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Barbara Kollerits15, Florian Kronenberg15, Bernhard Paulweber16, Michalis Zavros3,

Alkis Pierides17, Constantinos Deltas1*

1 Department of Biological Sciences and Molecular Medicine Research Center, University of Cyprus,

Nicosia, Cyprus, 2 Department of Nephrology, Limassol General Hospital, Limassol, Cyprus, 3 Department

of Nephrology, Nicosia General Hospital, Nicosia, Cyprus, 4 Department of Nephrology, University of Crete,

Heraklion, Crete, Greece, 5 Department of Internal Medicine, Section of Molecular Medicine and Human

Genetics, Medical School, University of Crete, Heraklion, Greece, 6 Private Clinical Laboratory, Paralimni,

Cyprus, 7 Department of Medicine, The University of Melbourne, Northern Health, Epping, Australia,

8 Department 2 of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne,

Cologne, Germany, 9 Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne,

Germany, 10 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases,

University of Cologne, Cologne, Germany, 11 Division of Medicine, University College London, London,

United Kingdom, 12 UCL Centre for Nephrology, University College London, London, United Kingdom,

13 Department of Nephrology, University Hospital Regensburg, Regensburg, Germany, 14 Department of

Genetic Epidemiology, University Regensburg, Regensburg, Germany, 15 Division of Genetic Epidemiology,

Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University,

Innsbruck, Austria, 16 First Department of Internal Medicine, Paracelsus Private Medical University Salzburg,

Salzburg, Austria, 17 Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus

¤a Current address: Medical School, University of Cyprus, Nicosia, Cyprus

¤b Current address: School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus

* deltas@ucy.ac.cy

Abstract

Background

Recent data emphasize that thin basement membrane nephropathy (TBMN) should not be

viewed as a form of benign familial hematuria since chronic renal failure (CRF) and even

end-stage renal disease (ESRD), is a possible development for a subset of patients on long-

term follow-up, through the onset of focal and segmental glomerulosclerosis (FSGS). We

hypothesize that genetic modifiers may explain this variability of symptoms.

Methods

We looked in silico for potentially deleterious functional SNPs, using very strict criteria, in all

the genes significantly expressed in the slit diaphragm (SD). Two variants were genotyped
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in a cohort of well-studied adult TBMN patients from 19 Greek-Cypriot families, with a homo-

geneous genetic background. Patients were categorized as “Severe” or “Mild”, based on the

presence or not of proteinuria, CRF and ESRD. A larger pooled cohort (HEMATURIA) of

524 patients, including IgA nephropathy patients, was used for verification. Additionally,

three large general population cohorts [Framingham Heart Study (FHS), KORAF4 and

SAPHIR] were used to investigate if the NEPH3-V353M variant has any renal effect in the

general population.

Results and conclusions

Genotyping for two high-scored variants in 103 TBMN adult patients with founder mutations

who were classified as mildly or severely affected, pointed to an association with variant

NEPH3-V353M (filtrin). This promising result prompted testing in the larger pooled cohort

(HEMATURIA), indicating an association of the 353M variant with disease severity under

the dominant model (p = 3.0x10-3, OR = 6.64 adjusting for gender/age; allelic association:

p = 4.2x10-3 adjusting for patients’ kinships). Subsequently, genotyping 6,531 subjects of

the Framingham Heart Study (FHS) revealed an association of the homozygous 353M/M

genotype with microalbuminuria (p = 1.0x10-3). Two further general population cohorts,

KORAF4 and SAPHIR confirmed the association, and a meta-analysis of all three cohorts

(11,258 individuals) was highly significant (p = 1.3x10-5, OR = 7.46). Functional studies

showed that Neph3 homodimerization and Neph3-Nephrin heterodimerization are disturbed

by variant 353M. Additionally, 353M was associated with differential activation of the

unfolded protein response pathway, when overexpressed in stressed cultured undifferenti-

ated podocyte cells, thus attesting to its functional significance. Genetics and functional

studies support a “rare variant-strong effect” role for NEPH3-V353M, by exerting a negative

modifier effect on primary glomerular hematuria. Additionally, genetics studies provide evi-

dence for a role in predisposing homozygous subjects of the general population to micro-

albuminuria.

Introduction

Podocytes are terminally differentiated epithelial cells with multiple foot processes. A highly

specialized cell junction, known as the slit diaphragm (SD), links adjacent foot processes of

podocytes and is considered to be the most important selective barrier to protein leakage into

the glomerular filtrate[1, 2].

Nephrin and Nephrin-like proteins (Neph) are considered as the most significant parts of

the SD. Nephrin-like proteins comprise a family of transmembranous proteins that belong to

the immunoglobulin superfamily[3–5] due to the Ig-like domains through which they pro-

mote protein-protein interactions. In podocytes, Neph3 (filtrin), like the other Neph proteins

and nephrin, localizes at the SD[6–10]. Nephrin and nephrin-neph complexes appear to be

key components of the SD since: a) nephrin deficiency results in the absence of SD and in mas-

sive proteinuria in humans and mice, causing the Finish type nephrotic syndrome[11–13], b)

dissociation of nephrin-neph1 complex by antibodies results in proteinuria in mice[14]. Simi-

larly, in Neph1-deficient mice, the podocyte foot processes are effaced and the mice exhibit

severe proteinuria[15]. It has been shown that Neph3 forms homodimers and heterodimers
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Fresenius-Stiftung (P48/08//A11/08; to CAB, BKK).

