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Abstract: Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane
and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes,
and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can
modulate physiological and pathological processes in recipient cells through near- and long-distance
intercellular communication. Recent studies have shown that origin, amount, and internal cargos
(nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions,
including cardiovascular diseases (CVD). The early detection and management of CVD reduce
premature morbidity and mortality. Circulating EVs have attracted great interest as a potential
biomarker for diagnostics and follow-up of CVD. This review highlights the role of circulating EVs
as biomarkers for diagnosis, prognosis, and therapeutic follow-up of CVD, and also for drug delivery.
Despite the great potential of EVs as a tool to study the pathophysiology of CVD, further studies are
needed to increase the spectrum of EV-associated applications.

Keywords: extracellular vesicles; exosomes; ectosomes; biomarkers; RNA; proteins; lipids; cardio-
vascular disease

1. Introduction

Extracellular vesicles (EVs) is a generic term for particles naturally released from the
cells that are delimited by a lipid bilayer-containing transmembrane and soluble proteins
and cannot replicate, according to The International Society for Extracellular Vesicles
(ISEV) [1]. The first study that reported EVs was published in 1967 describing EVs as
minute dust-like particulate material rich in lipid content [2].

EVs can be classified based on size as small EVs (sEVs), with range < 100 nm or < 200 nm,
and medium/large EVs (m/lEVs), with size range > 200 nm [1]. EVs also can be classified
based on cell origin as ectosomes (microparticles/microvesicles), exosomes, and apoptotic
bodies. Ectosomes (size range 100–500 nm) are released from the plasma membrane
budding, exosomes (size range 50–150 nm) are assembled from the endosomal pathway
and released by exocytosis of multivesicular bodies (MVB), and apoptotic bodies (size
range 500 nm–2 µm) are generated during apoptotic cell shrinkage and death [3–6]. There
are various methods used for isolation of EVs or a specific EV subtype that have been
recently reviewed [7], such as ultracentrifugation (UC), size-exclusion chromatography
(SEC), filtration, immunoaffinity-based isolation, commercial reagents (using polymers),
microfluidics, and asymmetric flow field-flow fractionation (AF4). To increase the specificity
or purity, the methods can be combined.
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EVs can be characterized by their cargos and surface protein biomarkers, including an-
nexins (e.g., annexin 1, 5, 6, and 11), disintegrin and metalloproteinase domain-containing
protein 10 (ADAM10), angiotensin-converting enzyme (ACE), EH domain-containing pro-
tein 4 (EHD4), major histocompatibility complex class II (MHC II), flotillin-1 (FLOT1),
and heat-shock 70-kDA (HSC70/HSP73, HSP70/HSP72). Other proteins are used as exo-
some markers, such as tetraspanins (CD9, CD63, CD81, and CD82), stress proteins (Hsc70
and Hsp90), proteins involved in membrane fusion (Rabs, and ARF6), and protein mem-
bers of the endosomal sorting complex required for transport (Alix and TSG101) [8,9].
Microvesicles have content similar to exosomes that include specific proteins, such as
integrins, glycoproteins, and metalloproteinases [8,10]. To identify EV’s protein markers,
the main methods include Western blotting, ELISA, flow cytometry (FCM), and nano-FCM.
In addition, transmission electron microscopy (TEM), dynamic light scattering (DLS), and
nanoparticle tracking analysis (NTA) are commonly used [7,11,12].

EVs have emerged as possible biomarker sources from several diseases, due their
ability to modulate near- or in long-distance intercellular communication influencing the
disease development and progression [13–15]. Intercellular communication consists of
transferring EV bioactive cargos or activating signaling pathways to recipient cells, which
can lead to phenotypic and functional changes in their target cells [5,16]. EVs are present
in various tissues and biological fluids from which they can be recovered and monitored in
both physiological and pathological conditions [17,18]. The quantity, origin, and internal
cargo (e.g., nucleic acids, proteins, and lipids from parental cells) are variable in different
pathophysiological processes [14,19]. EVs also have a metabolically active outer membrane
that protects their content until released into recipient cells [17].

Circulating EVs have attracted great interest in the field of cardiovascular medicine
due to their high stability. EVs offer a non-invasive access to monitor the status of the car-
diovascular diseases (CVD), and the use of circulating EVs as diagnostic biomarkers [13,20].
CVD causes the highest number of deaths and vast health and economic burdens world-
wide [21,22]. CVD include several pathologies such as coronary artery disease (CAD),
cerebrovascular disease, peripheral arterial disease, ischemic heart disease, hypertension,
and heart failure (HF). Early detection and management of CVD can decrease the risk of
heart attack and stroke in individuals at high risk of CVD, and, therefore, reduce premature
morbidity and mortality [23].

There has been a growing interest in exploring the EVs in the diagnostic, prognostic,
and therapeutic monitoring of CVD, as well as drug delivery (Figure 1). This review
discusses the role of circulating EVs in CVD based on origin, amount, and content of
the EVs, and highlights their application as biomarkers and drug delivery tool in several
cardiovascular pathologies.

