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OBJECTIVEdTo describe and make available an interactive, 24-variable homeostasis model
assessment (iHOMA2) that extends the HOMA2 model, enabling the modeling of physiology
and treatment effects, to present equations of the HOMA2 and iHOMA2 models, and to exem-
plify iHOMA2 in two widely differing scenarios: changes in insulin sensitivity with thiazolidi-
nediones and changes in renal threshold with sodium glucose transporter 2 (SGLT2) inhibition.

RESEARCH DESIGN AND METHODSdiHOMA2 enables a user of the available soft-
ware to examine and modify the mathematical functions describing the organs and tissues in-
volved in the glucose and hormonal compartments. We exemplify this with SGLT2 inhibition
modeling (by changing the renal threshold parameters) using published data of renal effect,
showing that the modeled effect is concordant with the effects on fasting glucose from indepen-
dent data.

RESULTSdiHOMA2 modeling of thiazolidinediones effect suggested that changes in insulin
sensitivity in the fasting state are predominantly hepatic. SGLT2 inhibition modeled by iHOMA2
resulted in a decrease in mean glucose of 1.1 mmol/L. Observed data showed a decrease in
glucose of 0.9 mmol/L. There was no significant difference between the model and the indepen-
dent data. Manipulation of iHOMA2’s renal excretion threshold variable suggested that a de-
crease of 17% was required to obtain a 0.9 mmol/L decrease in mean glucose.

CONCLUSIONSdiHOMA2 is an extendedmathematical model for the assessment of insulin
resistance and b-cell function. The model can be used to evaluate therapeutic agents and predict
effects on fasting glucose and insulin and on b-cell function and insulin sensitivity.
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Type 2 diabetes is caused by a combi-
nation of progressive b-cell dysfunc-
tion, relative insulin deficiency, and

variable degrees of insulin resistance that
lead to dysregulation of glucose homeo-
stasis. Understanding the biochemistry,
phenotypic details, and genetic mecha-
nisms contributing to this can yield im-
portant information on pathophysiology.

The progressive nature of the disease, as
well as measuring the rate of deteriora-
tion, has presented an ongoing challenge
to clinicians and scientists alike. Tools to
track b-cell functional changes and insu-
lin resistance fall into three broad catego-
ries: measures of glycemic status (e.g.,
fasting glucose, HbA1c), physiological in-
vestigations (e.g., clamp techniques [1,2],

glucose tolerance tests), and mathemati-
cal modeling (e.g., minimal model [3],
Mari model [4,5], homeostasis model as-
sessment [HOMA] [6–9]).

No single approach proved sufficient,
either, for a comprehensive quantitative
description of b-cell dysfunction or
insulin resistance. Measures of these pa-
rameters vary depending on whether
measurements are from basal or stimu-
lated or fasting or postprandial subjects
and whether pharmaceutical agents are
being taken. Physiological techniques,
ranging from simple glucose tolerance tests
to euglycemic clamps and stable isotope
studies, require expertise and are time
and resource intensive, limiting their use
to relatively small numbers of subjects (10).

Mathematical modeling techniques
also vary in their physiological assump-
tions. Computer-based solutions from
clinical interventions (e.g., oral glucose
tolerance tests with “minimal model”
readout) have limitations because of the
high number of samples required from
each subject. Simpler modeling methods
(e.g., HOMA2) use paired fasting plasma
insulin and glucose concentrations to de-
rive data on b-cell function and insulin
sensitivity. HOMA2 yields a single read-
out of b-cell function and insulin resis-
tance for each subject and has the
advantage that, since it only requires
paired basal insulin and glucose measure-
ments, it can be used in large epidemio-
logical and pharmaceutical studies.

One disadvantage with HOMA2 is
that it is not an appropriate model to use
when evaluating treatments that have
similar functional effects on blood glu-
cose but different modes of action. For
example, in HOMA2 b-cell function is
characterized internal to the model as a
sigmoidal dose response curve relating
insulin secretion to the prevailing glu-
cose concentration. The shape of this
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sigmoidal curve is modeled using two
principal variables, one of which de-
scribes the rate of insulin secretion (Km)
and one that describes the maximal insu-
lin secretion (Vmax). In HOMA2, changes
in b-cell function, altering insulin secre-
tion, are entirely attributed to changes in
Vmax and Km in the basal state (11). This
modeling of b-cell function has been a
good approximation, but a comprehen-
sive description of the b-cell dynamics re-
quires more variables (11). The b-cell
functional changes caused by sulfonyl-
ureas (12) have different dose response
changes and characteristics from those in-
duced by incretin hormones (13). Similarly,
total body insulin sensitivity, defined as net
glucose clearance for any given insulin
concentration, cannot be comprehen-
sively described using one fixed function
as it is in HOMA2. Hepatic insulin sensi-
tivity may differ from peripheral sensitiv-
ity, and change in glucose clearance can
be completely unrelated to either hepatic
or peripheral sensitivity as in the case of
sodium glucose transporter 2 (SGLT2)
inhibition (14). The invariant nature of
HOMA2 does not allow a sufficient descrip-
tion for other organs and tissues involved in
glucose homeostasis, and this can be impor-
tant where there is knowledge of changed
function, e.g., in the liver, which could be
used to improve model outputs.

