBD (residue 98-289) are frequently mutant AA
sites in these endocrine cancers, and it is striking that R273
site is mutant in most of the endocrine cancers (Figure 1A).
Atlas of location for collected mutated sites from endocrine
cancers is displayed in 3D-p53 structure (Figures 1B,C). TP53
mutations show a preference for missense mutations rather than
frameshift or non-sense that are frequently occurred in other
tumor suppressor genes (42). From more than 80,000 human
cancer cases in the Universal Mutation Database (UMD) (http://
p53.fr/the-database), over 70% TP53 are missense mutations (51,
52). p53 with point mutations commonly produce a full-length
protein with one single AA substitution (53). The spectrum
of p53 missense mutations contains over 2,000 different AA
changes, which affect the interaction between p53 and DNA
(42). R175, G245, R248, R273, and R282 are part of hotspot
mutations that causing DNA binding loss, which can be divided
into two categories: “DNA-contact mutation” (R248 and R273)
that contact DNA directly and “conformation mutation” (R175,
G245, and R282) that perturb the structure of DBD (42, 53, 54).

Mut-p53 can stably accumulate from escaping the degradation
of negative regulators and forming aggregates with p63 and p73
(55, 56).There are three types of p53 mutation consequence,
loss-of-function (LOF), dominant-negative (DN), and gain-of-
function (GOF), have been concluded (55). First, LOF-p53
abolish the transcriptional activation of partially innate target
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FIGURE 1 | The frequency of p53 mutation, mutated sites, and site location in 3D structure from common endocrine cancers. p53 missense mutation data are

obtained from The Cancer Genome Atlas (TCGA) in cBioPortal (http://www.cbioportal.org/). (A) p53 mutant frequencies and high frequency mutation sites of seven

common endocrine cancers. p53 mutant frequencies of each cancer are shown in the left color bar. The right side indicates p53 high frequency mutation sites in every

cancer. Different shades of block depicting the relative mutant frequency of p53 site, compared with the highest mutant rate site (dark blue) in the same cancer. Cases

number of respective mutation is shown in parenthesis. (B,C) Mutation sites structural position analysis of p53 DBD. Cancers involved in each mutant site are

indicated in color dot above AA mark. DBD, DNA binding domain; TC, Thyroid Carcinoma; ACC, Adrenocortical Carcinoma; BC, Breast Cancer; PA, Pancreatic

Adenocarcinoma; OSC, Ovarian Serous Cystadenocarcinoma; PC, Prostate Cancer.

genes, such as mdm2 (murine double minute 2), puma, and p21
(42). Second, tetramerMut-p53 exert a DN effect onWt-p53 (42).
Third, GOF-p53 can regulate novel target genes and turn to be an
oncogenic role in inducing tumorigenesis, tumor proliferation,
invasion and metastasis, tumor inflammation, tumor tissue
remodeling, and evading growth suppresses (55, 57). Moreover,
these consequences can occur simultaneously (55).

Mut-p53 Mediates Invasion, Metastasis, and

Immune Evasion
High invasion and metastatic risk are the fatal hallmark
of endocrine adenocarcinomas, such as 60∼80% breast and
prostate cancer have developed bone metastasis (58), about 70%
pancreatic cancer patients die from extensive metastatic diseases
(59). Epithelial-mesenchymal transition (EMT) is prerequisite
for primary endocrine adenocarcinomas metastasizing to blood,
bone, and other organs (58, 60), Mut-p53 is essential to EMT
process. This review summarized the pivotal molecular pathways
and inhibitors in Mut-p53-mediated EMT/non-EMT process
related invasion and metastasis (Figure 2).

Mut-p53 mediates the functions of EMT inducers, including
three crucial inducers, transforming growth factor-β (TGF-β),