Figure 1. Circulating extracellular vesicles as biomarkers for diagnosis, prognosis, therapeutic follow-
up, and drug delivery vehicles in cardiovascular diseases. Figure created using Servier Medical Art
images (http://smart.servier.com, accessed on 30 December 2020).

http://smart.servier.com
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2. Origins of Extracellular Vesicles Related to CVD

Circulating EVs are released by almost all cells, including cardiovascular system-
related cells (e.g., blood, heart, and blood vessels) [24,25]. Biologic fluids, such as blood [26],
urine [27], saliva [28], breast milk [29], and seminal fluid [30], as well as conditioned media
from cell culture experiments [31,32], all contain EVs.

2.1. Blood-Cells Derived EVs

EVs can be released from platelets (and megakaryocytes), erythrocytes, and leukocytes.
The main sources of circulating EVs are platelets, which are derived from megakaryocytes,
and are regulators of hemostasis, inflammation, and vascular integrity [33,34]. Some
reviews [35–37] have reported the role of platelet-derived EVs in atherosclerosis, acute
coronary syndrome (ACS), and thrombosis, being considered as potential EV source in
CVD [38]. Platelet EVs have procoagulant and pro-inflammatory effects [39–42], and serve
as important messengers, communicating the changes that occur in the plasma to bone
marrow cells [43] and other tissues impermeable to platelets [33].

Circulating EVs derived from erythrocytes are released to clear away harmful molecules
and prevent the early removal of these cells from circulation [44,45]. Erythrocyte-derived
EVs are also shown to be associated with CVD. Patients with ST-segment elevation my-
ocardial infarction (STEMI) who undergo angioplasty have approximately double of
erythrocyte-derived EVs as compared to healthy subjects [46]. These EVs are also associated
with atherosclerosis by inducing hypercoagulation, inflammation and cell adhesion [47,48].

Leukocyte-derived EVs can originate from neutrophils, monocytes/macrophages,
and lymphocytes, as differentiated by specific markers associated with their parental
cells [49]. EVs released by leukocytes may have an important role in maintaining or
disrupting vascular homeostasis and pathological thrombosis contributing to inflammatory
responses [49]. T cell-derived EVs were increased in the circulation of an animal model
of angiotensin II (ANG II)-induced hypertension, resulting in inflammatory response [50].
Plasma levels of the leukocyte-derived EVs were elevated in patients with hypertension
and hyperlipidemia [51]. Melnikov et al. [52] identified monocytes-derived EVs carrying
monomeric C-reactive protein (mCRP) in the blood that was associated with inflammatory
status in CAD patients.

2.2. Heart Cell- and Blood Vessel-Derived EVs

It has been reported that EVs could be released from major cell types in the heart [15,53],
such as cardiomyocytes, fibroblasts, endothelial cells, and vascular smooth muscle cells
(SMC). Loyer et al. [54] demonstrated, using a murine model of myocardial infarction, that
EVs released by cardiomyocytes and endothelial cells following myocardial infarction could
be taken up by monocytes and regulate the cardiac inflammatory response by releasing of
proinflammatory cytokines.

Endothelial EVs are associated with the progression of atherosclerosis [55], hyperten-
sion [51], and CAD [56]. On the other hand, EVs can play protective roles. For example,
endothelial cell-derived EVs were reported as cardioprotective molecules releasing proteins
involved in cellular homeostasis and preservation in the ischemia-reperfusion injury in
a chip model of human heart [57]. Several studies were summarized in a review that
reported activated endothelial cell-derived EVs were also involved in the regulation of
cardiac and vascular remodeling in HF [58].

Cardiomyocyte-derived EVs take an important part in the progression of CVD, be-
cause they can carry a wide variety of biomolecules, such as proteins and miRNAs, to
other cell types and regulate the function and gene expression in these cells [59], espe-
cially promoting cardiac repair [60]. Cardiomyocyte-derived EVs secreted from primary
cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CM) can have angiogenic effects after myocardial infarction through inducing increase
expression of miRNAs and proteins, such as growth factors [61,62], also inducing car-
diac fibrosis by release of specific miRNAs via myocyte-fibroblast cross-talk [63]. EVs
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released from cardiomyocytes derived from human-induced pluripotent stem cells were
also used in treatment of heart injury, including myocardial infarction, contributing to
cardiac regeneration, through cardiac-specific miRNAs activity [64,65].

Cardiac fibroblast-derived EVs stimulated cell cardiac migration [66], SMC prolifera-
tion, and vascular remodeling [67] by release of miRNAs. Vascular SMC-derived EVs are
enriched with RNAs, proteins and lipids associated with vascular remodeling, calcification
and coagulation [68–72], familial hypercholesterolemia, and CAD [73]. Most studies have
evaluated changes in SMC caused by EVs derived from other cells. For example, EVs
derived from bone marrow mesenchymal stem cells (BMSC) have been shown to induce
calcification in vascular SMC by modifying miRNA profiles [74], and EVs derived from
platelets could modulate inflammatory response in vascular SMC by presenting chemokine
CXCL4 and membrane-bound effectors [75].

2.3. EVs Interaction between Cells from Different Origins

The role of EVs in intercellular communication and interaction between heart-derived
cells was reviewed by Hafiane et al. [8], and EV communication between platelets, mono-
cytes, and endothelial cells was associated with myocardial ischemia. Weiss et al. [76]
reported differential interaction of platelet-derived EVs with monocytes and other leuko-
cytes, which were identified by specific markers using flow cytometry. The authors used
CD41 as marker of platelet origin, CD45-PB and CD14-PE as monocyte markers, CD16/56-
PC5 as granulocyte and NK cell marker, and CD3-ECD as T cell marker.

