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Abstract: Early life stress (ELS) causes long-lasting changes in brain plasticity induced by the expo-
sure to stress factors acting prenatally or in the early postnatal ontogenesis due to hyperactivation
of hypothalamic-pituitary-adrenal axis and sympathetic nervous system, development of neuroin-
flammation, aberrant neurogenesis and angiogenesis, and significant alterations in brain metabolism
that lead to neurological deficits and higher susceptibility to development of brain disorders later in
the life. As a key component of complex pathogenesis, ELS-mediated changes in brain metabolism
associate with development of mitochondrial dysfunction, loss of appropriate mitochondria quality
control and mitochondrial dynamics, deregulation of metabolic reprogramming. These mechanisms
are particularly critical for maintaining the pool and development of brain cells within neurogenic
and angiogenic niches. In this review, we focus on brain mitochondria and energy metabolism
related to tightly coupled neurogenic and angiogenic events in healthy and ELS-affected brain, and
new opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism and
reduce ELS-induced impairments of brain plasticity.

Keywords: brain plasticity; neurogenesis; cerebral angiogenesis; mitochondria; glycolysis; brain
metabolism; early life stress

1. Introduction

Early life stress (ELS) is a well-known phenomenon underlying long-lasting changes
in brain plasticity caused by the exposure to stress factors acting prenatally or in the
early postnatal ontogenesis [1]. Various prenatal or early postnatal stimuli can result in
the initiation of mechanisms specific for ELS, i.e., hypoxia, toxic agents, aberrant social
interactions. It is well-established [2,3] that multiple physiological mechanisms are af-
fected in ELS, thereby leading to impairment of brain development, neurological deficits,
and higher susceptibility to development of aging-associated neurodegeneration in lat-
ter periods of life. This is known as an early programming phenomenon, or priming of
developing brain to pathological conditions due to experiencing the prenatal, intranatal,
or early postnatal stress [4]. Stress response is always associated with hyperactivation of
hypothalamic-pituitary-adrenal axis (HPA) and sympathetic nervous system, establish-
ment of pro-inflammatory mechanisms, and long-lasting epigenomic changes that affect
normal development of brain cells, multicellular ensembles, and neural circuits [4–8]. In
addition, ELS results in dramatic metabolic changes leading to insulin resistance, obesity,
and metabolic syndrome [9,10]. However, some data suggest that ELS my increase resis-
tance to other types of chronic stress in adolescence [11], but such data should be carefully
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interpreted as a result of diverse vulnerability of various animal strains to the action of ELS
or application of different stressor protocols [12].

Neurogenesis, synaptic turnover and remodeling of neural circuits are the basis of
brain plasticity in developing, mature, and ageing brain [2,13]. ELS affects brain devel-
opmental program, embryonic and adult neurogenesis, as well as cerebral angiogenesis
that are tightly coordinated in normal conditions. These processes demonstrate signifi-
cant alterations caused by ELS either due to inappropriate development of neurovascular
niches (NVNs)—subventricular zone (SVZ) and hippocampal subgranular zone (SGZ), or
remarkable changes in the local niche microenvironment induced by high levels of stress
hormones and cytokines at the critical and sensitive periods of brain development [14,15].
The common finding is that ELS induces suppression of adult neurogenesis and augments
the susceptibility to development of cognitive deficits or depression later in life [2]. How-
ever, there are important issues that should be considered in this context. For instance,
female mice exposed to ELS at postnatal days 2–9 (P2–9) exhibit mild cognitive changes and
no reductions in hippocampal neurogenesis, but male mice show impaired cognition and
significant reduction in neurogenesis [16]. Paradoxically, ELS at P2–9 increases develop-
mental neurogenesis in mice hippocampus, but reduces dentate gyrus volume and survival
of adult-born neurons by P150 in males but not in females, thereby suggesting that long-
lasting changes in brain plasticity caused by aberrant neurogenesis persist predominantly
in the male brain [17]. Not only classical (SGZ, SVZ) neurogenic niches are affected by
ELS: the number of stem and proliferating cells in the adult hypothalamus (subependymal
niche) is also reduced by ELS exposure [18]. Recent findings demonstrate that if ELS
exposure coincides with the period of stress hyporesponsivity with low corticosterone
levels (first two weeks of postnatal life in rodents), neurogenesis might be enhanced either
in the hippocampus or in the amygdala, but excessive neurogenesis leads to worsening the
memory parameters, probably due to phenomenon of neurogenesis-driven hippocampal
clearance [19].

