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Abstract

The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However,
little is known about brain areas associated with information to forget. The present study used functional magnetic
resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed
forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to
forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection
and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated
during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to
remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal
cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative
encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in
the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but
nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-
based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional
processes.
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Introduction

Directed forgetting (DF) refers to a deliberate attempt to limit

the future expression of specific memory contents [1–4]. This

active form of forgetting differs from the simple attenuation of

memory contents over time and from proactive or retroactive

interference. It is involved in many daily memory activities since it

allows one to suppress information that is no longer relevant from

one’s consciousness or to update outdated information. Conse-

quently, intentional forgetting as assessed by DF effects is a

desirable and adaptative outcome that can be distinguished from

unintentional forgetting and aims at preventing outdated irrele-

vant information from interfering with current processing and

recollection.

Two methods are classically used to study DF effects: the item

and list methods. In the item method, participants are presented

with words one by one with, after a short delay, the presentation of

a ‘‘remember’’ cue (to-be-remembered ‘‘TBR’’ items) or a

‘‘forget’’ cue (to-be-forgotten ‘‘TBF’’ items). Typically, TBR items

are better remembered than TBF items, that is, TBR items are

better recalled or recognized when participants are subsequently

tested on all presented words, regardless of study instructions. In

the list method, the participants are generally warned of the status

of the items only after a block of items was presented. Some data

suggest that each method depends on partially different processes,

such as retrieval inhibition for the list method and selective

rehearsal or attentional inhibition for the item method [5–7].

Currently, the specific mechanisms of directed forgetting and its

neural substrates are still discussed. At the cognitive level, two

hypotheses have been proposed to explain the DF effect observed

with the item method. The first one, the selective rehearsal

hypothesis, emphasizes differential encoding and rehearsal of TBR

items [6,8]. According to this hypothesis, when an item is followed

by a ‘‘remember’’ cue, participants typically engage in rehearsal

and more elaborated encoding than when items are followed by a

‘‘forget’’ cue, naturally making the TBR items more accessible for

later remembering. The second hypothesis, the attentional

inhibition hypothesis, argues that the item-method DF effect

results from the attentional inhibition of TBF items triggered by

the ‘‘forget’’ cue [9,10]. According to this hypothesis, TBF items

and/or the rehearsal of these items are assumed to be inhibited

just after they are encoded (when the ‘‘forget’’ cue is displayed).

With regard to neuroimaging, only the item-by-item directed

forgetting paradigm has been used to explore the neural substrates

of (un)successful encoding [11] and (un)intentional forgetting [12].

Reber et al. [11] observed that the anterior ventral portion of the

left inferior prefrontal cortex (BA 9), the anterior cingulate (BA 32)

and medial superior frontal gyrus (BA 6) exhibited greater activity
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for TBR than TBF items at encoding. Additionally, the left

parahippocampal gyrus and right superior parietal gyrus (BA 7)

exhibited greater activity for subsequently remembered words

than for subsequently forgotten words. These data show that

activity in the ventral prefrontal and superior frontal regions was

associated with encoding effort whereas the medial temporal and

superior parietal areas were involved in the success of encoding.

Wylie et al. [12] observed that intentional forgetting of TBF items

was associated with increased activity in the hippocampus and

superior frontal gyrus (BA10/11) when contrasted with uninten-

tional forgetting of TBR items, but with higher activity in the

medial frontal gyrus (BA10), middle temporal gyrus (BA21),

parahippocampal gyrus (BA34/35) and cingulate gyrus (BA31)

when contrasted with intentional remembering of TBR items. As a

whole, these findings revealed that different brain regions involved

in declarative memory are related to intentional forgetting and

intentional remembering. These two studies focused on the

encoding phase of the item DF paradigm. Recently, Nowicka et

al. [13] explored the neural substrates of forgetting effects at

encoding and retrieval of neutral and emotionally negative images.

They showed that, at encoding, the intention to forget and the

success in forgetting negative images were related to more

widespread right-hemisphere activations than for neutral images,

suggesting greater forgetting effort for emotional materials. At

retrieval, forgotten neutral and negative images yielded no

cerebral activation. This may indicate that forgetting resulted

mainly from inhibitory processes acting at encoding rather than at

retrieval.

Finally, the question of inter-individual variability in the ability

to overcome the inhibitory/suppression influence of the forget

instruction was recently tackled by Nowicka et al. [14] with voxel-

based morphometry. In a group of participants with high

recognition rates for TBF items, the rate of recognition was

related to increased gray matter volume in the left ventrolateral

prefrontal cortex (BA 47) and right hippocampus. Such a

relationship was not observed for individuals with a low

recognition rate for TBF items. Nowicka et al. concluded that

these two regions may be part of a neuroanatomical network

supporting efficient and successful retrieval of visual information

that was not properly encoded and thus difficult to recollect.