The Framingham Heart Study is conducted and

supported by the National Heart, Lung, and Blood

Institute (NHLBI) in collaboration with Boston

University (Contract No. N01-HC25195). This

manuscript was not prepared in collaboration with

investigators of the Framingham Heart Study and

does not necessarily reflect the opinions or

conclusions of the Framingham Heart Study or the

NHLBI. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. Private Clinical

Laboratory, Paralimni, Cyprus provided support in

the form of salaries for authors (PL), but did not

have any additional role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. Parts of this work

were funded by the Else Kröner-Fresenius-Stiftung
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with the proteins podocin, ZO1, Nephrin and Neph1. Interaction of Neph3 with Neph1

induces cell adhesion[3, 16–18]. In addition, similarly to nephrin mRNA, the expression of

Neph3 is down-regulated in human proteinuric diseases, suggesting a probable role in main-

taining normal SD structure and function[10].

We hypothesize that the phenotypic heterogeneity seen in primary hematurias of glomeru-

lar origin is partly explained by modifier genes, related with the SD structure[19–21]. Micro-

scopic hematuria, sporadic or familial, is a frequent condition but with underestimated risks

[21–30]. Recent findings by us and others showed that about 50% of patients with COL4A3/
COL4A4 heterozygous mutations, a prevalent cause of familial microscopic hematuria due to

TBMN, develop proteinuria with secondary focal segmental glomerulosclerosis (FSGS), after

their third decade of life. In a significant percentage of patients this is followed by chronic or

end-stage renal disease (CRF/ESRD) mostly at ages over 50-years[19, 27, 29–37] (other genetic

causes of familial hematuria that have been identified include mutations in the CFHR5[38, 39]

and MYH9[40] genes). Approximately half of the patients have a benign outcome with lifetime

microscopic hematuria or microscopic hematuria plus minimal proteinuria and normal kid-

ney function. Conversely, the majority of non-heritable glomerular hematuria cases are attrib-

utable to IgA nephropathy. About 9–50% of IgA nephropathy patients progress to ESRD

within 20 years of onset[41, 42], [43]. In TBMN and Alport syndrome, studies in animal mod-

els support the existence of genetic loci that influence disease progression[44, 45]. In humans,

we and others have reported the association of the NPHS2-R229Q variant (in podocin, a SD

component) with proteinuria and CRF in patients with TBMN[46] and familial hematuria

[47]. Modifier genes have been identified in other human inherited renal diseases, such as

polycystic kidney disease and renal ciliopathies[48, 49]. Despite this, other environmental or

co-morbidity factors may contribute to the progression in familial hematuria patients, includ-

ing nutrition (e.g. high fat diet), hypertension, obesity, diabetes etc. None of these factors have

been studied in depth yet.

We took advantage of founder phenomena we observed in Cyprus in order to see if genetic

variants on important slit-diaphragm genes can serve as modifiers of disease severity in a

cohort of 103 adult TBMN patients, who are heterozygous for known COL4A3 or COL4A4
mutations. A rigorous in silico analysis followed by genetic testing of several candidates on ten

genes, resulted in an evolutionarily conserved single variant with indicative statistical signifi-

cance, in the NEPH3 gene, namely p.V353M. The role of this same variant was further sup-

ported in independent cohorts of primary hematuria while it also emerged as a likely DNA

variant that may be predisposing subjects of the general population to microalbuminuria,

when in homozygosity. Functional experiments in cultured cells enhanced the suggested sig-

nificance of this genetic variant, which apparently acts as a hypomorphic mutation. This is the

first study that genetically links Neph proteins with human renal disease.

Subjects and methods

Study cohorts

HEMATURIA is a pooled hematuric cohort that includes four sub-cohorts (A, B, C and D).

Sub-cohort A comprised 103 patients with TBMN from 19 large Greek-Cypriot families[27]

(and unpublished data) and was used for an initial screening of the candidate genetic variants,

in order to decide which SNP/s would be genotyped in additional samples. Importantly, in this

sub-cohort A, 78 patients are heterozygous for a common founder COL4A3-p.G1334E muta-

tion, 19 of 103 are heterozygous for the COL4A3-p.G871C mutation and 6 of 103 are heterozy-

gous for the COL4A4-c.3854delG mutation. Since young individuals with apparently mild

disease could develop severe disease at older age, patients with “mild disease” (see below) and
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younger than 50-yo (born after January 1963) were excluded. The additional three hematuric

sub-cohorts were: Sub-cohort B: 69 familial microscopic hematuria cases, initially of unknown

etiology, belonging to 37 families. In some of these patients a COL4A3 or a COL4A4 mutation

has been found after the start of this project, but none of these mutations was a founder. Sub-

cohort C: 34 unrelated familial or sporadic microscopic hematuria cases (with a TBMN biopsy

or with genetic studies in which hematuria segregated in their family with the COL4A3/
COL4A4 locus or mutations, or both) provided by Prof. Judy Savige (Australia). Sub-cohort D:

318 unrelated patients with biopsy-proven IgA nephropathy from Crete-Greece (72 patients)

and UK (246 patients). Information for all sub-cohorts can be found in Table 1. Testing of

DNA from 462 healthy anonymous individuals from our DNA Biobank (174 from UK and the

rest from Cyprus), showed that the NEPH3-353M allele frequency was 2.9% among UK and

2.6% among Cypriots. The study was designed and performed according to provisions of Dec-

laration of Helsinki. The study was approved by the Cyprus National Bioethics Committee and

participants gave their signed informed consent.

Furthermore, we investigated the possible renal effect of NEPH3-p.V353M in the general

population using three independent population-based samples: 6,351 DNA samples from the

Framingham Heart Study, 3,037 samples from the German KORAF4 and 1,690 samples from

Austrian SAPHIRstudy[50–52]. For a detailed description of these studies, see Text A in S1

File. Our main investigation in those cohorts was for microalbuminuria, a sensitive biomarker

for renal damage. All participants in these cohorts gave their signed informed consent.