ELS-induced deregulation of neurogenesis and cerebral angiogenesis in the immature
brain might result in the development of numerous mental disorders. Schizophrenia links
to the ELS pathogenesis via altered neurogenesis, presence of microvascular abnormalities,
and deregulated brain development, presumably due to hypoxia-driven mechanisms [20].
Perinatal/neonatal hypoxia may result in excessive cell proliferation in particular brain
regions and the elevated expression of schizophrenia risk genes [21–23]. Activity of sev-
eral angiogenesis-related signaling pathways is down-regulated in the brain of patients
with schizophrenia that demonstrate vascularization abnormalities [24,25]. Alzheimer’s
disease is another example of ELS-driven alterations in neurogenesis/angiogenesis leading
to postponed changes in brain plasticity: chronic distress increases the risk of dementia
development [26] mainly due to neurogenesis impairments in wild-type mice, but not in
transgenic Alzheimer’s disease model mice [27]. This is associated with defective pericyte
coverage of microvessels and blood-brain barrier (BBB) breakdown in the prefrontal cor-
tex, development of microglia-driven neuroinflammation, and cognitive dysfunction [28].
Developmental dyslexia results from the ELS-induced deregulation in the stress response
system, epigenetic changes, and alterations in the establishment of brain asymmetry [29].
At the same time, this pathology is associated with abnormal neurogenesis and cell mi-
gration leading to aberrant cognitive development in humans [30], and deficiency of the
vascular endothelial growth factor (VEGF) [31]. Thus, deregulated neurogenesis and
angiogenesis/barriergenesis are pivotal mechanisms of ELS-mediated brain pathology.

While talking on ELS-driven impairment of brain plasticity, the following issues
should be taken into consideration: (i) stress should be defined as any environmental
stimulus which exceeds the physiological regulatory capacity of an organism and can-
not be controlled efficiently [15]; (ii) effects of stress on neurogenesis and angiogenesis
might be contradictory—enhancement, suppression, or deregulation—probably because of
variable sensitivity at different stages of ontogenesis, or due to gender-specific response:
maternal deprivation results in opposite changes in hippocampal neurogenesis in male
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and female offspring [14,32]; (iii) angiogenesis and neurogenesis are intrinsically coupled
mechanisms in the developing and mature brain: vascular scaffold supports neural stem
cells (NSCs) and neural progenitor cells (NPCs) maintenance, proliferation, differentia-
tion, and migration of their progeny, whereas NSCs/NPCs stimulate establishment of
new cerebral microvessels [33,34]; (iv) consequences of ELS-altered neurogenesis might
be quite different in rodents and in mammals with big-sized brains because of unequal
contribution of adult-born immature neurons within the neurovascular niches (NVNs) or
non-newly generated immature cortical neurons (nng-Ins) to the brain plasticity [35]; (v)
ELS-mediated aberrant embryonic angiogenesis results in BBB breakdown, development
of neuroinflammation associated with cognitive and behavioral deficits later in life [36];
(vi) neurobehavioral alterations—anxiety, depression, aberrant social recognition, cognitive
dysfunction—are common consequences of ELS [37,38]; (vii) metabolism of brain cells
contributing to neurogenesis and angiogenesis might serve as a target for restoration of
brain plasticity affected by ELS [36,39,40]. The latter conclusion is based on a huge vol-
ume of data on significant changes in the brain metabolic status in ELS and ELS-driven
pathologies [10,41,42].

In this review, we will mainly focus on brain mitochondria and energy metabolism
related to neurogenic and angiogenic events in healthy and ELS-affected brain, and new
opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism
and reduce ELS-induced impairments of brain plasticity.