The intervention of distinct processes during the DF paradigm

is also supported by psycho-physiological data, which demonstrate

that the processing of TBF and TBR items is associated with

specific event-related potential (ERP) activity. The differential

ERP activity was attributed to inhibitory processes of TBF items

during encoding [15–18] and retrieval [19,20], and to the

involvement of recollection processes for TBR items only

[16,19,20].

In that context, the main aim of the present study was to explore

the neural substrates associated with remembering and forgetting

at both the encoding and retrieval stages of a long-term directed

forgetting task. Using fMRI, we examined cerebral activation at

both encoding and retrieval in relation to memory instructions and

behavioural performance in order to apprehend all processing

stages that TBR and TBF information undergoes. Whereas

Nowicka et al. [13] explored the influence of emotion on the

neural bases of directed forgetting, we selected neutral verbal

materials so as to focus on basic processes underlying the directed

forgetting effect. This will shed further light on the mechanisms of

intentional forgetting as well as on the differential richness of the

memory trace created for each type of information. Indeed,

behavioural studies have highlighted distinct memory processes to

operate during the processing of TBR and TBF items. Specifically,

TBR information has been shown to lead to elaborated memory

traces that can be recollected, while TBF information is shallowly

encoded and recognized without recollection of the encoding

context [21,22]. Working memory/executive processes are also

considered to intervene in the directed forgetting effect. More

particularly, inhibition is the classical explanation of the effect [9]

and should operate during the processing of TBF information at

encoding. However, another interpretation of the directed

forgetting effect consists in selective rehearsal of TBR information

[6]. Moreover, intentional forgetting may rely on suppression of

irrelevant information, which can be achieved by selection of

relevant information before or after its encoding in working

memory. Finally, thought suppression should also be observed

after presentation of the TBF cue.

Concretely, behavioural recognition data were used to sort

encoding and retrieval fMRI event-related responses into 4

conditions based on the combination of memory instruction (to

remember vs. to forget) and behavioural outcome (successful vs.

unsuccessful recognition). This approach allowed evidencing that

processing of TBR and TBF information recruit a very different

set of brain regions, compatible with the idea that specific working

memory/executive processes induces intentional forgetting and

that TBR and TBF information are encoded and retrieved via

recollection and familiarity processes respectively.

Methods

Ethics Statement
The study was approved by the Ethics Committee of the Faculty

of Medicine of the University of Liège, and was performed in

accordance with the ethical standards described in the Declaration

of Helsinki (1964). All participants gave their written informed

consent prior to their inclusion in the study.

Participants
Seventeen right-handed native French-speaking young adults (8

women), with no diagnosed psychological or neurological

disorders, were recruited from the university community. All

participants gave their written informed consent prior to their

inclusion in the study. Age ranged from 20 to 32 years, with a

mean of 24 years.

Task description
The material consisted of 200 six-letter words selected from the

Brulex French database [23]. Two lists of 100 words were created.

One list was presented during the study phase; the other was used

as foil items during recognition. Items used in the study phase were

randomly attributed to two categories of 50 words: (1) items

belonging to the category of the words that must be remembered

(to-be-remembered or TBR items); (2) items belonging to the

category of the words that must be forgotten (to-be-forgotten or

TBF items). Allocation of items to the TBR and TBF categories

was counterbalanced in order to create two versions of the task,

which were administered to participants randomly. Lists of TBR,

TBF and foils items were matched for word frequency

[F(52,2) = 0.001, p.0.5]. Each foil was matched to a target item

in order to differ by only one or two letters, corresponding

respectively to phonologically similar and dissimilar distractors.

In the study (encoding) phase, the words were individually

presented at the centre of a computer screen for 1 second. Each

word was followed by either a remember (‘to remember’) or a

forget (‘to forget’) cue that remained on the screen for 3 seconds.

Participants were asked to read each word mentally and to

remember only the words followed by the remember cue (while

attempting to forget any word followed by the forget cue). Fifty
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baseline trials in which the word and instruction were replaced by

series of xxxxxx were also presented. The three kinds of trials

(TBR, TBF and control) were presented in a pseudo-randomised

order, with the restriction that no more than three trials of the

same kind were presented in succession. Prior to the beginning of

the task, it was stressed that the memory test would only be based

on the words labelled as ‘‘TBR’’. After the learning phase,

participants were asked to perform a distraction task that consisted

of counting backward in increments of 3 for 60 seconds.