Clinical assessment and study outcomes

Patients of HEMATURIA cohort were classified as “Mild” or “Severe”. For sub-cohorts A, B,

C, “Mild” patients had only microscopic or macroscopic hematuria episodes but no chronic

renal failure, or hematuria plus low grade proteinuria (<300 mg/24 hrs, but no chronic

renal failure). An age limit was determined for this category as explained above (see also

Table 1), thereby excluding 25, 42 and 126 young patients from initial sub-cohorts A, B and

C. For A, B, C sub-cohorts, patients with severe disease had hematuria plus proteinuria

�500 mg/24 hrs or hematuria plus proteinuria plus chronic renal failure or ESRD. Renal

failure was defined as an elevated serum creatinine over 1.5 mg/dl. Patients with borderline

proteinuria and another concomitant renal disease (e.g. over five years of diabetes, vesi-

coureteric reflux etc), or at the extreme of body weight (outside ±2 SD of the cohort mean)

Table 1. Characteristics of the pooled HEMATURIA cohort.

Cohort Origin N Mild Severe

N (%) Age: mean

(SD)

Females:

N (%)

With ESRD:

N (%)

N (%) Age: mean

(SD)

Females:

N (%)

With ESRD:

N (%)

A. Heterozygous for collagen IV

mutationsa

Cyprus 103 44 (43%) 60.3 (±10.3) 26 (59%) 0 59 (57%) 62.6 (±12.9) 26 (44%) 20 (34%)

B. Familial cases of MHb Cyprus,

Greece

69 35 (50%) 53.7 (±8.7) 28 (80%) 0 34 (50%) 55.8 (±12.5) 13 (38%) 12 (35%)

C. Familial or sporadic cases of

MHc

Australia 34 22 (65%) 53.8 (±9.7) 15 (41%) 0 12 (35%) 44.9 (±14.8) 9 (75%) 0

D. Patients with IgA

nephropathy

Crete

(Greece)UK

318 122 (38%) 40.2 (±11.1) 51 (42%) 0 196 (62%) 44.4 (±12.3) 54 (28%) 66 (34%)

MH: Microscopic Hematuria, ESRD: End-Stage Renal Disease
a Of 103 carriers, 78 carried mutation COL4A3-p.G1334E, 19 carried mutation COL4A3-p.G871C and six carried mutation COL4A4-c.3854delG
b “Mild” patients born before 01/1963
c “Mild” patients born before 01/1968. For A, B, C sub-cohorts, age mean difference for Mild and Severe is not significant (p = 0.298).

https://doi.org/10.1371/journal.pone.0174274.t001
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were excluded. For sub-cohort D (IgAN) information of proteinuria was not available for

most of the patients, so we classified as “Severe” patients with chronic renal impairment

(eGFR < 45 mL/min, calculated by the MDRD formula) or ESRD and as “Mild” patients

with eGFR� 45 mL/min, (calculated by the MDRD formula) at least 5 years after diagnosis.

Patients not falling into these categories (i.e. those in whom renal function was not known

to be unaffected at least 5 years after diagnosis) were excluded. UK patients were from the

MRC/Kidney Research UK National DNA Bank for Glomerulonephritis. The final numbers

of patients that included in the genetic analysis (after excluding the patients that did not ful-

fill the above criteria) can be seen in Tables 1 and 2.

For FHS sample group (cohort 2), immuno-turbimetry was used for measuring urine albu-

min concentration (Tina-quant Albumin assay; Roche Diagnostics, Indianapolis, IN). Urinary

creatinine concentration was measured with the modified Jaffe method; urinary albumin was

indexed to urinary creatinine to account for differences in urine concentrations (UACR; g:mg/

g). UACR is a reliable measure of urinary albumin excretion and correlates with albumin

excretion rates obtained from 24-hour urine collection [53, 54]. Microalbuminuria was

defined as a UACR of>25 mg/g for women and UACR of>17 mg/g for men[55]. The same

approach was followed for cohorts KORAF4 and SAPHIR.

Table 2. Frequencies and statistical analysis of variant NEPH3-p.V353M in the various hematuric sub-cohorts, based on disease severity.

Genotype counts Genotype

frequency

Allele counts Allele

frequency

Statistics

Cohort N VV VM MM VV VM MM V M V M “Mild” v.

“Severe”a
“Mild” v.

“Severe”b
Odds Ratio

(Dominant model)

General

population

462 437 25 0 0.946 0.054 0 899 25 0.973 0.027

ExAC

Browser

54373 52712 1595 61 0.969 0.029 0.002 105434 3312 0.969 0.031

Mild

A 44 44 0 0 1.0 0 0 88 0 1.0 0

B 35 35 0 0 1.0 0 0 70 0 1.0 0

C 22 22 0 0 1.0 0 0 44 0 1.0 0

D 122 119 3 0 0.975 0.025 0 241 3 0.988 0.012

Total 223 220 3 0 0.987 0.013 0 443 3 0.993 0.007

Severe

A 59 53 6 0 0.898 0.102 0 112 6 0.949 0.051 c3.6x10-2

B 34 32 2 0 0.941 0.059 0 66 2 0.971 0.029

C 12 10 2 0 0.833 0.167 0 22 2 0.917 0.083

D 196 181 14 1 0.923 0.071 0.006 376 16 0.959 0.041

Total 301 276 24 1 0.917 0.080 0.003 576 26 0.957 0.043 c3.0x10-4 c2.0x10-4 6.64 (1.98, 22.29)
d3.0x10-3 e4.2x10-3 d6.63 (1.94, 22.68)

The four sub-cohorts presented here comprise the larger HEMATURIA cohort. Description of sub-cohorts can be found in Table 1.
a Genotypic association analysis p-values (dominant model);
b Allelic association analysis p-values;
c Fisher’s Exact Test (2-sided);
d Adjusted for gender and age;
e Adjusted for patients’ kinships

https://doi.org/10.1371/journal.pone.0174274.t002
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Candidate genes and SNPs selection

We used Polyphen and SIFT prediction algorithms as they are found in Ensembl database