2. Developmental Aspects of Brain Metabolism and Effects of ELS

It is commonly accepted that the brain utilizes up to 20–25% of the body’s energy due
to high demand in ATP for maintaining the critical activities of brain cells (information
processing, neuronal excitation, cell-to-cell communications, neurites growth, local immune
response, etc.). Normally, the main source of energy in the brain is glucose used in
mitochondrial respiration, which dominates in neurons, or in glycolysis in glial cells [43,44].
In the resting adult brain, the oxygen–glucose index (OGI) is close to 5.5, whereas brain
activation results in transient uncoupling of glycolysis and OXPHOS (OGI is 5.0) due to
active glycolysis [43,45]. In early childhood, OGI is 4.1 again due to enhanced activity of
glycolysis, and it reflects extensive brain plasticity, synaptic remodeling, neurogenesis,
and brain growth in this period [46,47]. In the aging brain, there is a loss of glycolytic
activity, probably due to the reduction of synaptic plasticity and neotenous processes seen
in ageing [48]. Under starved conditions, the brain is re-profiled to use ketone bodies
(synthesized in the liver and astrocytes). The same is true for developing prenatal or early
postnatal brain, which prefers lactate and ketone bodies for energy production, and where
both these metabolites are used as signaling molecules [49–52].

Within the neurovascular unit (NVU), the following mechanisms reflect the efficacy of
energy metabolism in different cell types: (i) neuron-astroglial and astrocyte-endothelial
metabolic coupling: active neurons stimulate astrocytes to produce lactate, cerebral en-
dothelial cells elevate the lactate transport to supply this metabolite to neurons for its
rapid conversion into pyruvate and ensuring the functioning of neuronal tricarboxylic acid
(TCA) cycle or mitochondrial electron transport chain; (ii) gliovascular control: increase
in the local concentrations of extracellular lactate leads to vasodilation, which is required
for adjusting the blood flow and oxygen/nutrients supply to fit the metabolic needs of
active brain regions; (iii) metabolic control of BBB structural integrity by brain microves-
sel endothelial cells (BMECs) that are highly enriched in mitochondria, and endothelial
progenitor cells (EPCs) recruited from the bone marrow to establish new microvessels;
(iv) establishment of pro-neurogenic and pro-angiogenic microenvironment with the niche
hypoxia stimulating glycolysis and corresponding changes in NSCs/NPCs metabolism;
(v) metabolic control of axons myelination: high mitochondria activity in oligodendrocyte
progenitor cells is later replaced by glycolytic shift in mature oligodenroglia; (vi) metabolic
control of neuroinflammation: reactive microglia requires extensive glycolysis for phagocy-



Biomedicines 2021, 9, 1092 4 of 24

tosis, migration, and production of cytokines. Key metabolic characteristics of NVU cells
are summarized in Table 1.

Table 1. Metabolic profile of brain cells.

Type of Cells Metabolic Characteristics References

Neurons

Oxidative phosphorylation (OXPHOS) dominates. Perisynaptic localization of
mitochondria. Under stress and aging, they redistribute mitochondria in the
cell and demonstrate impairment in glycose utilization and decline in
mitochondrial function. Poorly utilize fatty acids.

[53–56]

Astrocytes

Glycolysis dominates. They support the metabolism of neurons with lactate.
Capable of depositing the glycogen. Mitochondrial activity determines the
efficiency of glutamate uptake. Serve as donors of mitochondria when neurons
are damaged.

[57–60]

Oligodendrocytes
Myelination is under the control of OXPHOS (to a greater extent) and
glycolysis, at the end of the myelination program, glycolysis dominates, and
lactate maintains axonal vitality.

[61–63]

Microglia Resting microglia uses OXPHOS, activated microglia uses glycolysis.
Microglia activation is accompanied by mitochondrial fragmentation. [64–66]

BMECs

Have a higher content of mitochondria than endothelial cells in other tissues.
Angiogenesis is accompanied by increased glycolysis and OXPHOS, fatty acid
oxidation. Disturbances in mitochondrial dynamics are characteristic of
damage to the BBB. Various reactive oxygen species (ROS)-generating
enzymes are expressed.