In the retrieval (recognition) phase, the TBR and TBF study

words were presented intermingled with an equal number of foils.

Each trial of this phase began with the presentation of a word and

participants were instructed to press one button if the word had

been presented during the study phase (old) – regardless of the

previous ‘‘remember’’ or ‘‘forget’’ instruction – and another

button if the word had not been presented previously (new). The

importance of disregarding the previous ‘‘remember’’ or ‘‘forget’’

instruction was stressed. The baseline condition consisted again in

series of crosses associated to random key-press responses. Stimuli

remained on the screen until the participant’s response, with a

maximum allowed time of 5000 msec. If response time was shorter

than 3000 msec, a black screen was displayed to ensure that the

interval between two successive trials was at least 3000 msec.

MR acquisition
Functional MRI time series were acquired on a 3T head-only

scanner (Magnetom Allegra, Siemens Medical Solutions, Erlangen,

Germany) operated with the standard transmit-receive quadrature

head coil. Multislice T2*-weighted functional images were acquired

with a gradient-echo planar imaging sequence using axial slice

orientation and covering the whole brain/most of the brain (32 slices,

FoV = 2206220 mm2, voxel size 3.463.463 mm3, 30% interslice

gap, matrix size 64664632, TR = 2130 ms, TE = 40 ms, FA = 90u).
The three initial volumes were discarded to avoid T1 saturation

effects. 380 scans were obtained in each encoding session while 439 to

565 scans were acquired in the retrieval session. In all sessions, the

first three volumes were discarded to account for magnetic saturation

effects. For anatomical reference, a high-resolution T1-weighted

image was acquired for each subject (T1-weighted 3D magnetization-

prepared rapid gradient echo (MPRAGE) sequence, TR = 1960 ms,

TE = 4.43 ms, inversion time (TI) = 1100 ms, FoV = 2306173 mm2,

matrix size = 25661926176, voxel size = 0.960.960.9 mm3). Head

movement was minimized by restraining the participant’s head using

a vacuum cushion. Stimuli were displayed on a screen positioned at

the rear of the scanner, which the participant could comfortably see

through a mirror mounted on the standard head coil.

fMRI analyses
fMRI data were preprocessed and analysed using SPM5

software (Wellcome Department of Imaging Neuroscience,

http://www.fil.ion.ucl.ac.uk) implemented in MATLAB (Math-

works, Sherbom, MA). Functional scans were realigned using

iterative rigid body transformations that minimize the residual sum

of square between the first and subsequent images. They were

normalized to the MNI EPI template (voxel size, 26262 mm) and

spatially smoothed with a Gaussian kernel with full width at half-

maximum (FWHM) of 8 mm (in order to minimize noise and to

assure that the residual images conform to a lattice approximation

of Gaussian random fields).

For each participant, BOLD responses were modeled at each

voxel using a general linear model. For the encoding session,

BOLD responses were modeled separately for TBR item

recognized as ‘‘old’’ at the retrieval session (TBR-R), TBR items

not recognized during retrieval (TBR-F), TBF item subsequently

retrieved (TBF-R) and TBF items not retrieved (TBF-F). During

the retrieval session, 6 trial types were separately modelled: TBR

items correctly recognized (TBR-R) or considered as new items

(TBR-F), TBF items categorised as ‘‘old’’ (TBF-R) or ‘‘new (TBF-

F) items, distractor (i.e., new) items categorised as new (correct

rejection, CR) or considered as previously encountered (false

alarm, FA).

These ten regressors were modelled as event-related responses.

The onsets of the BOLD response for the encoding session were the

presentation of the instruction cue (TBR or TBF) and the

presentation of the word for the retrieval session. For each trial

type, a given item was modeled as a delta function representing its

onset. The ensuing vector was convolved with the canonical

hemodynamic response function, and used as a regressor in the

individual design matrix. Movement parameters estimated during

realignment (translations in x, y and z directions and rotations

around x, y and z axes) and constant vector were also included in the

matrix as a variable of no interest. High pass filter was implemented

using a cut off period of 128 s in order to remove the low frequency

drifts from the time series. Serial autocorrelations were estimated

with a restricted maximum likelihood algorithm using an auto-

regressive model of order 1 (+white noise). Linear contrasts

estimated the simple main effect of each trial type. The resulting

set of voxel values constituted a map of t statistics SPM[T].