(www.ensembl.org) and SNPs3D algorithm (http://www.snps3d.org/) to assess the effect of all

registered non-synonymous SNPs (www.ensembl.org) located in the 10 most significant genes

for the SD structure: NPHS1, NPHS2, NEPH1, NEPH2, NEPH3, CD2AP, TRPC6, TJP1 (ZO1),
FAT1, FAT2. Significance was determined based on available studies since 2011 (genetic stud-

ies, animal model studies, functional studies) that show contribution of SD-located proteins to

the SD function. For example, the gene of P-cadherin, an SD-located protein, was not included

in our investigation since studies have shown that it does not seem to be essential for the filtra-

tion barrier. Additionally, we had special interest to investigate the four nephrin-like proteins

of the SD, since their extra-cellular Ig-like domains are considered to be the main scaffold of

the SD sieve[1, 2]. We recognize that additional genes may prove to be of similar or even

higher significance in the future. High scored SNPs (predicted to be “deleterious” by all three

algorithms: SIFT value <0.05, Polyphen value >0.9, SNPs3D <-1.0) were searched in Ensembl

database for available population genetics data. Only SNPs with global MAF� 2.5% were pro-

cessed for genotyping in sub-cohort A. SNPs with p-values <0.05 for sub-cohort A were geno-

typed in the entire pooled HEMATURIA cohort for further evaluation.

DNA genotyping

Selected SNPs were genotyped by standard PCR-RFLP analysis (restriction enzymes from

New England Biolabs, USA). PCR amplified products were digested and electrophoresed on

2–3% (depending on cleavage sizes) routine agarose gels (Table A in S1 File). The UK IgA

DNA samples and the FHS DNA samples were genotyped with the KASPar method by out-

sourcing to KBioscience (Herts, UK). The KORAF4 and SAPHIR DNA samples were geno-

typed with the TaqMan assay (probes and primers available on request) in a RealTime

analyzer. DNA from 12 patients was directly re-sequenced after amplifying all the 15 exons

(primers available on request) of NEPH3 gene, in an ABI PRISM™ 3130xl (California, USA)

genetic analyzer.

Statistical analysis

Genotypic and allelic statistical analysis, odds ratios and independent t-test (for age means’

comparison in Table 3) calculations were performed by SPSS v.13. P values were calculated by

Pearson Chi-Square test or by Fisher’s Exact Test (2-sided) where genotype values less than 10

existed (cases: “severe” group, control: “mild” group). Logistic regression was used for adjust-

ing for gender and age. R statistical package v.3.0.1 was used for KORAF4 and SAPHIR

cohorts and for the meta-analysis. Allelic association analysis for HEMATURIA cohort was

corrected for the presence of related individuals using a quasi-likelihood score function (QLS

test) for estimation of allele frequencies and significance in large inbred pedigrees, based on

kinship coefficients (http://www.stat.uchicago.edu/~mcpeek/software/CCQLSpackage1.3/

download.html). The significance level, alpha, was set to 0.05.

Bioinformatic analysis of neph3 (filtrin) protein and mRNA

2D protein structure prediction analysis of Neph3 protein (filtrin) and mRNA were performed

by CLC Main Workbench 6 software package (www.clcbio.com), based on Hidden Markov

Model algorithms. Alignments of orthologs and paralogs of the Neph3 protein were created

through the same software, using ClustalW algorithm. Protein sequences were extracted from

Ensembl (www.ensemble.org).
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Co-immunoprecipitation in HEK 293T cells

Cloned human NEPH3 (filtrin) cDNA into a pCMV6 eukaryotic expression vector with avail-

able FLAG-tag sequence was purchased from Origene (Rockville, USA). NEPH3 353V (GTG

triplet) was mutated to 353M (ATG triplet) via the Quick Change Site-Directed Mutagenesis

kit (Stratagene, La Jolla, CA, USA). Constructs’ sequence was verified by DNA sequencing.

Human NPHS1 (nephrin) cDNA was cloned into a modified pcDNA6 expression vector cod-

ing for the CD5 signal peptide fused to the V5-tag sequence (sV5-tag) followed by restriction

sites to insert the cDNA. Both NEPH3 (filtrin) cDNA variants (353V, 353M) were also sub-

cloned into the pcDNA6 expression vector coding for the CD5 signal peptide fused to the

FLAG-tag or HA-tag sequence. Antibodies used were purchased from Sigma (FLAG), Serotec

(mAb V5) and Santa-Cruz (HA). Two separate co-immunoprecipitation assays were per-

formed: i) Neph3-Nphs1: Comparison between Flag-Neph3-353V binding to sV5-Nphs1 with

Flag-Neph3-353M binding to sV5-Nphs1, ii) Neph3-Neph3 (testing homodimerization):

Comparison between FLAG-Neph3-353V and FLAG-Neph3-353M when binding to

HA-Neph3-353V or HA-Neph3-353M. The co-immunoprecipitation experimental procedure

is summarized below:

HEK 293T cells were transfected using the calcium phosphate method, and incubated at

37˚C for 24 h. Cells were subsequently washed with PBS, lysed in ice-cold IP-buffer (1% Triton

X-100; 20 mM Tris pH 7.5; 25 mMNaCl; 50 mM NaF; 15 mM Na4P2O7; 1 mM EDTA; 0.25

mM PMSF; 5 mM Na3VO4) incubated on ice for 15 min and centrifuged (14.000 rpm, 4˚C, 30

min). Supernatants containing equal amounts of total proteins were incubated for 1–2 h at

4˚C with precipitating anti-V5 antibody (Serotec) followed by a 1–2 h incubation at 4˚C with

Protein G Sepharose (GE Healthcare) or with anti-FLAG M2 affinity resin (Sigma). The pre-

cipitates were washed three times with IP-buffer and bound proteins were resolved by 10%

SDS-PAGE and detected by Western blot. Similar procedure was followed for anti-HA anti-

bodies. Densitometry was performed through the publicly available ImageJ Software (http://

imagej.nih.gov/ij).