[67–71]

Pericytes Glycolysis dominates; however, these cells might donate mitochondria for
damaged perivascular astroglia. [72]

NSCs/NPCs

Self-maintenance and proliferation of NSCs/NPCs require glycolysis,
oxidation of fatty acids. Differentiation is accompanied by the prevalence of
OXPHOS, and significant changes in the shape of mitochondria from
fragmented to elongated. Able to deliver functional mitochondria to target
cells. Aging NSCs/NPCs demonstrate lower oxidative metabolism.

[73–78]

In the first 2–3 weeks of postnatal development in mice (it corresponds to approx.
5 years of postnatal human development), brain glucose metabolism and oxygen consump-
tion as well as the cerebral blood flow are 3–7 times higher than in subsequent periods of
life. This period is characterized by active turnover of synapses, high electrical activity in
cortical neurons. Exactly during this time-frame, there is a 4-fold increase in the number
of mitochondria, mitochondrial proteins, and activity of mitochondrial respiratory chain
in brain cells [79]. Later throughout life, the brain prefers to consume glucose, which is
transported into the brain tissue via insulin-sensitive GLUT4 or partially insulin-sensitive
GLUT1 glucose transporters expressed in BMECs within the NVU/BBB [80]. Actually,
the main difference in the metabolic plasticity of cells in the developing and mature brain
is that the ability to diversify sources for energy production is significantly higher at the
earliest stages of ontogenesis, probably, due to the progressive age-dependent decrease
in the expression of the corresponding transporters (i.e., monocarboxylate transporters,
MCTs) in the BBB [52].

The pre-existing opinion that the brain is an insulin-independent organ has been
questioned by the hypothesis that insulin-mediated signal transduction is important for
brain plasticity by regulating intercellular communication, energy homeostasis, growth
and survival of neurons, and synaptic plasticity. Particularly, insulin-stimulated glucose
metabolism is confirmed with PET protocols: brain glucose uptake and metabolism seems
to be insulin-sensitive or operating at the top of the dose-response curve at basal peripheral
insulin concentrations [80]. Activation of insulin receptors in brain cells in the olfactory
bulbs, cortex, hippocampus, hypothalamus, and amygdala results in phosphorylation of
insulin receptor substrate (IRS) protein, activation of phosphatidylinositol 3-kinase (PI3K),
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protein kinase B (Akt), and inhibition of glycogen synthase 3β kinase (GSK3β). These
events lead to significant changes in neuronal metabolism like elevated glucose utiliza-
tion and conversion to lactate, facilitation of mitochondrial oxidative phosphorylation
(OXPHOS) [81]. Thus, it is not surprising that aberrant insulin signaling and brain glu-
cose hypometabolism are considered as components of the pathogenesis of Alzheimer’s
disease and progression of physiological aging: these metabolic phenomena trigger a
cascade of pathological events, namely mitochondrial dysfunction, oxidative stress, ex-
citotoxicity, apoptosis, and activation of pro-inflammatory cytokines [81–84] (Figure 1).
Recently, systemic insulin resistance and development of diabetes mellitus in ageing mice
(P350) that underwent ELS in the form of maternal separation at the neonatal period was
clearly demonstrated [85], but whether these data might be extrapolated on the cerebral
mechanisms of insulin signaling remains unclear.
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Figure 1. Insulin signaling in the brain in Alzheimer’s disease. Accumulation of Aβ disrupts the binding of insulin to insulin
receptors on brain cells leading to aberrant IRS1/PI3K signaling, especially at the level of IRS1. It decreases PI3K/Akt
activity and increases GSK-3beta kinase activity, which promotes phosphorylation of tau protein and increased deposition of
Aβ-consisting plaques as two key hallmarks of Alzheimer’s disease. Reduced uptake of glucose through GluT transporters
and intracellular hypometabolism of glucose in the brain cells (diminished glycolysis and OXPHOS) caused by insulin
resistance are associated with the development of mitochondrial dysfunction, ROS overproduction, and oxidative damage
of biomacromolecules.