These images were further smoothed (6-mm FWHM gaussian

kernel) and entered in two second-level analyses, corresponding to a

random effects model, which accounted for inter-subject variance in

each contrast of interest. In a first analysis, the four conditions of the

encoding session (TBR-R, TBR-F, TBF-R, TBF-F) were entered in

an ANOVA with two factors (items status [TBR, TBF] and

outcome at retrieval [recognized or forgotten]). A similar ANOVA

was performed for the retrieval session (two factors: item status

[TBR, TBF] and outcome at retrieval [recognized or forgotten]).

Correction for non sphericity due to unequal variance was

conducted by covariance component estimation through a

expectation–maximization (EM) algorithm [24].

One-sample t tests assessed the significance of the effects. More

specifically, a simple linear contrast was used to examine the main

effect of the forgetting instruction at encoding. For isolating

activations related to successful forgetting, encoding and retrieval,

the contrast targeting the successful processing of a particular type

of event (e.g., TBR) was masked exclusively (p,.05) by the

contrast focusing on the successful processing of the other type of

event (e.g., TBF) in order to ensure that the activations observed

when comparing two conditions were specific to items of interest.

The resulting SPM[T] maps were thresholded at p,0.001 or

p,0.005 uncorrected for multiple comparisons with a threshold

for minimum spatial extent of 10 contiguous voxels. In order to

apprehend the mechanisms of directed forgetting, we explored

hypotheses about the cognitive processes and the related cerebral

regions that should be involved in each condition by discussing our

results in the light of those reported in previous studies and

considering brain areas that were very close (no more than 10 mm

in the x,y,z directions) to published coordinates of interest. For the

cerebral bases of recollection processes, coordinates were taken

from a recent meta-analysis [25]. As for more specific processes

that we hypothesized to intervene in the task (e.g., effortful deep

encoding of verbal material leading to recollection, selection

processes…), given that meta-analyses were lacking, we selected

studies addressing the neural bases of these processes with

materials as close as possible to ours (neutral words, recognition

memory tasks). In brief, processing of TBR information was

expected to recruit articulatory rehearsal (insula, precentral gyrus,

supplementary motor area, Broca’s area [26,27]) and effortul
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recollection processes (hippocampus, left inferior prefrontal cortex,

dorsomedial prefrontal cortex, left inferior parietal cortex,

precuneus/posterior cingulate cortex [25,28–34]). With regard

to TBF information, their presentation was expected to elicit

superficial encoding processes (left dorsolateral prefrontal cortex,

right inferior parietal cortex and perirhinal/parahippocampal

cortex [29,35,36]), inhibitory processes (orbitofrontal cortex,

anterior prefrontal cortex; right dorsolateral prefrontal cortex

and insula [37,38]), selection processes (middle frontal gyri, basal

ganglia and right parietal cortex [39,40],[41,42] and thought

suppression (dorsolateral and ventrolateral prefrontal cortex, and

anterior cingulate [43–45]). Finally, successful retrieval of TBF

information should involve regions supporting familiarity-based

memory (thalamus, perirhinal cortex, right middle prefrontal

cortex, posterior intraparietal sulcus, and anterior cingulate

[29,34,46,47]). All stereotactic coordinates refer to the MNI space.

Results

Behavioural data
Proportions of old-new recognition responses to TBR, TBF and

new items were submitted to an analysis of variance (ANOVA) with

item status (TBR, TBF or new) as repeated measure. This analysis

revealed a main effect of item status [F(2, 32) = 209.57, p,0.0001],

with TBR items being more often recognized than TBF items, and

both TBR and TBF items receiving more old responses than new

items (TBR items: 83.0568.49; TBF items: 50.58614.85; new

items: 15.4768.69; post-hoc HSD Tukey). This pattern corre-

sponds to a significant directed forgetting effect [1–4].

The ability to discriminate between each type of items was

further determined by means of d’ scores [48]. D-prime scores

were lower for TBF than TBR items (TBR items: 2.1360.54; TBF

items: 1.1260.50; t(32) = 5.64, p,.001), suggesting that partici-

pants had better memory for TBR than TBF items. Nevertheless,

the discrimination of TBF items was significantly above chance

(t(32) = 9.20, p,.001). The response criterion measure c, which

indicates whether recognition decisions were biased towards

conservative or liberal decisions, differed as a function of item

status, with participants being more conservative for TBF items

than TBR items (TBR items: 0.0360.28; TBF items: 0.5360.33;

t(32) = 24.80, p,.001).