ER stress experiment: Cell culture and transfection

The AB8/13 undifferentiated podocyte cells[56], were incubated at 33˚C at 5% CO2 and cul-

tured in RPMI medium, supplemented with 10% Fetal Bovine Serum (FBS) (Invitrogen, Cali-

fornia, USA), 1% of 100 units/ml Penicillin/Streptomycin (Invitrogen, CA) and 1% Insulin-

Table 3. Demographic data of the three general population cohorts genotyped for NEPH3-p.V353M.

Microalbuminuria: CASES No Microalbuminuria: CONTROLS P values

Cohort: FHS 603 (0.092) 5,928 (0.908)

Age at urine test time 55.9 (±13.3) 46.3 (±12.2) <0.001

Women 325 out of 603 (0.539) 3,168 out of 5,928 (0.534) 0.831

Cohort: SAPHIR 165 (0.098) 1,525 (0.902)

Age at urine test time 51.5 (±5.4) 51.4(±6.0) 0.96

Women 52 out of 165 (0.315) 578 out of 1,525 (0.379) 0.11

Cohort: KORAF4 397 (0.131) 2,640 (0.869)

Age at urine test time 63.8 (±13.1) 55.0 (±12.9) < 2.2e-16

Women 160 out of 397 (0.403) 1,410 out of 2,640 (0.534) 1.01e-06

Note: Data presented as mean and SD for continuous variables and as absolute numbers and percentages for dichotomous variables. Analytical data for

each of these cohorts can be found at [50–52].

https://doi.org/10.1371/journal.pone.0174274.t003
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Transferrin-Selenium (Invitrogen, CA). At 70% confluence, cells were transiently transfected

with vectors containing the collagen cDNAs, wild type or mutant, using lipofectamine 2000

and according to manufacturer’s instructions. 48 h after transfection samples were collected

for experiments. Filtrin construct expression was similar in all transfected cells as assessed by

filtrin mRNA and protein expression levels.

When indicated, transfected cells were incubated for 14 h with 10 μg/ml of tunicamycin

(Sigma, St. Louis, MO).

Immunoblotting for the ER-Stress proteins

Forty-eight hours post transfection cellular lysates or cellular medium were collected for exper-

iments. Cells were lysed in equal volumes of pre-heated 2xSDS loading buffer (Sodium Dode-

cyl Sulphate 125 mM, Tris-HCl pH 6.8, 20% Glycerol, 2% SDS, 2% β-mercaptoethanol and

bromophenol blue) and homogenized via sonication. Antibodies used against the ER-Stress

proteins were: anti-BiP, anti-PERK, anti-P-PERK (Cell Signaling Technology, Danvers, MA)

and anti-CHOP, anti-p-eIF2a (SantaCruz Biotechnology, CA), followed by peroxidase-labelled

secondary antibodies either goat anti-mouse or donkey anti-rabbit (SantaCruz Biotechnology,

CA). Proteins were detected using the Enhanced ChemiLuminescence (ECL) Plus Blotting

Detection system (Amersham Biosciences, Buckinghamshire, UK) and were visualized by

autoradiography on photographic film (KODAK X-OMAT, NY). All transblots were reprobed

with anti-β-tubulin antibody (SantaCruz Biotechnology, CA) to prove equal amounts of pro-

tein were loaded on the membrane. Band density was defined using the ImageJ Software

(http://imagej.nih.gov/ij).

Results

Candidate SNPs genotyping—The emergence of NEPH3-p.V353M

variant in the HEMATURIA cohort

We used the Polyphen, SNPs3D and SIFT algorithms to predict the likely effect of all registered

non-synonymous single nucleotide polymorphisms (SNPs) in 10 genes known to be the most

important for the SD structure and function: NPHS1, NPHS2, NEPH1, NEPH2, NEPH3,

CD2AP, TRPC6, TJP1 (known as ZO1), FAT1, FAT2 (see methods for details). SD is considered

as one of the most substantial functional parts of the glomerular “sieve”, where its main scaf-

fold is considered to be constructed by the Ig-like domains of the four known nephrin-like

proteins (see methods for details about rationale of gene selection). Two SNPs in two genes

were predicted to have functional effects on their proteins: FAT2-p.G1515S (rs2278370) and

NEPH3-p.V353M (rs35423326). The two non-synonymous SNPs were initially genotyped in

sub-cohort A of the HEMATURIA cohort (Table 1). NEPH3-p.V353M (rs35423326) was sug-

gestive for association with severe renal disease (p = 0.036 for genotypic association, Table B in

S1 File).

We next genotyped NEPH3-p.V353M in three additional hematuric sub-cohorts of the

HEMATURIA cohort. Among 301 severely affected patients there were 24 heterozygous and

one homozygous genotypes while among 223 mildly affected patients there were three hetero-

zygous genotypes (Table 2). Genotypic association analysis gave a statistical significance of

p = 3.0x10-4 (OR = 6.64, CI 1.98–22.29) and after adjustment for gender and age gave a

p = 3.0x10-3. Allelic association analysis gave a statistical significance of p = 2.0x10-4 and

p = 4.2x10-3 after adjustment for patients’ kinships (Table 2). 353M allele frequency in the gen-

eral population is 2.7% which is similar to that of other populations (www.ensembl.org). Inter-

estingly, the only one homozygous 353M/M patient that was identified, is a 46-year-old man,
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severely affected with IgA nephropathy, and a GFR of 23 mL/min, not having reached ESRD

yet. The results were consistent with Hardy-Weinberg equilibrium in these cohorts.