Among all the NVU cells, neurons and BMECs are especially enriched in insulin
receptors and mitochondria, whereas glial cells metabolism attributes to maintaining high
basal levels of lactate. In neurons, perisynaptic mitochondria play an important role in
the control of neuronal excitability, but contribution of astrocytes located in tripartite
synapses is also high. Upon excitation, OXPHOS in mitochondria of neuronal dendrites is
always supported by the subsequent active glycolysis in astrocytes to fuel the TCA cycle
in neurons via MCT-mediated transport of lactate from astrocytes [86]. Even astrocyte–
neuron metabolic coupling based on direct lactate transfer from astrocytes into neuronal
cells has been debated in recent years; the role of lactate as a gliotransmitter and a signaling
molecule in the brain is no longer disputed [87]. Moreover, astrocyte–neuron metabolic
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coupling has been shown to be involved in the complex mechanisms of learning, long-term
memory consolidation, and even stress coping behavior [88,89]. Astrocyte–neuron lactate
shuttle mechanism is complemented with the transfer of toxic oxidized fatty acids from
activated neurons to astroglia [90] to prevent neuronal death caused by overexcitation,
and with the transport of lactate via MCT transporters expressed in endothelial cells [91].
Astroglia-derived lactate affects other NVU/BBB cells, i.e., BMECs may respond to lactate
either by activating lactate influx through MCT1 or by initiating signal transduction from
lactate GPR81 receptors expressed on their plasma membrane. Experimental data suggest
that both these mechanisms are required for maintaining the integrity of BBB as well as
for effective angiogenesis/barriergenesis, and they are altered in neuroinflammation and
ELS [2,69,92–94].

Metabolism of cells with neurogenic (NSCs/NPCs) and angiogenic potential (EPCs,
tip- and stalk BMECs) is different from mature post-mitotic brain cells or other vascular
cells. Particularly, quiescent endothelial cells (ECs) use glycolysis and fatty acids oxi-
dation (FAO) to support their activity [95], but stimulation of angiogenesis results in
insulin-dependent increase in glucose oxidation in tip-cells, activation of OXPHOS, fatty
acids oxidation (FAO) and glycolysis in stalk-cells [96]. Within the neurogenic niches,
NSCs/NPCs survival and self-renewal are driven by extensive glycolysis and mitochon-
drial FAO, whereas OXPHOS, excessive mitochondrial ROS production, corresponding
changes in mitochondrial morphology, and elevated lipogenesis are activated when these
cells are recruited to neurogenesis [97,98]. It is interesting to note that abnormal activity of
some of these metabolic processes results in evident neurodevelopmental alterations. It
was shown that inborn defects of FAO is a prerequisite for aberrant neurogenesis seen in
autism [99], presumably, because FAO supports stem cells survival in metabolic stress [100].
At the same time, extremely high levels of FAO inhibit glycolysis by means of accumulation
of acetyl-CoA, NADH, and inhibition of pyruvate dehydrogenase (PDH), thereby leading
to mitochondrial dysfunction and elevated ROS production [101].

ELS affects metabolism in all the tissues: deregulation of glucose utilization and energy
production leads to increased risk of metabolic syndrome, diabetes mellitus, cardiorenal
syndrome, and obesity [102]. In mice fed a standard diet, maternal separation which is a
well-known established model of ELS increases fasted blood glycemia, induces glucose
intolerance and decreases insulin sensitivity in postnatal day 350 (P350) [85]. ELS-induced
insulin resistance and metabolic syndrome were detected in monkeys [9] and humans [103].

It is commonly accepted that the main stress-induced change in the cellular metabolism
is the altered balance of glycolytic to mitochondrial production of ATP. In prenatal stress
in rats, glycolysis is increased whereas OXPHOS is decreased in the brain of 3-month-old
offspring [104]. However, dysfunctional mitochondria in brain cells increase stress suscepti-
bility along with compromised neurogenesis in the mouse model of stress-induced depres-
sion [105]. The duration of ELS could dictate the pattern of metabolic changes that would
result in secondary alterations. Particularly, acute stress induces increase in the cerebral
levels of extracellular lactate [106] followed by the reduction of glucose metabolism [107].
Such changes stem from the stress hormones action, subsequent metabolic adaptation,
development of insulin resistance, and epigenetic reprogramming [108–110]. No doubts,
mitochondria play the central role in the stress response by means of intracellular control
of multiple signaling pathways, apoptosis, autophagy, reactive oxygen species, and energy
production [43,111]. Mitochondria might modulate the individual effects of stress and
HPA activity as it was demonstrated in mice that harbored different mitochondrial gene
variants and subjected to the psychological stress [112]. Thus, the balance of glycolytic and
mitochondrial energy production would control the cell stress response as well as HPA
responsivity in ELS-affected organisms.