The use of various strategies was estimated during a subsequent

debriefing by means of a 5-point scale (ranging from 1: this

strategy was never used by the participant, to 5: this strategy was

always used). To memorize TBR items, participants used mainly a

rehearsal strategy for one (mean score 6 SD: 3.9061.30) or

several (3.7161.19) items, tried to associate the words to memories

or personal events (3.4861.47). Creation of associations between

items to form a short story or a sentence (2.9061.26) and mental

imagery (2.5261.50) were less often used by the participants.

When a forgetting instruction was displayed, participants mainly

rehearsed the TBR items presented before (3.3361.68), tried to

think to nothing in particular (3.5261.47) or to something

unrelated to the task (1.8661.15). As for TBR items, mental

imagery unrelated to TBF items (i.e., visualizing an image created

with previously presented TBR items) was little used by

participants (1.4861.03).

fMRI data
Encoding phase. 1) Cerebral areas associated with directed

forgetting.

Successful forgetting of information to forget (TBF-F.TBF-R). This

analysis did not reveal any significant activation at the selected

coordinates.

Intentional forgetting of information to forget (TBF-F.TBR-F). The

comparison of TBF items not recognized at retrieval to forgotten

TBR items showed increased activity at encoding in the right

middle frontal gyrus and the right posterior parietal cortex (Table 1

and Figure 1A).

2) Cerebral areas associated with successful encoding of TBR

and TBF items.

Successful encoding of information to remember: (TBR-R.TBR-F), with

exclusive masking by (TBF-R.TBF-F). This contrast showed regions

specifically activated when the information labelled as ‘‘to be

remembered’’ was successfully encoded, but not when ‘‘to be

forgotten’’ information was successfully encoded. An increase of

cerebral activity was observed in the right entorhinal cortex, the

anterior medial frontal cortex and the insula bilaterally (Table 2

and Figure 1B).

Unintentional encoding of information to forget: (TBF-R.TBF-F), with

exclusive masking by (TBR-R.TBR-F). This analysis did not reveal

any significant activation at the selected coordinates.

Retrieval phase. 1) Cerebral areas associated to successful

recognition of items following intentional effortful encoding.

(TBR-R.TBR-F) with exclusive mask (TBF-R – TBF-F). This

contrast looked at the retrieval success effect specifically for TBR

items (i.e., with the exclusion of activation related to successful

retrieval of TBF items). At a statistical threshold of p,.001

uncorrected for multiple comparisons at voxel-level, the contrast

showed increased cerebral activity in the left posterior hippocam-

pus and the right precuneus. At a more lenient threshold (p,.005

uncorrected), there was also activation in the left inferior parietal

regions as well as in the posterior cingulate cortex (see Table 3 and

Figure 2).

2) Cerebral areas associated to successful recognition of items

following unintentional automatic encoding.

Table 1. Encoding: Cerebral areas associated with directed
forgetting.

MNI
coordinates

Side Anatomical region x y z Z K

R Middle frontal (BA 4/6) [36,40] 42 212 56 3.67 90

R Postcentral 62 212 20 3.46 44

R Superior frontal 18 52 42 3.39 18

R Inferior orbital frontal 32 24 224 3.24 15

R Posterior parietal [36] 18 254 44 3.54 11

R Cuneus 14 296 8 3.72 447

R Middle temporal 50 4 238 3.75 56

L Superior temporal 260 216 2 3.57 19

240 228 6 3.32 19

R Fusiform gyrus 26 238 14 3.46 80

R Lingal gyrus 22 262 28 3.64 77

L/R Superior occipital 218 284 34 3.37 19

20 284 48 3.43 16

L Cerebellum (culmen) 212 244 216 3.56 36

Intentional forgetting (TBF-F.TBR-F).
Results at a voxel P,0.001, uncorrected for multiple comparisons. L/R = left/
right; x, y, z: coordinates (mm) in the stereotactic space defined by the Montreal
Neurological Institute (MNI). K = cluster size. Numbers in [] (column 2)
correspond to references of studies reporting foci of brain activity close to
those observed in the present study (location in x,y,z axes,10 mm).
doi:10.1371/journal.pone.0029905.t001
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(TBF-R.TBF-F) with exclusive mask (TBR-R-TBR-F). This

contrast looked at the retrieval success effect specifically for items

that should have been forgotten, but have nevertheless been

recognized (when excluding common activations with successful

retrieval of TBR items). It showed increased cerebral activity for

TBF-R items in the left dorsomedial thalamus, the right posterior

intraparietal sulcus and the anterior cingulate cortex (see Table 4

and Figure 3).