Testing for association of NEPH3-V353M with microalbuminuria in

cohorts of the general population

Genotyping 6,531 subjects of the Framingham Heart Study (FHS) for the NEPH3-p.V353M

variant revealed association of the rare homozygous genotype 353M/M with microalbumi-

nuria (p = 1.0x10-3 adjusting for gender and age, OR = 5.92). No association was found with

serum creatinine or cystatin values (results not shown). In order to replicate this result we gen-

otyped the general population cohorts KORAF4 and SAPHIR (Table 3). Statistical analysis

confirmed the association with microalbuminuria which, however, did not reach statistical sig-

nificance in the SAPHIR, perhaps due to the fact that only two homozygous M/M individuals

were found (Table 4). Estimates pointed in all three populations in the same direction and a

final meta-analysis of all three cohorts, including 11,258 subjects, revealed a p-value of

p = 1.3x10-5 for the recessive model with an OR of 7.46 (95% CI 2.50–22.23) (Fig 1, Table 4).

No other NEPH3 non-synonymous SNPs were found to be linked with the 353M allele,

after direct re-sequencing of all the 15 exons of the gene in 12 patients of HEMATURIA

cohort. Synonymous variants p.G164G and p.A351A in NEPH3 were found in partial linkage

disequilibrium with V353M, without reaching a statistical significance as modifiers (results

not shown).

Bioinformatic analysis

At protein level, valine at position 353 of the protein is highly conserved across evolution (Fig

2) and is located within the 4th Ig-like domain (Neph3 has five Ig-like domains) of the extra-

Table 4. Frequencies and statistics of NEPH3-p.V353M in three general population cohorts including a meta-analysis.

Genotype

counts

Genotype

frequency

Allele

counts

Allele

frequency

Statistics

Cohort N VV VM MM VV VM MM V M V M Dominant

modela
Recessivemodela Odds Ratio

(Recessive model)

Controls

(without MA)

FHS 5,928 5,508 415 5 0.929 0.070 0.001 11,431 425 0.964 0.036

KORAF4 2,640 2,487 152 1 0.942 0.057 0.001 5,126 154 0.971 0.029

SAPHIR 1,525 1,423 101 1 0.933 0.066 0.001 2,947 103 0.966 0.034

Total (Meta-

analysis)

10,093 9,418 668 7 0.933 0.066 0.001 19,504 682 0.966 0.034

Cases (with

MA)

FHS 603 561 39 3 0.930 0.065 0.005 1,161 45 0.963 0.037 0.946 1.0x10-3 5.92 (1.41, 24.85)

KORAF4 397 380 15 2 0.957 0.037 0.006 775 19 0.976 0.024 ND 1.8x10-2 13.36 (1.21,

147.71)

SAPHIR 165 153 11 1 0.927 0.067 0.006 317 13 0.961 0.039 0.738 0.147 9.29 (0.58, 149.27)

Total (Meta-

analysis)

1,165 1,094 65 6 0.939 0.056 0.005 2,253 77 0.967 0.033 ND 1.3x10-5 7.46 (2.50, 22.23)

MA: Micro-albuminuria, as defined in Methods section; ND: Not done
a Adjusted p-values for gender and age

https://doi.org/10.1371/journal.pone.0174274.t004
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cellular N-terminal region of Neph3 protein. Its substitution by a methionine residue is pre-

dicted to abolish a local β-strand domain of the protein (Figure A in S1 File). At the mRNA

level, guanine to adenine substitution does not seem to be related with any significant struc-

tural change, as tested with the 2D mRNA prediction model using the CLC Main Workbench

6 software package (Figure B in S1 File).

Fig 1. Flowchart of the genotyping strategy followed to investigate the significance of the two SNPs

in four genes that emerged to have functional significance based on the in silico assay (see material

and methods). Black arrow symbolizes the NEPH3-V353M variant which initially derived indicative significant

association and was investigated further (black not filled arrows symbolize the meta-analysis). Light grey

arrows symbolize the three SNPs found not to be significantly associated in sub-cohort A and not tested

further. Dot-lined arrows symbolize the two SNPs that were found to be non-polymorphic in this cohort and not

tested further.

https://doi.org/10.1371/journal.pone.0174274.g001

Fig 2. Alignment of orthologs and paralogs sequences of the Neph3 protein (filtrin) around the 353V

residue position. Note that there is absolute conservation of the relevant amino-acid residue, across a very

broad evolutionary range.

https://doi.org/10.1371/journal.pone.0174274.g002
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Assays for Neph3 homo-dimerization and for hetero-dimerization with

nephrin

Co-immunoprecipitation experiments were performed in order to identify any dimerization

alterations of the Neph3 protein, in the presence of the 353M variant. Each co-immunopre-

cipitation experiment was performed in triplicate. Western blot analysis from transiently

transfected HEK293T cells revealed strong increase in the homodimer interaction 353M-

Neph3/353M-Neph3 variants (mean normalized densitometry value: 23.80 ± 4.166) as com-

pared to the interactions of 353V-Neph3/353M-Neph3 and 353V-Neph3/353V-Neph3

(mean normalized densitometry values: 4.327 ± 0.7765 and 1.000 ± 0.3716 respectively) (Fig

3A). Unpaired t-test was statistically significant with p = 0.0055. Similarly, there was a slight

increase in the interaction between the 353M-Neph3 and Nphs1 (mean densitometry value:

1.177 ± 0.033) as compared to the interaction of 353V-Neph3 with Nphs1 (mean normalized

densitometry value: 1.000 ± 0.024) (Fig 3B). Unpaired t-test was statistically significant with

p = 0.012.