Quiescent endothelial cells were shown to release EVs that were able to suppress mono-
cyte activation and anti-inflammatory molecules associated with vascular inflammation in
CVD [77]. TNF-α-induced inflamed endothelial cells were shown to release EVs enriched
in cytokines, chemokines and other inflammatory markers, which when transferred to
monocytes promoted their differentiation to pro- or anti-inflammatory phenotypes [78].

EVs derived from macrophage foam cells from patients with atherosclerosis were
shown to integrate into vascular SMC and induce their migration and adhesion [79]. EVs
also participate in communication between endothelial and vascular SMC. Boyer et al. [80]
demonstrated that endothelial-derived EVs could also stimulate protein synthesis and
senescence of vascular SMC. In addition, a recent study reported EV-mediated transmis-
sion of RNA between endothelial cells and SMC, alleviating ANG II-induced vascular
dysfunction [81].

3. Extracellular Vesicles Quantification as Biomarker in CVD

Several studies have shown an association of circulating EV counts with CVD, suggest-
ing a potential application of EV quantification as a biomarker for diagnostic and therapeu-
tic monitoring [25,82,83]. Although using EV counts from particular cell type as biomarker
seems promising, the major limitation of this approach is the lack of standardization of
methods, resulting in difficulty to compare studies from multiple research groups [25].

The release of platelet-derived EVs was shown to be increased in plasma, under
conditions with enhanced platelet activation, such as myocardial infarction and exposure
to modified lipoproteins [33,84]. Likewise, in arterial and venous thrombosis, the activated
platelets increase the circulating EV counts compared with healthy condition [25].

Patients with atherothrombotic diseases and atherosclerotic lesions have high levels
of circulating EVs derived from endothelial cells, vascular SMC, platelets, leukocytes or
erythrocytes [85]. Sansone et al. observed an increase of endothelial-derived EVs in the
plasma of patients with arterial hypertension with and without CAD [56]. Plasma levels of
leukocyte-derived EVs were reported to be increased in atherosclerotic patients, and they
were correlated with the progression of the atherosclerosis [79].

Several studies have reported increased counts of EVs in ACS conditions [86–90].
Serum EVs were found to be higher in patients with STEMI than whose with stable
angina or control subjects, suggesting early stages increases in the disease due to thrombus
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formation and ischemia-induced stress [91]. Erythrocyte-derived EV counts were also
elevated in STEMI patients [46].

Importantly, the increase of circulating EVs can be detected shortly after the patholog-
ical stimulus. Deddens et al. [92] demonstrated that plasma EVs are rapidly detectable. In
one study, the amount of EVs was already increased one hour after myocardial infarction.
Ge et al. [93] observed a significant increase in heart tissue EVs release 24 h after myocardial
ischemia/reperfusion (I/R).

Patients with persistent atrial fibrillation (AF) and a high level of inflammation showed
markedly increased EV concentration compared to subjects without AF [82]. In addition,
the inflammation contributes to platelet activation that induces the release of EVs in a
prothrombotic state [82]. A recent study also showed that circulating EVs were increased
in patients with AF and a higher risk of stroke than non-AF patients of similar age [94].

Circulating EVs derived from endothelial cells were explored in a prospective study,
which demonstrated that patients with HF had increased plasma levels of endothelium-
derived microparticles compared to healthy subjects [95]. These HF patients had a higher
probability of cardiovascular events (e.g., cardiovascular death, non-fatal myocardial
infarction, ischemic stroke, or re-hospitalization related to HF), and it was suggested that
EV counts could be a useful prognostic biomarker. Patients with symptoms of chronic HF
had increased number of circulating endothelial-derived EVs that were correlated with
increase of mortality and recurrent hospitalization risk due to HF [96]. HF patients also
had increased serum levels of EVs compared to healthy subjects [97]. A recent review [58]
has reported that the number of EVs might be important to differentiate the severity of HF.

Circulating EV counts are also altered in patients with metabolic disorders that in-
crease the risk of CVD. For example, the total number of circulating EVs was shown to be
higher in patients with metabolic syndrome (MetS) compared to non-MetS subjects [98]. In-
creased levels of endothelial-derived EVs were also observed in diabetic patients compared
with healthy controls, and they were closely associated with vascular dysfunction [99].
Circulating levels of lymphocyte-derived EVs were also increased in patients with familial
hypercholesterolemia [100].

4. Extracellular Vesicle as Biomarkers in CVD

Studies on the important regulatory effects of EVs in CVD has been motivated due to
EV stability, their specific signatures associated with cell activation or injury, and their in-
trinsic activity and immunomodulatory properties [13]. The changes in EV cargo, including
RNAs, proteins, and lipids, as potential biomarkers in CVD are reviewed in Table 1.
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Table 1. Summary of extracellular vesicles (EV) cargo as biomarkers in cardiovascular disease.

EV Cargo Source Disease EV Isolation EV Characterization Quantification Methods Clinical Outcomes Ref.