Discussion

The directed forgetting paradigm is frequently used in cognitive

psychology and neuropsychology to determine the ability to

voluntarily suppress irrelevant information. However, this task is

clearly multi-determined and does not only require suppression

processes [6,49]. The current study explored the neural substrates

of the processing of TBR and TBF information at both encoding

and retrieval in order to shed light on the distinct operations that

each type of information undergoes. The analyses of activations

related to each type of item as a function of the success of encoding

and retrieval showed that different sets of regions are involved in

the processing of TBR and TBF information. We will discuss the

role of these regions in directed forgetting by reference to the

hypothesized underlying cognitive processes.

Effortful and automatic encoding processes into long-
term memory

In this fMRI study, we expected that TBR items would activate

brain regions typically associated with effortful encoding processes

that promote recollection processes, whereas TBF items would

Figure 1. fMRI results for the encoding phase. (A). Cerebral areas associated to selection processes. Left: right middle frontal gyrus (larger brain
responses for TBF_F than TBR_F information); Right: right posterior parietal (larger brain responses for TBF_F than TBR_F information) (Table 1). (B).
Cerebral areas associated to encoding of TBR information (Table 2). Left: larger brain response for TBR-R than TBR-F items in right entorhinal cortex.
Right: larger brain response for TBR-R than TBF-R information in the anterior medial frontal gyrus. Functional statistical results (puncorrected,0.001) are
overlaid to a canonical structural image. Activity estimates (arbitrary units) are displayed for the different conditions. TBR-R: items associated to a TBR
instruction and subsequently recognised; TBR-F: items associated to a TBR instruction and subsequently forgotten; TBF-R: items associated to a TBF
instruction and subsequently recognised; TBF-F: items associated to a TBF instruction and subsequently forgotten; New_CR: correct rejection of new
items.
doi:10.1371/journal.pone.0029905.g001
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activate brain regions previously found in superficial encoding of

information that is later recognised by means of familiarity

processes [22].

Consistently, brain activations reflecting encoding success of

TBR items, which were not observed for successful encoding of

TBF items, included the right entorhinal cortex and the anterior

medial prefrontal cortex. The activation of the entorhinal cortex

was greater for TBR items subsequently recognised than for any

other type of item. Previously, this region was found to be

specifically activated by successful associative binding, when

participants tried to encode two words by means of a mental

image [30]. Thus, it could be involved in the creation of

associations between TBR words and semantic or contextual

information that participants may generate while elaborating their

encoding [29,46,50]. The anterior medial prefrontal cortex

activated during successful encoding of TBR words corresponds

to a region activated during successful deep encoding as compared

to successful shallow encoding [29], suggesting that participants

may engage additional elaborative (potentially self-related) pro-

cessing during intentional encoding of TBR items as compared to

encoding of TBF items [51].

At retrieval, successful recognition of TBR items, but not

successful recognition of TBF items, activated the left hippocam-

pus, left inferior parietal gyrus, the precuneus and the posterior

cingulate cortex, regions that are typically related to recollection

processes in fMRI studies [25,28,33,34,46,52–60]. The posterior

hippocampus has been related to subjective experience of

recollection in a recent meta-analysis [25]. Consistently, previous

behavioural findings indicated that recognition of TBR words is

more frequently associated with consciously remembering the

encoding context than recognition of TBF words [21,22].

Activations of the precuneus/posterior cingulate are typically

observed in episodic memory tasks, but also in tasks involving self-

referential processing [61,62]. Actually, both aspects are intercon-

nected during recollection when one consciously reactivates a

personally experienced episode in all its richness (autonoetic

consciousness, [63]). With regard to the left inferior parietal

cortex, recent models suggest that its role in episodic memory

corresponds to the bottom-up capture of attention by information

reactivated by the medial temporal lobe. This attentional process

may be particularly involved when one retrieves rich contextual

details or when one is very confident about ones’ memory [64,65].

No significant activation was found in anticipated coordinates

for successful encoding of TBF items. However, the successful

recognition of TBF items specifically activated regions sensitive to

variable levels of familiarity: the left dorsomedial thalamus and the

right posterior intraparietal sulcus. Both regions have been found

to be increasingly activated with increasing levels of familiarity

[34,46,47]. The dorsomedial thalamus is connected to the

perirhinal cortex within a system that is thought to mediate

familiarity [66]. The intraparietal sulcus has been hypothesized to

provide top-down attention to memory, helping to make a

memorial decision when the discrimination between old and

new items is difficult [64]. Moreover, successful retrieval of TBF

items also activated the anterior cingulate cortex. According to

Henson et al. (2005), this region may reflect the greater difficulty of

retrieving words that underwent superficial encoding as compared

Table 2. Encoding: Cerebral areas associated with successful
encoding of TBR items (TBR-R.TBR-F, exclusive masking by
TBF-R.TBF-F).