Fig 3. Co-immunoprecipitation experiments, testing for the binding effectiveness of Neph3 protein

with methionine (M) at the 353 position. (A) Left panel: FLAG-Neph3[353V] and FLAG-Neph3[353M] were

immuno-precipitated with anti-FLAG antibody and then they were analyzed by western blot using an anti-HA

antibody (for HA-Neph3[353V] and HA-Neph3[353M]) in order to check all possible hetero- and homo-dimer

interactions. Neph3[353M]-Neph3[353M] homodimers are strongly increased compared with the Neph3

[353V]-Neph3[353M] and the Neph3[353V]-Neph3[353V] ones. Right panel: FLAG-Neph3[353V] and

FLAG-Neph3[353M] were immuno-precipitated with anti-FLAG antibody and then they were analyzed by

western blot using an anti-V5 antibody (for sV5-Nephrin]. Nephrin-Neph3[353M] heterodimers are slightly

increased compared with the Nephrin -Neph3[353V] ones. Anti-V5 and anti-FLAG western blots from lysates

(input) were used for loading normalization. V5-NPHP1 (nephrocystin) served as an experiment control. (B)

Statistics of densitometry of the blots in Fig 3A, n = 3. Intensity (±SEM) is given as a percentage of wild-type

intensity, which is set by definition at 1.0 (100%). There is statistical significance (unpaired t-test) for the

homodimerization and heterodimerization comparisons described in Fig 3A. For more details see text.

https://doi.org/10.1371/journal.pone.0174274.g003
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Overexpressed NEPH3-353M variant results in up-regulation of

unfolded protein response markers in the presence of tunicamycin

In human podocyte AB8/13 cells overexpressing either the 353V or the 353M variant we

observed no significant effect in unfolded protein response (UPR) marker elevation. Consider-

ing that the 353M variant does not have a pathogenic effect on its own but it is hypothesised to

act as a modifier gene on the background of another mutation, it was not particularly surpris-

ing that no perceptible differences were observed between the variant and the wild type over-

expressing cells. To intensify the stress and to test the susceptibility of the mutant variant

expressing cells to other external stress factors, transfected cells were exposed to a potent ER-

stressor, as previously described[57]. To this end, transfected cells were treated with 10 μg/ml

of tunicamycin, an inhibitor of N-linked glycosylation (Fig 4). Notably, after exposure to tuni-

camycin, three of the five UPR markers tested (BiP, IRE1a, p-elF2a) were considerably more

pronounced in the 353M-expressing cells compared to 353V-expressing cells (Fig 4). P-PERK

did not reach statistical significance despite the obvious trend observed in cells transfected

with the mutant 353M allele. Only CHOP marker did not show any detectable alteration in

expression, in the presence of tunicamycin. These results indicate that the 353M mutant vari-

ant is more prone to additional elevation of ER stress, compared to the wild type upon expo-

sure to an external stressor.

Discussion

Progression in primary hematuric glomerulopathies, inherited or not, is still an open question

in nephrology. The phenotypic heterogeneity observed among patients with inherited mono-

genic disorders, including AS, TBMN and CFHR5 nephropathy, prompted us to hypothesize

that the full spectrum of the phenotype behaves as a multifactorial condition, implicating pri-

mary genes, modifier genes and environmental factors [34, 37]. Here we considered that excel-

lent candidates to act as genetic modifiers could be non-synonymous SNPs located in specific

genes of the SD. Many of these genes have been linked with inherited nephrotic syndromes

and corresponding encoded proteins are the main scaffold of the glomerular filtration barrier

in the glomeruli. Under these assumptions we hypothesized that specific missense variants on

these genes, perhaps acting as hypomorphic mutations, may contribute to progression in a

subset of hematuric patients. Following a strategy that is detailed in Methods and Results sec-

tions, we focused on filtrin (Neph3), largely of unknown function, which has been shown to

interact with various slit diaphragm proteins. After deriving a suggestive significance in a pre-

viously well-studied TBMN sub-cohort of 103 patients, we further evaluated this SNP in the

pooled hematuric cohort, HEMATURIA, with 524 patients (Table 1), comprised mainly by

TBMN and IgA nephropathy patients. Statistical analysis revealed a high risk for the carriers of

this variant (genotypic association: p = 3.0x10-3, OR = 6.63 adjusting for gender/age; allelic

association: p = 2.0x10-4) (Table 2). Pending replication by other researchers, our study sug-

gests that variant NEPH3-V353M may have a prognostic value for an adverse outcome when it

occurs in patients with a background of another primary hematuric glomerulopathy, such as

TBMN or IgA nephropathy. This makes the variant qualify as a hypomorphic allele which on

its own is not adequate to cause any perceptible symptom, when in heterozygosity. A similar

inheritance pattern explained some rare severe and early onset cases of autosomal dominant

polycystic kidney disease when hypomorphic PKD1 mutations were co-inherited with variants

in the PKHD1 or the HNF-1β gene [58, 59].

We next asked whether this variant is associated with evidence of kidney disease in the gen-

eral population. A search in ExAC genome browser revealed that the M allele frequency is

0.0305 in 54,373 healthy genomes, which is lower than the frequency found in the Cypriot
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Fig 4. Results of the densitometry analysis of western blots where we assayed the elevation of

markers of the unfolded protein response pathway, in the presence of the two NEPH3 alleles (normal

“V” vs mutant “M”). Note that in the presence of tunicamycin (TM, a potent factor adding additional cellular

stress), three markers (BiP, IRE1a, p-elF2a) are rising significantly (asterisks mark the significance) for the

“M” allele.

https://doi.org/10.1371/journal.pone.0174274.g004
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general population, of 0.054 (Table 2), therefore it is not a truly rare variant [60]. Genotyping

and analyzing 6,531 subjects of the FHS revealed association of the homozygous genotype

353M/M with microalbuminuria in this population (p = 1.0x10-3 adjusting for gender and age,

OR = 5.92) (Table 4). In order to confirm this result we further genotyped NEPH3-p.V353M

in the two general population-based samples SAPHIR and KORAF4. A meta-analysis for all

three cohorts, demonstrated that 353M/M homozygotes inherit a high risk for microalbumi-

nuria (adjusted p = 1.3x10-5, OR = 7.46). These data are consistent with the hypothesis that

one dose of this hypomorphic mutation is sufficient to predispose to kidney impairment on

the background of a primary hematuric glomerulopathy whereas two doses are needed to pre-

dispose an otherwise healthy individual to manifest microalbuminuria, a sign suggesting glo-

merular filtration barrier instability (see Fig 5 for our suggested model). We would like to

underline that the results suggest that microalbuminuria is not always of endothelial origin