RNAs

lncRNA Neat1 Cardiomyocytes Cardiac ischemia Ultracentrifugation Western blot; NTA qRT-PCR

lncRNA Neat1 EV modulates the
expression of P53 target genes, cell-cycle

regulators and promoted
cellular survival.

[101]

miR-126
miR-199a Plasma CAD Ultracentrifugation Flow Cytometry qRT-PCR

Increased plasma EV miR-126 and
miR-199a reduce the risk of major

cardiovascular outcomes in
CAD patients

[102]

miR-126 Plasma High-risk CVD Ultracentrifugation /
magnetic beads TEM; NTA qRT-PCR

EV miR-126 plasma levels are negatively
correlated with NT-proBNP and cTnI.

miR-126 as a potential biomarker of CVD
[103]

miR-30
emiR-92a Plasma Coronary atherosclerosis ExoQuick Exosome

Precipitation kit (SBI) − qRT-PCR

High plasma EV miR-30e and miR-92a,
which regulate ABCA1, as new

biomarkers for clinical diagnosis and
treatment of coronary atherosclerosis

[104]

miR-208a Serum ACS ExoQuick Exosome
Precipitation kit (SBI) Western blot qRT-PCR Increased serum EV miR-208 is related to

early diagnosis and prognosis of ACS [105]

miR-34a
miR-192
miR-194

Serum HF ExoQuick Exosome
Precipitation kit (SBI) Western blot qRT-PCR

Increased serum EV miR-34a, miR-192
and miR-194 are predictive of HF

after AMI
[106]

miR-92b-5p Serum HF Exosome isolation
kit (RiboBio) NTA; TEM; Western blot qRT-PCR Increased serum EV miR-92b-5p as

biomarker for diagnosis of acute HF [107]

miR-155 Urine CAD Ultracentifugation NTA; TEM;
Flow cytometry qRT-PCR Increased urinary EV miR-155 as a

biomarker of CAD progression [108]

miR-92a Endothelial cells CAD Ultracentrifugation Flow cytometry qRT-PCR
EC-derived EV miR-92a is increased in

CAD patients. miR-92a regulates
angiogenesis in recipient EC

[109]

miR-92a Endothelial cells Atherosclerosis Ultracentrifugation TEM; NTA; Western blot qRT-PCR
EC-derived EV miR-92a as potential

therapeutic target in
atherosclerosis-related diseases

[110]

miR-128
miR-146

amiR-185
miR-365
miR-503

Macrophages Atherosclerosis
ExoQuick-TC Exosome
Precipitation kit (SBI);

Ultracentrifugation
NTA; Western blot Affymetrix miRNA 3.0

microarray; qRT-PCR

EV-derived miRNAs secreted by
atherogenic macrophages may

accelerate atherosclerosis
[111]
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Table 1. Cont.

EV Cargo Source Disease EV Isolation EV Characterization Quantification Methods Clinical Outcomes Ref.

Proteins

CD31/Annexin 5 Plasma CAD
PE-conjugated anti-CD31

and FITC-conjugated
anti-annexin 5

Flow cytometry Flow cytometry
Increased plasma CD31/Annexin 5 EVs

as an independent predictor of
cardiovascular events in CAD patients

[112]

C1Q1A
C5

GP1BA
PPBP

APOD
APOC3

Plasma Myocardial infarction Ultracentrifugation Western blot; Cryo-EM LC-MS/MS
Plasma EV proteins as predictive

biomarkers and therapeutic targets in
myocardial infarction

[113]

CD144 Plasma Myocardial injury Ultracentrifugation Flow cytometry Flow cytometry Increased plasma of CD144-EVs as
predictor of cardiovascular complications [114]

SerpinC1SerpinG1CD14
Cystatin C Plasma IHD Ultracentrifugation Western blot; TEM; NTA Bio-plex 200 systems (Bio-Rad) Plasma EV proteins are associated with

stable IHD [115]

Cystatin C
CD14

SerpinG1
SerpinF2

Plasma HF
OptiPrep™ Density
Gradient Medium;
Ultracentrifugation

Western blot; TEM Quantitative Magnetic
Bead Assays

Plasma levels of EV CD14, SerpinG1 and
SerpinF2 are associated with HF [116]

Cystatin C
pIgR
C5a

Serum ACS ExoQuick exosome
precipitation kit (SBI) − Luminex- based

multiplex panels
Serum concentrations of EV protein are

associated with ACS [117]

mCRP Monocytes CAD Exo-FLOWTM exosome
capture kit Flow cytometry Flow cytometry

mCRP in monocyte-derived EVs as
biomarker of inflammatory process in

CAD patients
[52]

mCRP Endothelial cells Myocardial infarction Ultracentrifugation Flow cytometry Western blot; Flow cytometry EV transport and delivery of
pro-inflammatory mCRP in AMI patients [118]

mCRP Endothelial cell PAD Ultracentrifugation Flow cytometry; TEM ELISA; Western blot
EC-derived EV mCRP is increased in

patients with PAD, and was suggested as
a predictor of vascular disease risk

[119]

ANXA1 Valvular interstitial cells − Ultracentrifugation NTA; TEM; ExoView
R100 platform LC-MS/MS

ANXA1 induces EV aggregation and
microcalcification formation and was

suggested as a therapeutic target
[120]

CD11b
CD16
CD45 Urine CAD Ultracentifugation NTA; TEM;

Flow cytometry Flow cytometry
Increased CD45+ and CD11b+ and

decreased CD16+ in urinary EVs are
associated with CAD progression

[108]

Nephrin
Podocalyxin Urine Hypertension Total Exosome Isolation

kit (Invitrogen) Flow cytometry Flow cytometry

Urinary levels of EVs enriched in
nephrin and podocalyxin are increased

in hypertensive patients [121]

p16 Urine Hypertension Total Exosome Isolation
kit (Invitrogen) Flow cytometry Flow cytometry Urinary p16 EVs are increased in

hypertensive patients [122]



Biomolecules 2021, 11, 388 8 of 21

Table 1. Cont.