MNI
coordinates

Side Anatomical region x y z Z K

L Medial frontal gyrus [29] 210 62 20 4.01 123

L Insula/inferior frontal gyrus [26] [27] 244 30 28 3.50 118

L Superior frontal 216 44 22 3.62 30

L Superior frontal 216 34 40 3.82 40

R Precentral 38 220 54 3.46 107

L Precentral 236 216 40 3.41 21

L SMA 24 24 72 3.34 15

R Entorhinal cortex [30] 22 6 226 3.82 347

L Amygdala/hippocampus 224 22 214 3.84 149

R Superior temporal 64 26 24 3.65 75

L Middle temporal 256 26 220 3.78 141

L Middle temporal 258 232 216 3.47 67

R Temporal pole 48 12 226 3.56 38

L Putamen 224 6 4 3.46 57

L Cerebellum 28 250 214 4.01 115

R Cerebellum 12 244 222 3.93 36

R cerebellum 34 272 248 3.81 16

Results at a voxel P,0.001, uncorrected for multiple comparisons. L/R = left/
right; x, y, z: coordinates (mm) in MNI space. K = cluster size. Numbers in [ ]
(column 2) correspond to references of studies reporting foci of brain activity
close to those observed in the present study (location in x,y,z axes,10 mm).
doi:10.1371/journal.pone.0029905.t002

Table 3. Retrieval: Successful retrieval of items following
intentional effortful encoding (TBR-R.TBR-F with excusive
mask by TBF-R.TBF-F).

MNI coordinates

Side Anatomical region x y z Z K

R Precentral* 34 28 32 3.40 256

R Middle frontal* 18 36 212 3.36 71

L Middle frontal 228 6 42 2.80 29

L Superior frontal 212 68 18 2.87 102

R Anterior cingulate* 6 4 28 3.76 606

R Postcentral* 44 224 40 3.99 321

R Superior parietal* 40 252 66 3.54 92

R Precuneus [28]* 26 266 38 3.75 127

L Precuneus 222 256 30 2.80 26

L Inferior parietal [33] 236 246 38 3.04 35

L Posterior cingulate [57] 210 236 28 3.18 11

L Posterior cingulate [34] 26 242 10 3.09 185

L Posterior hippocampus* 226 236 0 3.80 112

L Amygdala 220 26 212 3.09 40

L Uncus 214 26 230 3.08 18

L Inferior temporal 258 250 220 2.92 21

L Lingual 26 284 212 3.28 95

R Pulvinar 24 226 12 3.07 59

L Cerebellum* 214 238 232 3.77 569

R Cerebellum 20 260 242 3.29 77

Voxel P,0.005 (*p,.001) uncorrected. L/R = left/right. [ ] references of studies
with nearby foci of brain activity (location in x,y,z axes,10 mm).
doi:10.1371/journal.pone.0029905.t003
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to words that were deeply encoded [29]. Altogether, these findings

suggest that TBF items were more difficult to discriminate than

TBR items and that, when they were successfully recognized, this

was mainly because participants felt they were familiar.

Are inhibitory and/or working memory processes
involved in directed forgetting?

Two hypotheses were proposed to explain the DF effect

observed with the item method. The first one emphasize selective

rehearsal of TBR items [6,8,67,68] while the second one argues

that the item-method DF effect results from the attentional

inhibition of TBF items triggered by the ‘‘forget’’ cue [9,10].

Consequently, we will discuss here whether cerebral areas

previously associated to inhibitory functioning are involved at

encoding during processing of information associated with a TBF

cue, or if the presentation of TBR cues involves increased brain

activity in areas underlying the articulatory rehearsal process.

No activity was observed in brain areas previously associated to

inhibitory abilities [37,38] or in brain areas associated to the selection

of currently relevant memories once information has entered

episodic memory [41,42]. Similarly, the only brain activity in areas

previously described as involved in articulatory rehearsal processes

[26,27,69] was observed in the insula/inferior frontal cortex during

successful encoding of information (see Table 2). Consequently, it can

be considered that inhibition and selection of relevant episodic

memories are not main determinants of the directed forgetting effect

as measured by our experimental design, and only a limited role for

articulatory rehearsal processes was observed.