[61], as it is believed today, but it can be of podocytes’ origin. Interestingly, a recent study gave

additional evidence for the role of filtrin in prevention of the glomerular protein leakage, since

it was shown that non-synonymous variants in NEPH3 gene can cause nephrotic syndrome in

dogs[62].

p.V353M is located in the 4th Ig-like domain of filtrin. Ig-like domains are regions of inter-

actions between members of the nephrin family of proteins. 2D Neph3 structure prediction

showed a possible alteration caused by the methionine substitution (Figure A in S1 File). The

co-immunoprecipitation experiments show that this change from valine to methionine at posi-

tion 353, drives to a much stronger homodimerization of Neph3-353M/Neph3-353M com-

pared to Neph3-353M/Neph3-353V and Neph3-353V/Neph3-353V. Additionally, Neph3-

353M/Neph3-353V interaction seems to be also stronger than Neph3-353V/Neph3-353V.

Importantly, the results show the same trend for Neph3 –Nephrin heterodimerization, as

Fig 5. A proposed hypothetical model for the mechanism of disease development when a causative

heterozygous mutation is inherited on the COL4A3/A4 gene or when a heterozygous mutation is co-

inherited with a variant on a genetic modifier. This general model implies that hypomorphic mutations

such as NEPH3-p.V353M are benign in heterozygosity on their own but may confer malfunction and impair

the integrity of the glomerular filtration barrier when co-inherited with a collagen IV pathogenic mutation, or in

homozygosity.

https://doi.org/10.1371/journal.pone.0174274.g005

NEPH3 as a genetic modifier in hematuric glomerulopathies

PLOS ONE | https://doi.org/10.1371/journal.pone.0174274 March 23, 2017 14 / 20

https://doi.org/10.1371/journal.pone.0174274.g005
https://doi.org/10.1371/journal.pone.0174274


valine to methionine at 353 increases the Neph3 –Nephrin interaction (Fig 3). We propose

that a functionally deleterious variant, like 353M, can facilitate the degeneration of the SD

integrity by inducing alterations of different protein interactions, during the long aging pro-

cess in a healthy individual, or most significantly on the background of another primary glo-

merular disease.

UPR is a sensitive cellular procedure taking place in the ER where unfolded proteins (e.g.

due to a mutation) are perceived by the cell and consequently activating a cascade of events

aimed at restoring ER homeostasis. This mechanism proved to be significant in kidney cells

[63, 64]. We wish to point out that in recent work we showed that collagen IV mutations

which cause Alport syndrome and/or TBMN, activate the UPR signalling cascade in cultured

podocytes, in human biopsies and in a mouse knockin model[35, 65]. In the present work, our

investigation for potential activation of the ER stress-dependent signalling, included examina-

tion of the protein levels of the UPR markers BiP, IRE1a, p-eIF2α, p-PERK, and CHOP in cells

overexpressing the 353V or the 353M variant of filtrin. UPR marker activation was similar

both for the 353V and the 353M overexpressing cells. In order to simulate a more realistic

environment that the podocyte has to anticipate in the glomerulus, stress was enhanced by

exposure of transfected cells to tunicamycin, a pharmacological ER stress activator. In this

setup the stress pressure imposed on the cells was doubled: 1) genetic background of the filtrin

and 2) exposure to the stress-causing agent. Interestingly, the cells expressing the 353M variant

were prone to further elevating UPR markers than the WT expressing cells (Fig 4). This is

interesting since one might hypothesise that the 353M variant could potentially raise suscepti-

bility of the cell in the presence of other predisposing factors, genetic or environmental, such

as an inherited pathogenic mutation (like in TBMN patients), a locally increased osmotic or

mechanical pressure, toxic chemicals etc. We conclude that variant NEPH3-p.V353M imposes

a slowly degenerating process on podocytes that needs several decades to manifest.

The candidate gene approach we followed here, where we filtered all non-synonymous vari-

ants in ten SD genes using a bioinformatic approach, may be ideal for diseases like glomerulo-

pathies where there is plenty of information for the proteins taking part at the associated

biological micro-structures (e.g. the SD), especially when dealing with rare variants. Even

though GWAS are attractive and popular, the number of patients in our cohorts would not

support them. From a practical perspective, in our cohorts of patients with microscopic hema-

turia, the results imply that testing for the presence of the NEPH3-p.V353M, has a highly posi-

tive predictive value for renal impairment. This, however, needs to be evaluated further in

appropriate prospective cohort studies.

Conclusion

We provided three lines of evidence based on evolutionary conservation, genetic association

studies and functional assays, which support the role of variant NEPH3-p.V353M as a hypo-

morphic mutant with low or incomplete penetrance. Our findings may afford the opportunity

for early detection of a subgroup of patients with glomerular hematuria who are at increased

long-term risk of kidney function decline. With this in mind, this finding conforms to the low-

frequency variant-large effect hypothesis in opposition to the common variant hypothesis. At

the same time, homozygosity in the general population may also arise as a risk factor for

micro-albuminuria of unknown significance to health. Admittedly, it is more than obvious

that more genetic variants (perhaps hundreds or thousands), and environmental factors exist

that contribute to this end-phenotype, and waiting to be identified. In our view, every family

or patient could have their own additional variant that either predispose them to, or protect

them from, adverse renal function developments, on the background of another primary
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glomerulopathy. At the same time, these same variants may predispose subjects of the general

population, when inherited in homozygosity. If this is the case, molecular examinations of

prognostic value could be massive parallel sequencing of panels of candidate genes, something

that nowadays has become easier and cheaper with Next Generation Sequencing technologies.
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