We have developed an interactive,
24-variable model (termed iHOMA2) that
addresses problems associated with the

fixed assumptions within HOMA2. Here,
we describe themodel in cartoon, graphical,
andmathematical detail; discuss how it can
be used and manipulated; present an ex-
plicit example of its use to model changes
in renal threshold induced by blockade of
glucose reabsorption by SGLT2 inhibition;
and show how this affects the modeled
fasting glucose. The model is available on
open access.

RESEARCH DESIGN AND
METHODS

Model development
The iHOMA2 model is shown in Fig. 1 as
graphical (A), box diagrammatic (B), and
mathematical (C), respectively. iHOMA2
is an integrated computer-based mathe-
matical model of glucose and hormonal in-
teraction under homeostatic conditions.
The model, now available online at http://
www.ihoma.co.uk, runs in real time with
24 operator-controlled variables (Table 1)
and graphical output displays. The baseline
characteristics were built from those used
in the original HOMA2 model, with all of
the dose-response variables now explicit.
iHOMA2 runs interactively and exactly
for each calculation. iHOMA2 in its default
start-up setting gives identical readings to
HOMA2 and can be used as a direct sub-
stitute for HOMA2 in this mode. The op-
erator can modify each of the variables
using an interactive sliding control display.
The operator can control every aspect of the

dose-response curve. For example, the
b-cell characteristics are described by
P1–P5, each of these being independently
adjustable. This allows “what if” scenarios
to be explored: “What would be the effect
on glucose if Vmax of b-cell function were
50%?” “How might that be modified if the
dose response curvewere shifted to the left?”
“What if autonomous insulin secretion
continued at low blood glucose?” Simi-
larly, the functions relating to the other
organs and tissues involved in the glucose
and hormonal compartments can bemod-
ified using sliding control displays. In the
HOMA2model, insulin sensitivity is treated
as a whole-body effect, altering the liver
and periphery to the same extent. In
iHOMA2, this has been uncoupled and
the insulin sensitivity of these organs and
tissues can bemodified independently. The
ability to alter the 24 variables of iHOMA2
enables themodeling of knownor surmised
pathology and physiology and the effect of
treatments both alone and in combination.
The effects of the treatments on fasting glu-
cose, insulin, b-cell function (%B), and in-
sulin sensitivity (%S) are graphically
represented in the model.

The model allows for analytical and
predictive modes of use. The analytical
mode allows insulin resistance and b-cell
function to be read from the input of in-
sulin and glucose in the basal state, while
the predictive function shows the esti-
mated and modeled insulin and glucose
concentrations in the basal state when the

Figure 1dThe iHOMA2model is represented in three different ways:A) as a cartoon displaying the organs and tissues involved; B) showing the dose
response curves as graphs modeled for each organ or tissue; and C) providing the equations that govern the organs and tissues functioning in the
model. B1 and B2 are modifiable for the brain, PE1–PE5 for the periphery, R1–R4 for the kidneys,G1 andG2 for the gut, L1–L5 for the liver, and P1–P5
for the pancreas (see Table 1).
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b-cell function and insulin resistance pa-
rameters are set.

This article shows two detailed quan-
tified scenarios to illustrate the interactive
modalities. The first example shows that
the effect of pioglitazones (thiazolidine-
diones) on insulin resistance can be par-
titioned between the liver and periphery.
The second example illustrates the mod-
el’s use elucidating the effect of an SGLT2
inhibitor on glycemia. All analyses were per-
formedusing SPSS, version19.0 (SPSS,Chi-
cago, IL). Statistical comparisonsweremade
usingZ tests for skewness, Student indepen-
dent samples t test for comparison ofmeans,
and F tests for assessment of fit of the model
to the observed data (15).