platelet-derived growth factor receptor (PDGFR), and epidermal
growth factor receptor (EGFR) (Figure 2). Mut-p53 empowers
TGF-β to trigger metastasis of breast cancer cells via forming
the ternary complex of Mut-p53, p63, and Smads that prevents
the inhibition function of p63 to TGF-β (61). In pancreatic
cancer mouse model (KPC model, LSL-KrasG12D; P53R172H/+;
Pdx1-cre), PDGFRβ is upregulated and induces tumor metastasis
by Mut-p53-mediated p73/NF-Y complex disruption (62).
Furthermore, neuropilin-2 (NRP2) is a co-receptor of TGF-β
receptor and PDGFR, which can be upregulated by Mut-p53
R273H and enhance the EMT inducing signals in breast cancer
cells (63). Mut-p53 promotes the sustained activation of EGFR
via suppressing miR-27a/EGFR axis in breast cancer cells, which
increases the mRNA of Zeb-1 and Slug to promote EMT (64, 65).
Moreover, Mut-p53 (R175H and R273H) enhance the recycling
of integrins and EGFR via rab-coupling protein (RCP), which
results in the activation of EGFR/integrin signaling that leads
to the invasion behavior in vivo and in vitro (53). The recycled
integrin move to an invasion membrane protrusion to drive cell
migration by binding filopodia-inducing motor protein Myosin-
X (Myo10) in a Mut-p53 dependent manner (66). Mut-p53 also
controls the expression of crucial EMT regulators (Figure 2),
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FIGURE 2 | Mechanisms of Mut-p53 aggravate malignant behaviors in endocrine cancers. Blue sector represents Mut-p53-mediated EMT process. Gray sector

represents Non-EMT metastasis. Purple sector indicates Mut-p53-regulated PD-L1 immune evasion in cancer cells. Red triangle indicates the inhibitors for current

research. PDGFRb, platelet-derived growth factor receptor b; NF/Y, nuclear factors; NRP2, Neuropilin-2; DLX2, Distal-less homeobox 2; TGF-β, transforming growth

factor β; EGFR, Epidermal growth factor receptor; RCP, Rab-coupling protein; Myo10, Myosin-X; Rac1, Ras-related C3 botulinum toxin substrate 1; SENP1,

SUMO-specific protease 1; miR-34, miRNA 34; miR-200, miRNA 200; NRF2, Nuclear factor-like 2; miR-30c, miRNA 30c; KSRP, KH-type splicing regulatory protein;

Rad21, Double-strand-break repair protein rad21; S1PR1, Sphingosine-1-phosphate receptor 1; THBS1, Thrombospodin 1; PD-L1, programmed death-ligand 1.

including EMT-inducing transcription factors (EMT-TFs; like
Snail, Twist, Zeb1, and Zeb2) and post-transcriptional regulators
micro-RNA200 (miR-200) and micro-RNA34 (miR-34). Mut-
p53 breaks the balance of EMT core regulatory mechanism, two
inhibitory loops (Zeb1/miR-200 or Snail1/miR-34), via losing the
activity of binding and promotingmiR-200/miR-34, which causes
the upregulation of Zeb-1/Snail1 that activates the EMT program
(67, 68). But, the role of EMT-TFs in metastasis of endocrine
carcinomas was challenged recently. Fischer et al. (69) and Zheng
et al. (70) have shown the overexpression of miR-200 or depletion
of Snai1/Twist1 had no effect on metastasis in breast-to-lung
metastasis models and KPC model. However, the depletion of
Zeb-1 significantly reduced tumor metastasis in the same KPC

model (71), which suggested various EMT-TFs have different
sub-functions of tumor metastasis in cancers.

Mut-p53 aggravates malignancy of tumor in the non-EMT
mechanism (Figure 2). Mut-p53 competes with SUMO-specific
protease 1 (SENP1) to combine Rac1, a small GTPase, and
sustains its SUMOylation to promote tumor progression in two
breast cancer cell lines [SK-BR-3 (R175H) and MDA-MB468
(R273H)] (72). Mut-p53 (R248) is overexpressed in ovarian
cancer cell lines, which can interact with double-strand-break
repair protein rad21 (Rad21) and upregulate the expression
of Rad21 target genes, sphingosine-1-phosphate receptor 1
(S1PR1), and thrombospodin 1 (THBS1), that related to cell
migration in intact cells or cancer cell lines (73). Furthermore,
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Mut-p53 interacts with nuclear factor-like 2 (Nrf2), a proteasome
activator, resulting in the proteasome-mediated degradation of
KH-type splicing regulatory protein (KSRP, miRNA maturation
factor) in triple-negative breast cancer cells. Thus, downregulated
tumor suppressive miRNAs let-7a and miR-30c lead to tumor
metastasis (74). There is growing evidence to support that
mesenchymal-epithelial transition (MET), the reverse process of
EMT, is associated with metastatic colonization (75). Current
research suggests reactivating cell signaling pathways and
facilitating attachment to heterologous cells are the mechanism
of MET. Blocking MET process has been proven to restrain
tumor progression in glioma (76). However, the role of Mut-
p53 in MET is unclear. Both EMT and MET are critical for
embryos/tissues development and wound healing (77), inhibiting
general EMT/MET regulators, such as Zeb1, Snail1, or Twist
may have adverse effects in other normal biological process.
Therefore, blocking p53 negative properties is an attractive
strategy for basic and clinical research.