EV Cargo Source Disease EV Isolation EV Characterization Quantification Methods Clinical Outcomes Ref.

Lipids

Sphingolipid (ceramides,
dihydroceramides, and

sphingomyelins)
Plasma STEMI Ultracentrifugation NTA, Flow cytometry;

Western blot LC-MS/MS
EV lipid signature discriminates STEMI

patients and may be used as
therapeutic strategy

[123]

Phosphatidylserine Platelet − Centrifugation Flow cytometry; Western
blot, TEM Flow cytometry

EV phosphatidylserine may contribute in
thrombin generation and

promoting thrombosis
[38]

Metabolites

4-aminohippuric acid
Citric acid

N-1-methylnicotinamide
Urine CVD Ultracentrifugation TEM; Western blot SRM-LC-MS/MS Urinary EV metabolite deregulation as

biomarker of CVD [124]

ABCA1: ATP binding cassette (ABC)A1; ACS: acute coronary syndrome; AMI: acute myocardial infarction; ANXA1: Annexin A1; C5a: complement factor C5a; CAD: coronary artery disease; Cryo-EM:
Cryo-electron Microscopy; cTnI: cardiac troponin I; CVD: cardiovascular disease; EC: endothelial cells; FITC: fluorescein isothiocyanate; HF: heart failure; IHD: Ischemic heart disease; LC-MS/MS: liquid
chromatography coupled to tandem mass spectrometry; mCRP: pro-inflammatory monomers; NTA: nanoparticle tracking analysis; NT-proBNP: N-terminal propeptide of B-type natriuretic peptide; PAD:
peripheral artery disease; PE: Phycoerythrin; pIgR: polygenic immunoglobulin receptor; qRT-PCR: reverse transcription quantitative polymerase chain reaction; SBI: System Biosciences; SRM-LC-MS/MS: Target
mass spectrometry in selected reaction monitoring mode, coupled to liquid chromatography; STEMI: ST-segment-elevation myocardial infarction; TEM: transmission electron micrographs.
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4.1. Extracellular Vesicles Carrying RNAs

The EV transcriptome of various cell types is important due to the biological relevance
of RNA activity in several cardiovascular pathologies [58,109,125,126]. EVs are carriers
of various RNA types, such as messenger RNA (mRNA), transfer RNA (tRNA), small
interference RNA (siRNA), long-non-coding RNA (lncRNA), and microRNA (miRNA) [13].
An earlier study identified mRNAs and miRNAs in EVs by microarray technology and
showed the transference of functional RNA between three cell lines [127].

Kenneweg et al. [101] showed lncRNA-enriched EVs in cardiac ischemia. In this
context, lncRNA Neat1 was necessary for fibroblast and cardiomyocyte survival, and the
silencing of Neat1 resulted in reduced heart function after myocardial infarction. A study
identified 185 differentially expressed circular RNAs (circRNAs), covalently closed RNAs,
involved in the metabolic process from EVs of the murine heart post-I/R injury compared
with control, and these circRNAs may regulate target genes by acting on the miRNAs [93].

miRNAs are short non-coding RNAs (19-22 nucleotides) that regulate gene expression
at the post-transcriptional level by binding to specific mRNAs with varying degrees of com-
plementarity and leading to mRNA degradation and/or translational inhibition [128,129].
miRNAs control different physiological processes and abnormal patterns of expression have
already been associated with many diseases [129]. Different types of cells can release miR-
NAs into the extracellular space in response to various stimuli and pathologies [130,131].
In peripheral circulation, EVs are responsible for protecting miRNAs from degradation by
circulating ribonucleases [130,132].

The EV-miRNAs can be promising predictors or indicators for premature CVD de-
tection. Increased expression of miR-126 and miR-199a isolated from circulating EVs was
proposed to reduce the risk of major cardiovascular outcomes in patients with CAD [102].
Cheng et al. [133] suggested that expression of miR-126 and miR-21 could be used for early
detection of CVD, such as acute myocardial infarction and FH. Another study reported
reduced plasma levels of EV-miR-126 in high-risk CVD patients and EV-miR-126 levels
were negatively correlated with cardiac troponin I (cTnI) and N-terminal propeptide of
B-type natriuretic peptide (NT-proBNP), suggesting miR-126 as a potential biomarker
for CVD [103].

miRNA-208a expression was upregulated in the serum exosomes of ACS patients, and
the study suggested its important role for the early diagnosis and prognosis of ACS [105].
Two EV-miRNA (miR-30e and miR-92a) that target ATP binding cassette (ABC)A1 were
shown to be upregulated in plasma EVs from patients with coronary atherosclerosis [104].
Endothelial cells-derived EVs containing miR-92a were increased in patients with CAD,
and this miRNA was shown to regulate angiogenesis in recipient endothelial cells [109]. EV-
enriched miR-92a can be transferred from endothelial cells to macrophages and suppress
Kruppel-like factor 4 (KLF4) expression in recipient cells, resulting in an atherosclerotic
phenotype [110,134]. In addition, upregulation of the miR-1 in hepatocyte-derived EVs
was associated with promotion of endothelial inflammation and facilitate atherogenesis by
downregulation of KLF4 and activation of the NF-κB [135].