Quantitative model usage: effect of
pioglitazone
To model the effects of pioglitazone, we
examined the outcome when insulin sen-
sitivity was modeled to be in the liver, in

the periphery, or at both sites equallydall
with a standardized increase in b-cell
function. Three possible sites of action
on insulin sensitivity for pioglitazone
were modeled: hypothesis 1, insulin sen-
sitivity increases in both periphery and
hepatic (variables L5 and PE5); hypothesis
2, hepatic insulin sensitivity increases and
peripheral insulin sensitivity remains un-
changed (variable L5); and hypothesis 3,
hepatic insulin sensitivity remains un-
changed and peripheral insulin sensitivity
increases (variable PE5).

The development dataset comprised
insulin and glucose values from a mono-
therapy study of pioglitazone (16). The
changes to b-cell function and insulin
sensitivity observed between the baseline
visit and end of study (12months later) in
the development group were used as in-
puts to adjust the variables in the
iHOMA2 model for each of the three hy-
potheses. A separate study of pioglitazone

(17) was used for the verification group.
The data from the baseline visits of the
verification group were submitted to the
adjusted iHOMA2, using the model in
predictive mode, to determine the effect
of pioglitazone for each of the three hy-
potheses using as output the expected
fasting glucose and insulin after therapy.
We assessed bias and agreement using a
Bland-Altman plot and assessed the fit of
the model by examination of the least
squares deviation from the line of unity
(where the observed values equal the pre-
dicted values) using an F statistic to test
the model fit.

Quantitative model usage: the effect
of glucose reabsorption inhibitors
SGLT2 partially prevent the reabsorption
of glucose, thus changing the renal
threshold for glycosuria. Patients using
an SGLT2 inhibitor demonstrate a
marked increase in glucose urinary loss.
A recent publication estimated, for a 5-mg
dose of dapagliflozin over 2 weeks, a 20%
decrease in the renal threshold for gly-
cosuria (18). To model the effect of
SGLT2 inhibition, we used a phenotypi-
cally similar subject set (previously pub-
lished [19]) where fasting glucose and
insulin measurements were known. SGLT2
inhibition was modeled in iHOMA2 (vari-
able R4 = 120%) based on the published
data to predict the effect on the fasting
glucose and insulin. The glucose changes
predicted were compared with a separate
preselected phase 3 trial of dapagliflozin
(20) using an independent t test.

Further, the iHOMA2 model was
used to examine any change required in
renal glucose excretion to achieve an
equivalent change in fasting glucose in
our cohort. iHOMA2 was manipulated
(by change of variable R4) until the change
in glucose from the model was equal to
the change in glucose from thedapagliflozin
study. The value of the variable R4 was then
read from the model.

RESULTS

Quantitative model usage: effect of
pioglitazone
Data were analyzed for normal distribu-
tion before parametric analysis. The z test
value for the skewness of the insulin data
was 3.9. Log transformation eliminated
the skewness as indicated by the z value
of 0.5. Geometric mean insulin results are
therefore presented.

In the development group, pioglita-
zone increased b-cell function from 36.9

Table 1dModifiable variables within iHOMA2

Name Description

Pancreas
P1 %b b-Cell function of the islets
P2 Max Maximum output of insulin
P3 Effective concentration Glucose concentration required

before insulin release started
P4 Slope factor (Hill slope) Rate of insulin secretion modifier 1
P5 Hyperbolic/sigmoid operator Rate of insulin secretion modifier 2

Liver
L1 Intercept Initial glucose output
L2 Insulin effect Insulin concentration effect
L3 Max Maximum glucose output
L4 Slope Rate of glucose output
L5 %S Sensitivity of glucose output to insulin

Periphery (muscle, fat)
PE1 Max Maximum glucose uptake
PE2 Slope A Primary rate of glucose uptake
PE3 Slope B Secondary rate of glucose uptake
PE4 Insulin effect Insulin concentration effect
PE5 %S Sensitivity of glucose uptake to insulin

Gut
G1 Max Maximum glucose uptake
G2 Slope Rate of glucose uptake

Brain
B1 Max Maximum glucose uptake
B2 Slope Rate of glucose uptake

Renal
R1 Slope A Primary rate of glucose excretion
R2 Slope B Secondary rate of glucose excretion
R3 Delay Glucose concentration required before

glucose excretion started
R4 Threshold Glucose concentration basal threshold

The iHOMA2 variables that can be modified by the operator either by using a sliding scale on the interface or
by entering exact values. The absolute values at default are equal to those used in HOMA2.
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to 49.2, a relative increase of 33.4%, and
increased insulin sensitivity from 61.4 to
79.3, a relative increase of 29.1%. Since
we now had a calculated generic change
in insulin sensitivity with an associated
b-cell functional change, we were able
to partition the site of resistance to test
three hypotheses (Fig. 2):

1. That insulin resistance change with
pioglitazone is equally partitioned be-
tween the liver and the periphery.
Whence we set hepatic insulin sensi-
tivity increase by 29.1% and peripheral
insulin sensitivity increase by 29.1%
withb-cell function increased by33.4%
(variables L5 = 129.1%, PE5 = 129.1%,
P1 = 133.4%).