Increasing evidence has shown that Mut-p53 regulates
immune evasion by increasing the expression of programmed
death-ligand 1 (PD-L1) in tumor cells (78). Based on the
genomic, transcriptomic, proteomic, and clinical cancer database
in non-small cell lung cancer and lung adenocarcinoma, patients
with TP53mutations, or Mut-p53-related EMT phenotypes have
higher PD-L1 mRNA expression and low levels of miR-34/miR-
200 (23, 78, 79). Both miR-34 and miR-200 suppress PD-L1 by
specifically binding to PD-L1 3′-UTR (80). Mut-p53 decreases
the expression of miR-34/miR-200 in EMT, which leads to high
levels of PD-L1 in non-small cell lung cancer. However, the
higher PD-L1 show a significant benefit to PD-1/PD-L1 blockade
therapy, p53 may also be a potential guilder for immunotherapy
selecting (23, 79).

Editing Mut-p53 Return to Homeostasis
Previous research in targeting p53 mostly is to block p53
accumulation or gain of oncogenic function (81–84). However,
correcting Mut-p53 gene sequence and protein conformation
are emerging as novel strategies in targeting p53. In re-
editing p53 sequence, the CRISPR/Cas9 system is a preferred
genetic engineering technique that has a promising prospect
(85). CRISPR/Cas9 editing with hydrodynamic injection can
specifically trigger TP53 (229 site indel) and pten (125 site
insertion) mutation in adult mouse liver and directly induce
tumors in 2 months that is similar to phenocopies of the
Cre-loxP method (86). Recently found CRISPR/Cas9 also
successfully modified a genomic fragment as large as 65kb
length (TP53 locus about 20.5kb) in mice zygotes and embryos
(87). CRISPR/Cas9 technique already can efficiently relieve
disease phenotypes of hereditary tyrosinemia type I (HT-1)
in mice by correcting fumarylacetoacetate hydrolase (FAH)
mutation (causing HT-1) (88). These findings suggested that
CRISPR/Cas9 could correct Mut-p53 sequence by replacing
with a Wt-p53 functional copy, which is possible to be
utilized in clinical research. In modifying the conformation
of Mut-p53, various compounds have been reported to
reconvert Mut-p53 to Wt-like-p53 structure, such as PRIMA-
1 [2,2-bis(hydroxymethyl)quinuclidin-3-one] and APR-246
(PRIMA-1MET) (89). Recently found a brief exposure of ZMC1

(NSC319726), one of the Zinc metallochaperones compounds
from thiosemicarbazone family, is sufficient to reactivate p53
R175H and exhibit Wt-p53 transcriptional activity with few
toxicity (90). ZMC1 raises intracellular Zn2+ levels to return p53
R175H mutant (zinc-deficient) to “Wt-like-p53” conformation
via the recombination of Zn2+ and p53 R175H (91), which
induces apoptosis in murine cell lines and significantly increases
the median survival of KPC mice model (90, 91). It is surprising
that a natural product cruciferous vegetable-derived phenethyl
isothiocyanate (PEITC) can reactivate p53 R175H function
by restoring Wt-like conformation and stimulating canonical
Wt-p53 target genes expression. PEITC is already used in
anti-Mut-p53 research and clinical trials (https://clinicaltrials.
gov/ct2/results?cond=&term$=+$PEITC), which explores a
new example of targeting p53 by dietary compounds (92).
Therefore, targeting p53 with CRISPR/Cas9 re-editing and
conformation remodeling compounds are attractive strategies in
translation medicine.