Increased levels of urinary EVs miRNAs were reported in patients with unstable
CAD compared to whose with stable CAD [108]. The authors suggested an important
role of miR-155 in disease progression that could be used as prognostic indicator and
therapeutic target.

Atherogenic EVs from mouse and human macrophages were enriched in miR-146a,
miR-128, miR-185, miR-365, and miR-503. Further, miR-146a was related to progression of
atherosclerosis by decreasing cell migration and promoting macrophage entrapment in the
vessel wall [111].

Elevated expression of miR-192, miR-194 and miR-34a in serum EVs was observed in
HF patients after acute myocardial infarction [106]. Serum exosomal miR-92b-5p was in-
creased in patients with HF due to dilated cardiomyopathy ant this miRNA was suggested
as biomarker for diagnosis of HF [107].
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EV miRNAs were also related to cardiovascular risk factors (i.e., diabetes, dyslipi-
demia, obesity, MetS). Cardiomyocytes isolated from type 2 diabetic rats had inhibitory
effects on myocardial angiogenesis through the EV transfer of miR-320 into endothelial
cells [136]. miR-24 and miR-130a were downregulated in plasma EVs of patients with
familial hypercholesterolemia (FH), and miR-130a levels were inversely related to coronary
atherosclerosis in suspected CAD patients, suggesting their role as potential biomarkers of
FH and CAD [73].

A recent study using abdominal adipose tissue-derived mesenchymal stem/stromal
cells showed four downregulated miRNAs (miR-136, miR-4798, miR-12,136, miR-222) and
nine upregulated miRNAs (miR-630, miR-144, miR-143, miR-4787, miR-769, miR-8074,
and miR-181a) from EVs of MetS patients. These deregulated miRNAs might control
genes, which were associated with cellular senescence, cell cycle, metabolic processes, and
apoptosis pathways [137].

4.2. Extracellular Vesicles Carrying Proteins

Differences in EV protein levels occur in response to a variety of physiological or
pathological stimuli. The protein profile might change already in a very early stage of the
disease, which makes this content a potential early biomarker [115]. The EV protein cargo
is heterogenous and dependent on the cell type or biofluid of origin [138].

EV proteins were suggested to be prognostic biomarkers of cardiovascular events. In
this context, a prospective study demonstrated the increase of circulating CD31/Annexin
5-positive EVs as an independent predictor of cardiovascular risk in patients with stable
CAD. High levels of CD31/Annexin 5 EVs were associated with higher incidence of death
caused by CVD and higher need for revascularization [112,139].

A study of EV proteome of patients with myocardial infarction identified six novel EV
protein markers of myocardial damage related to three pathways: complement activation
(C1Q1A and C5), platelet activation (GP1BA and PPBP), and lipid metabolism (APOD and
APOC3) [113]. Increased plasma levels of CD144-EVs were also suggested to be predictive
of cardiovascular complications (i.e., ACS, ischemic stroke, revascularization, and death)
in patients with high risk for CAD [114,139].

The link between EV proteins and atherosclerosis was described in a study, which
showed that hypercholesterolemic patients with subclinical lipid-rich atherosclerotic plaques
have a higher abundance of CD45/CD3-derived EVs than those in patients with fibrous
plaques [100].

EV protein levels showed an association with stress-induced ischemia, especially
proteins known to be related to inflammatory cascades such as SerpinC1, SerpinG1, CD14,
and Cystatin C [115]. Serum EV proteins, such as cystatin C, polygenic immunoglobulin
receptor (pIgR) and complement factor C5a (C5a), were suggested to be associated with
ACS [117,140]. mCRP carried by monocyte-derived EVs was associated with inflammatory
process in patients with CAD [52]. EVs can transport and delivery pro-inflammatory mCRP
in endothelial cells [118]. mCRP carried by endothelial cell-derived EVs was also increased
in patients with peripheral artery disease, and it was suggested to be a pro-inflammatory
molecule and a potential indicator of vascular disease risk [119].

Plasma levels of EVs enriched in cystatin C, CD14, serpinG1, and serpinF2 were
markedly increased in HF patients. These EVs proteins, previously related to systemic vas-
cular events, were associated with high risk of HF in patients suspected of acute HF [116].

A recent study, using human cardiovascular cells, demonstrated that Annexin A1 in-
duces EVs aggregation and microcalcification formation that promote CVD. These findings
could lead to development of therapeutic strategies in CVD [120].

Urinary levels of EV proteins were decreased in patients with unstable CAD, however
levels of CD45+ and CD11b+ EVs were increased and CD16+ EVs were decreased. These
urinary EV proteins were suggested to be associated with CAD progression [108]. High
levels of urinary EVs enriched in nephrin and podocalyxin were observed in patients with
hypertension and these EV proteins were proposed to be useful diagnostic biomarkers [121].