2. That insulin resistance change with
pioglitazone is only sited at the liver.
Whence we set hepatic insulin sensi-
tivity increase by 58.2%, peripheral
insulin sensitivity unchanged, and
b-cell function increase by 33.4%
(variables L5 = 158.2%, PE5 = 100.0%,
P1 = 133.4%).

3. That insulin resistance change with
pioglitazone is only sited at the periph-
ery. Whence we set peripheral insulin
sensitivity increase by 58.2%, hepatic
insulin sensitivity unchanged, and
b-cell function increase by 33.4% (var-
iables L5 = 100.0%, PE5 = 158.2%, P1 =
133.4%).

The predicted change in glucose and
the change in insulin from these hypoth-
eses were contrasted with the observed
values from the verification group using
Bland-Altman plots and F tests for model
fit. The Bland-Altman plots did not show
significant differentiation between the
models. F test (Table 2) demonstrated
that the second hypothesisdmaximal he-
patic insulin sensitivitydwas found to be
the model with the best fit to the observed
data. The F statistics for linearity were 139
and 259 (with 668 df) (significance P ,
0.001) for glucose and insulin, respec-
tively.

Quantitative model usage: the effect
of glucose reabsorption inhibitors
iHOMA2 predicted that a decrease by
20% in the renal excretion threshold
using 5 mg dapagliflozin treatment over
2 weeks would result in a decrease in
mean (SD) glucose of 1.1 (0.3) mmol/L in
the study subjects. Data extracted from
published literature on dapagliflozin (5-mg
dose) reported a similar change in mean
glucose of 0.9mmol/L in their subjects after

2 weeks. There was no significant differ-
ence between the model and the observed
data. There are no published data on
changes in insulin, so these could not be
compared.

Although the model and observed
results were broadly concordant, further
manipulation of the iHOMA2 models
renal excretion threshold variable (R4)
suggested that alteration of the renal
threshold by 17% (R4 = 117%) gave the
closest approximation for the observed
mean decrease of 0.9 mmol/L in glucose.

CONCLUSIONSdiHOMA2 is an ex-
tension of HOMA2 that enables the in-
teractive modeling of physiology and
treatment effects. It is now possible to
use more of the potential of the structural
basis of the model through the 24 in-
teractive variables. This circumvents a
drawback of HOMA2, namely, that this
model does not allow individual compart-
mental or biological variables to be spec-
ified even when these are known.
iHOMA2 can be used in default mode
(for comparison with all published data
using HOMA and HOMA2); in analytic
mode, which allows %B and %S to be cal-
culated from fasting insulin and glucose;
or in predictive mode that allows fasting
insulin and glucose to be calculated from
%B and %S.

The iHOMA2 model presents all those
variables that have some identifiability, so,
for example, a renal threshold or glomer-
ular filtration rate (slope of the renal excre-
tion curve) can be entered to give greater
specificity to the model. A group that has
validated data on the observed glomerular
filtration rate could then validate a specific
change to the model variable.

We have demonstrated iHOMA2 use
in predicting the drug effect of existing
compounds with a known method of
action, as in the example of pioglitazone.
It was shown that of the three hypotheses
of the site of insulin sensitivity change in

the basal state, the hypothesis that the
effect was mainly hepatic was the most
robust. This is in line with the published
literature (21,22) and accords with clamp
data (23) that suggest that a substantial
effect is mediated by hepatic gluconeo-
genesis, although the model, with multi-
ple variables that can be manipulated,
cannot be regarded as yielding a definitive
answer to the question. As with all mod-
els, the conclusion should be taken to be
illustrative rather than definitive, which is
further exemplified by the inability of the
Bland-Altman statistics to discriminate
between the hypotheses.

We have exemplified iHOMA2 used
in modeling with an SGLT2 inhibitor,
where the effect on blood glucose is
independent of b-cell function and insu-
lin sensitivity. The model suggested that
the renal threshold change produced by
dapagliflozin in our study set was best ap-
proximated by 17% and not 20% as re-
ported by others. The iHOMA2 model
can be used as a method of assessing
quantitative identifiable parametersdin
this case, renal thresholddfrom observed
data. This has the potential, for example, to
quantify SGLT2 dose effects or compari-
sons between different SGLT2 inhibitors.