We also hypothesized that cerebral areas involved in the

selection of information to enter working memory will be more

particularly recruited when participants have to suppress TBF

information. As expected, activity associated to selection of

information to be processed in working memory was observed in

right posterior parietal and frontal areas. Observation of

parameter estimates showed the lowest activity in these areas for

TBR information that was subsequently forgotten. Interestingly,

larger activity for TBF-F and TBF-R items was observed in a

middle frontal region very close to the area associated to

preparatory information filtering processes [39] and this activity

is larger for TBF items subsequently forgotten relative to forgotten

TBR items, suggesting effectiveness of the filtering process.

MacNab and Klingberg [39] proposed that this preparatory

activity predicts the extent to which only relevant information is

stored, as reflected by parietal storage-related activity. In

Figure 2. Cerebral areas associated to retrieval of TBR information (Table 3). Larger brain responses for TBR-R than TBR-F information in the
left posterior hippocampus (left), left inferior parietal cortex (middle) and right precuneus (right). Functional statistical results (puncorrected,0.005) are
overlaid to a canonical structural image. Activity estimates (arbitrary units) are displayed for the different conditions. TBR-R: items associated to a TBR
instruction and subsequently recognised; TBR-F: items associated to a TBR instruction and subsequently forgotten; TBF-R: items associated to a TBF
instruction and subsequently recognised; TBF-F: items associated to a TBF instruction and subsequently forgotten; New_CR: correct rejection of items
not presented during the encoding session.
doi:10.1371/journal.pone.0029905.g002

Table 4. Retrieval: Successful retrieval of items following
unintentional automatic encoding (TBF-R.TBF-F with
exclusive mask by TBR-R.TBR-F).

MNI coordinates

L Middle frontal 244 20 42 3.92 91

L Insula 230 18 220 4.01 56

L Insula 230 20 24 3.68 71

R Insula 32 20 210 3.67 51

L Inferior frontal 242 42 22 3.41 32

R Posterior intraparietal sulcus [34] 42 270 48 3.25 14

L Superior parietal 236 266 56 4.06 269

L Anterior cingulate [29] 22 34 34 3.60 70

L Thalamus [47] 28 22 24 4.51 586

R thalamus 6 28 4 3.37 34

L Middle cingulate 22 222 36 3.35 18

Voxel P,0.001 uncorrected. L/R = left/right. [ ] references of studies with nearby
foci of brain activity (location in x,y,z axes,10 mm).
doi:10.1371/journal.pone.0029905.t004
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agreement with this interpretation, cerebral activity in the parietal

cortex was characterised by more activity for TBR information

that will be latter recognized. However, an alternative explanation

for the activation in the posterior parietal lobe during intentional

forgetting of TBF information is that this region may prevent

information from being encoded in episodic memory following

presentation of the TBF instruction. Indeed, it was previously

shown that the dorsal parietal cortex mediates voluntary orienting

and reorientation of attention [70] and also plays a broader role in

the successful formation of episodic memories [71].

Based on the brain regions activated during encoding and

retrieval of TBR and TBF items, we tentatively propose that the

following complex interplay of cognitive processes operates on

TBR and TBF items in order to generate the directed forgetting

effect. When a word is followed by a ‘‘remember’’ cue, participants

could engage articulatory rehearsal, facilitating the establishment

of elaborative encoding. Further, TBR items undergo effortful

associative encoding into long term memory that leads, at

retrieval, to the reactivation of the rich memory trace created at

encoding, a trace which includes the information itself associated

with contextual details. In contrast, when a word is labelled ‘‘to

forget’’, cognitive processes related to the selection of information

to enter short-term memory come into play because the

replacement of information encoding by suppression/selection

processes becomes mandatory. Hence, TBF items probably only

undergo minimal superficial encoding, so that old TBF items are

difficult to discriminate and successful retrieval of TBF happens

mainly when the participant merely feels the item was familiar, as

suggested by the activation of brain regions involved in familiarity

processes and top-down attentional processes during memory

retrieval. Thus, the item directed forgetting paradigm may result

from the combined action of working memory processes (namely,

selection of relevant information to be processed), strategic

episodic memory as well as familiarity-based memory processes.

To conclude, this study attempted to delineate, within the same

task, brain areas involved in intentional forgetting and (un)inten-

tional remembering. The results obtained here are in agreement

with the existence of a network of cerebral areas, reflecting the

involvement of several cognitive processes responsible of the DF

effect. Further fine-grained studies specifically designed to explore

each of these processes and their exact influence on the DF effect

should be undertaken. For example, studies using the technique of

transcranial magnetic stimulation should allow confirming the role

of the areas observed here by examining the kind of errors/

responses produced when a site dedicated to a specific process (i.e.,

the posterior parietal cortex for selection of task-relevant

information) is disrupted.
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