Biomolecules 2021, 11, 388 11 of 21

Urinary EVs released by senescent nephron cells had increased levels of p16 (senescence
marker) in patients with hypertension as compared to healthy volunteers. Urinary p16-
positive EVs could serve as an early marker of nephron senescence and could be useful in
disease management and therapeutic follow-up [122].

4.3. Extracellular Vesicles Carrying Lipids and Metabolites

Lipids are important components of vesicle bilayer membranes and specifics lipids,
such as cholesterol and sphingomyelin, are enriched in vesicles compared to their parental
cells and it might modulate recipient cell homeostasis [18,141]. Then, lipids are emerging
as very important players for the physiological functions of these vesicles [142]. The first
studies relating to the lipid composition of EVs were performed on prostate-derived EVs
found in seminal fluid about twenty years ago [142,143]. The data have been included in
the EVs databases such as Vesiclepedia [144], EVpedia [145], and Exocarta [146].

EVs lipids interact with receptors on the target cell and are thereafter internalized
intro endosomes where they concentrate the bioactive lipids that they carry modulating
endogenous cell lipid metabolism [18]. Since lipids are essential structural and functional
constituents of EVs [142], the use of EV lipids as biomarkers of CVD may be promising,
however, there are only a few studies on this topic.

EVs can carry ceramides, sphingomyelin, lysophosphatidylcholine, arachidonic acid,
and other fatty acids, cholesterol, prostaglandins, leukotrienes, and active lipolytic enzymes
(such as phospholipase A2) on their membrane or within their lumen, and their lipid
composition can be modified by in vitro manipulation [18]. Circulating EVs were enriched
with different sphingolipid species (ceramides, dihydroceramides, and sphingomyelins) in
patients with STEMI, and lipid levels correlated with cardiac troponin, leucocyte count,
and lower left ventricular ejection fraction [123].

The amount of lipids in the shed EVs could be directly related to atherosclerosis, once
accumulation of these lipids was associated with foam cell formation and apoptosis in
macrophages mediated by toll-like receptors, which can lead to atherosclerosis [8,147]. EVs
can be released by activated platelets, which are rich in phosphatidylserine, contributing in
thrombin generation and promoting thrombosis [38,148]. Activated platelets also release
EVs rich in arachidonic acid, which contributes to thrombosis in the recipient cells by
the promotion of the cell adhesion and stimulation of prostacyclin and thromboxane A2
synthesis [149,150].

A pioneering study showed that urinary EV metabolites (4-aminohippuric acid, citric
acid, and N-1-methylnicotinamide) were altered in patients with high cardiovascular risk.
Urinary EV levels of 4-aminohippuric acid were increased, whereas citric acid and N-1-
methylnicotinamide were reduced in patients with high cardiovascular risk, suggesting an
important role of EV metabolites as biomarkers of CVD [124].

5. Extracellular Vesicles as Biomarkers for Therapeutic Responses in CVD

Plasma EV counts have been explored as biomarkers to assess the response to cholesterol-
lowering and antiplatelet therapies. Suades et al. [151] showed a reduction in the number
of circulating EVs, specifically microparticles, derived from endothelium, platelets, and
inflammatory cells after lipid-lowering therapy with statins. Kulshreshtha et al. [83] also
described that simvastatin reduced the secretion of EVs from various cell types. Conversely,
atorvastatin was shown to increase the number of circulating endothelial-derived EVs in
patients with peripheral arterial occlusive disease [152]. In the same way, Zu el al. [51]
showed that lipid-lowering and antihypertensive therapies increased plasma levels of
endothelial-derived EVs. Consequently, these EVs reduced the adhesion molecules of
monocytes to endothelial cells, such as VCAM-1 and ICAM-1, resulting in improvement of
the endothelial function.

Platelet P2Y12 receptor inhibitors or antagonists, such as clopidogrel and ticagrelor,
were suggested to alter the EV counts in plasma. Platelet- and leukocyte-derived EV levels
were reported to be lower in patients taking ticagrelor compared to clopidogrel after acute
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myocardial infarction [153]. The authors suggested that reduction of EVs may explain
better clinical outcomes with less thrombotic events in ticagrelor compared to clopidogrel.
Chyrchel et al. [154] showed that prasugrel and ticagrelor have higher antiplatelet effect
compared with clopidogrel because they decrease plasma levels of platelet-derived EVs.
The nitrate supplementation reduced platelet-derived EVs, increasing the response to
clopidogrel in CAD patients and it may represent a novel therapeutic strategy to reduce
the risk of thrombosis in these patients [155].

6. Extracellular Vesicles as Drug Delivery Vehicles in CVD

EVs can incorporate bioactive molecules, act in intercellular communication and
have a therapeutic potential, these characteristics have been explored for the use of these
vesicles as drug delivery system [13]. EVs may offer high delivery efficiency, intrinsic
targeting properties, and low mutagenicity [156]. In addition, the use of EVs as drug
delivery vehicle is beneficial as it associates with low immunogenicity, because EVs are
biologically produced and have low toxic effects compared with foreign molecules, such as
virus-derived vehicles, or cell therapies [157]. Together, these aspects consider the EVs as
safe delivery tool.