The utility of a model depends on its
identifiability. A model is structurally
identifiable if its parameters can be
uniquely estimated by fitting the model
to observed data. This is related to the
sensitivity of the process outputs to the
parameter variations and understanding
how the parameter relationships might
interact (24–26). The variables in this
model all have identifiable functions that
are visualized in each panel as changes to
the interactive kinetics. This is quite un-
like curve-fitting exercises, where the
mathematics may mimic the response
only because multiple, but physiologi-
cally unidentified, terms have been used.
For example, a complex reaction curve
may be described by a polynomial, but

Table 2dExample of hypothesis predictions from the iHOMA2 model

Insulin sensitivity

Mean Dglucose
(mmol/L)

Geometric mean Dinsulin
(pmol/L)

Observed Modeled F Observed Modeled F

Hypothesis 1: 50% hepatic,
50% peripheral 22.4 22.7 143* 28.2 214.6 970*

Hypothesis 2: 100% hepatic 22.4 22.6 139* 28.2 211.5 259*
Hypothesis 3: 100% peripheral 22.4 22.9 141* 28.2 21.4 650*

Example 1: Modeling drug effects (pioglitazone). Change in mean glucose and insulin predicted by the
iHOMA2model compared with observed results from an independent study using the F statistic to test model
fit. *Significant to P , 0.001.
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there would be no clear physiological
”sense” in knowing the value of a squared
or cubed constant. Model descriptions
only give insights where the variables rep-
resent some aspect of the known physiol-
ogy. With a progressive understanding of
human physiology, it will be possible to
bemore specific about themodel character-
istics; e.g., one can set b-cell functional
changes to beKmorVmax related and insulin
resistance to be tissue specific. Additional
modulesdsuch as the incretin axisdcould
be activated andmanipulated. The resultant
model could then be used to give predic-
tions for combinations of agents, activating
specific mathematical subsections describ-
ing human pharmacology.

Mathematical models, such as the
Mari model (4) or Bergman minimal
model (3), are useful for the study of com-
plex phenomena, as they demonstrate
howmeasurements of glucose and insulin
can be seen as manifestations of a com-
plex feedback process. iHOMA2 has the
functionality to display the individual
components of the glucose and insulin in-
teraction and resolve the steady-state
mathematics to yield measures of b-cell
function and insulin resistance. Using
the model interactively, one can predict
(and display graphically) many patholog-
ical and physiological scenarios. iHOMA2
can also be individualized, by adjustment
of the variables, to specific phenotypes,
genotypes, populations, or individuals.

The iHOMA2 model does have the
disadvantage in that, in common with all
mathematical models, it has limitations to
its use and is not intended to provide a
“complete” metabolic description. Allow-
ing many variables to be internally mani-
pulated means that identifiability of a
solution can be at risk (its identifiability
is reduced). So, iHOMA2 records a list of
the 24 variables currently able to be
changed and their settings. For transpar-
ency in reporting, we would advise that
the values of the settings on the model are
explicitly stated when they differ from the
default. iHOMA2 is still a homeostatic
model; i.e., it calculates a steady-state so-
lution. The HOMA2model was expanded
to include glucose infusion kinetics (27).
Further work is underway in iHOMA2 to
add dynamic aspects so that glucose tol-
erance tests or clamp data could be mod-
eled. A drawback of iHOMA2 is that it
loses the simple assessment aspect of
HOMA2dwhere there are two outputs
from two inputs. iHOMA2 is, instead, a
more user-definablemodel allowing the in-
dividual characteristics of organs and

tissues tobemanipulated.Thismanipulation
allows for hypothesis testing of treatment ef-
fects and the modeling of pharmaceutical
treatments for clinical care.

In conclusion, the creation of the
iHOMA2 model addresses some of the
limitations with our previous invariant
model. iHOMA2 is an application for ex-
tending the range of the existing HOMA2
model and can be used to evaluate thera-
peutic agents in greater physiological detail
and can predict their effects on fasting
glucose and insulin and on b-cell function
and insulin sensitivity. iHOMA2 can be used
for hypothesis testing, for the evaluation of
pharmaceutical agents, for the estimation of
effect sizes of therapies, and for evaluation of
indicative changes to glucose when a combi-
nation of agents is used. It can be used in its
default mode to generate HOMA2 results
directly comparable with those in the litera-
ture. The iHOMA2 program is freely avail-
able (http://www.ihoma.co.uk) for academic
and noncommercial use.
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