p53 IS AN IMPRINT GENE IN
NATURE EVOLUTION

Wild animals have numerous p53 variations that contribute
to environmental adaptation and cancer resistance, however,
these variations also have been found in human cancer, which
implies special mechanisms exist behind p53 variations in
wild animals (26–28, 93). Israel Spalax is an anticancer blind
subterranean mole rat, there are two specific p53 variations exist
in DBD, K172, and K207, compared with human and mouse
sequences (R174/R209 in human). R174 and R209 mutations
in human p53 have been found in esophageal carcinoma,
uterine cervix tumor, colorectal cancer, and endocrine cancers
(breast cancer, pancreatic adenocarcinoma, and ovarian cancer)
[Figure 1, (93)]. But, p53 variations in Spalax is associated with
adaptive evolution, which overactives cell cycle arrest genes
(p21/cycG) and downregulates proapoptosis genes (puma and
Noxa) with no apaf1 expression (93). And, in two subspecies
of Spalax galili with sharply divergent abutting ecologies, the
different methylation modifications of p53 lead to adaptive
regulation of p53 pathway and cell-cycle arrest, which indicates
p53 epigenetic changes contribute to sympatric speciation (94).
Further research reveals that in response to hyperproliferation,
released IFN-β induces a p53-triggered anticancer mechanism
via inducing necrotic cell death rather than apoptosis in lung
primary fibroblasts of Spalax judaei and Spalax golani (28). p53
codon 104 variations exist in underground mole rat Myospalax
baileyi (M.b), and root vole Microtus oeconomus (M.o) in
Qinghai-Tibet plateau of China, which is also found in fishes
and giant tortoise (26, 95). The corresponding human mutation
S106 was discovered in one multiple primary cancer case. These
specific p53 variations in M.b and M.o display an extreme
environmental adaptation strategy in transcriptional regulation,
for instance,M.b p53 elicits increased expression of proapoptotic
genes under hypoxia/cold and antiapoptotic genes under acidic
stress, but M.o suppresses all the apoptotic genes and displays
a remarkable sensitive to hypoxia (26). In naked mole rat
(Heterocephalus glaber, NMR), p53 with four PXXP (P= proline,
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X = any amino acid) motifs in proline-rich domain (five motifs
in human and one in rat) increase the convergent evolution
possibility of NMR and human, which evolved enhanced DNA
damage response and extended lifespan (96). The African and
Asia elephant genomes contain a single TP53 gene and 19
TP53 retrogenes (1 copy TP53 in human) (27). The TP53RTG
proteins are encoded by 14 retrogenes, and W23G variation
exists in all TP53RTGs. TP53RTGs escape MDM2-medicated
ubiquitination by the interaction breaking of TP53RTGs and
MDM2. Meanwhile, p53 is stabilized by forming TP53RTG/p53
dimer that blocks the degradation by MDM2 (97). High levels of
p53 upregulate a re-functionalized retrogene, leukemia inhibitory
factor 6 (LIF6), that induces apoptosis in Asian elephant dermal
fibroblasts cells (98). The multicopy TP53, variations in 14
TP53RTGs, and retrogene reactivation by Wt-p53 are part of
the outcome in the evolutionary selection, which enhances the
sensitivity in responding to DNA damage, and induces apoptosis
rather than DNA repair in elephant (27, 97). Wt-p53 in wild
animal elephants and mole rats induces entirely wipe out injured
cells by necrosis/strong apoptosis rather than DNA repair like
human. Natural wild animals with high longevity and anti-cancer
provide an environmental adaptation and cellular homeostasis
model for exploring the mechanisms of molecular variations
and evolution.

CONCLUSION

This mini-review summarizes various roles of p53 in human
and animals. As a cellular sensor for homeostasis, p53 involves
in metabolism, autophagy regulation, insulin resistance or
secretion, and food intake. Wt-p53 is also responsible for the
occurrence and developing of endocrine diseases and tumors.
p53 is frequently mutant in endocrine cancers and Mut-p53
promotes malignant behaviors by mediating EMT and non-EMT

in metastasis and upregulating PD-L1 in immune evasion.
Recovering Mut-p53 gene sequence and protein structure with
CRISPR-Cas9 or dietary compounds already showed a great
research value. Mut-p53 is also a potential candidate for PD-
L1 immunotherapy selecting and health risk prediction. In wild
animals, p53 variations contribute to environmental adaptation
and cancer resistance. p53 is a multifunctional molecule,
exploring the new p53 functions, investigating the p53 variations
in wild animals, and returning the “evil” Mut-p53 to an “angel”
in physiological system are fascinating.
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