For the development of the drug delivery system, the bioactive molecule can be
loaded into vesicles during production phase by co-incubation in the cell culture or can
be incorporated after the production and isolation of the EVs. Nucleic acids and proteins
can be loaded by transfecting the producing cell with the encoding DNA inserted into
a vector [158].

Based on the ability of EVs to transfer their contents to cells and tissues, circulating
EVs involved in cardiovascular protection have been studied, mainly for the delivery of
therapeutic miRNAs [158,159]. An in vitro study showed that EV-derived cardiac endothe-
lial cells from ischemic myocardium overexpressing hypoxia-inducible factor-1 had higher
content of miR-126 and miR-210. These EVs transferred the miRNAs to cardiac progenitor
cells and increased the tolerance to hypoxic stress, a protective effect of EVs [160].

In apolipoprotein E (apoE)-deficient mice, inhibition of EV-mediated miR-155 transfer
from SMC to endothelial cells, using anti-miR-155, reduced the endothelial injury and
atherosclerosis, suggesting a promising therapy for atherosclerotic patients [161]. In an
animal model (C57BL/6 mice) of myocardial infarction, miRNA-21-loaded EVs were
internalized in cardiomyocytes and endothelial cells, restoring the cardiac function [162].
Mesenchymal stem cell-derived EVs were shown to inhibit atherosclerotic plaque formation
by delivery of miR-221 to vascular SMC [163].

Proteins-derived EVs also have been reported in cardiovascular protection.
Vicencio et al. [164] demonstrated that EVs loaded with HSP70 had cardioprotective ef-
fects in ex vivo, in vivo, and in vitro settings of cardiac ischemia-reperfusion injury. The
mechanism involves the stimulation of the toll-like receptor (TLR) 4 by HSP70 and var-
ious kinases leading to HSP27 phosphorylation in cardiomyocytes. Leukocyte/platelet-
derived EVs were reported to mediate anti-inflammatory effects by downregulation of
pro-inflammatory genes [165].

A recent study evaluated the anti-atherosclerotic effect of platelet-derived EVs loaded
with MCC950, an NLRP3-inflammasome inhibitor. MCC950-loaded EVs were adminis-
trated intravenously and reduced the inflammatory process, the formation of atheroscle-
rotic plaque and inhibited the proliferation of macrophages and T cells in apoE-deficient
mice [166]. Decrease of the inflammatory process in atherosclerosis was reported in a study
that used molecularly engineered ani-inflammatory M2 macrophage-derived exosomes,
and further electroporated with FDA-approved hexyl 5-aminolevulinate hydrochloride
(HAL). This study suggested the use of the HAL-engineered M2 macrophage-derived
exosomes for atherosclerosis and inflammation-associated diseases therapy [167].

The yield of EV isolation is a methodological limitation. A study reported that pH acid
(pH4) could be an effective environment to isolate EVs because it increases the levels of
EV content, such as RNA and protein (including EV markers), while in alkaline condition
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(pH11) no EV RNA and proteins have been detected [168]. The yield of EVs can be also
affected by storage temperature [169] and solvent (storage buffers, such as Phosphate-
buffered saline, Sodium chloride) [157]. The generation of EV mimetics (EVMs) could serve
as an important strategy to improve the use of EVs as a novel drug delivery system, using
for example to delivery siRNA (siRNA-loaded EVMs) with better yield [156,170,171]. EVMs
are vesicles produced artificially from cells or by mixing various lipid compositions similar
to EVs. This can be a promising drug delivery vehicle because it maintains the intercellular
communication by releasing nucleic acids, proteins, and lipids between cells [172], and can
be an important strategy for scale-up production EVs in a short period of time [173].

A previous study suggested that EV uptake in the cells occurs by clathrin-independent
endocytosis and micropinocytosis [174]. An important point in the development of efficient
EV-based drug delivery therapy is the identification of components on the EV surface
that allows their internalization and consequent transfer of their internal cargo to the
recipient cells.

To the best of our knowledge, EV delivery approach has not been approved for the
treatment of CVD yet. There are more than 50 nanomedicines approved by FDA for some
diseases, mainly cancer [175]. These systems use liposomes, polymeric nanoparticles,
and inorganic nanoparticles, which have similar to exosome size [176]. EVs as drug
delivery system is a technology that offers the opportunity for the development of new
pharmacological therapies, but it still needs to be further explored to solve the yield and
delivery-associated issues.

7. Conclusions

The great potential of using EVs as a tool to study the pathophysiology of variety of
CVD was addressed in this review. The relevance of EVs in intercellular communication
and aspects of cellular origin, quantification, and composition of circulating EVs were
also explored. Circulating EVs were discussed as potential biomarkers for the diagnosis,
prognosis and therapeutic monitoring in CVD, and their risk factors such as metabolic
diseases. EVs as biomarkers in CVD seem not so far away to be used in clinic setup.
This field is evolving rapidly, and scientists are constantly improving the techniques for
isolation, characterization, and analysis of EVs. EVs also have a promising application as
a drug delivery system for CVD therapies once technical limitations could be overcome.
Future studies on EV composition using more sensitive tools would increase the spectrum
of EV clinical applications.
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