ELS-induced metabolic alterations result in paradoxical acceleration of cell maturation
confirmed with the markers of synaptic maturity and myelination, and earlier develop-
ment of emotional behavioral patterns [113]. In general, the brain development program
is altered by ELS: long-lasting alterations in social behavior and hippocampal expression
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of neurotransmitter receptors have been registered in adult mice underwent ELS up to
P17 [114], mitochondrial dysfunction and increased number of immature spines in hip-
pocampal neurons have been found in juvenile 28-day-old mice with ELS [115], anxiety-like
behavior and aberrant hippocampus-dependent memory have been detected later in the
life of rats exposed to ELS at P2–P14 [116].

Presumably, it might be caused by global glucose hypometabolism and reduced activ-
ity of glycolysis in the developing brain affected by ELS, therefore, biosynthetic activity and
synaptic plasticity are reduced. Indeed, decreased levels of glutamate, γ-aminobutyrate,
N-acetylaspartate, glutamine, and phosphorylcholine that might be considered as markers
of neurodegeneration or neurodevelopmental disorders like autism or schizophrenia have
been detected in the brain of rodents exposed to maternal separation [41].

Taking into consideration the above-mentioned data, one may assume that insulin
resistance is a key mechanism of long-lasting changes in the brain metabolism induced
by ELS [42]. Risk of Alzheimer’s type neurodegeneration is much higher in ELS-affected
individuals [117]. Progression of Alzheimer’s type of dementia often associates with local
insulin resistance [118]; thus, it should be considered as a factor contributing to higher vul-
nerability of brain to development of Alzheimer’s disease later in the life. All these changes
are preceded by acute stress-induced alterations in brain metabolism that mainly focus
around the increase in glucose utilization and lactate overproduction aimed to support
neuronal activity and neurotransmitter synthesis in stress conditions [41]. Since reduced
levels of neurotransmitters were detected 2–5 months later after the maternal separation,
lactate-driven mechanism of adaptation to the acute stress was already non-functional to
support biosynthetic activity of mature neurons. However, in PET assessment of cerebral
glucose metabolism in adult monkeys that have experienced ELS being infants, enhanced
metabolism of glucose was shown in superior temporal sulcus, putamen, thalamus, and
inferotemporal cortex in ELS animals compared to the controls [119].

Mitochondrial functional activity and dynamics are significantly affected by ELS:
maternal separation in pups later results in lower ability of animals to perform Morris
water maze, and such abnormalities correspond to deregulated activity of cytochrome c
oxidase. Its elevated activity was found in the cingulate cortex, anterior thalamus, and
supramammillary area, but diminished activity was demonstrated in medial mammillary
nucleus [120]. Comparative proteomic and functional analysis of hippocampus in juvenile
and adult male and female mice that underwent ELS reveals that there is an enrichment
in proteins associated with mitochondria and OXPHOS in females, increased OXPHOS in
juvenile males and females, but reduced OXPHOS in adult females [121]. Thus, gender-
and age-dependent mechanisms are activated by ELS exposure, thereby resulting in a wide
spectrum of outcomes later in life. It is known that ELS frequently results in development
of depression (maternal separation is used as a validated model of depression in rodents),
so, mice with deficiency of Complex I in mitochondria have been proposed as a suitable
model of stress-induced phenomenon of early life programming leading to various be-
havioral manifestations, including depression [105]. Moreover, mitochondrial dynamics
in neurons of nucleus accumbens reflects expression of depression-like behavior in mice,
and mitofusins regulating mitochondrial fusion have been proposed as candidate target
molecules for the treatment of depression and anxiety [122].

The simplest explanation of mitochondrial alterations in ELS is stress hormones-
induced dysfunction of mitochondria, resulting in the suppression of respiration, devel-
opment of Ca2+ imbalance, oxidative stress and apoptosis [123]. However, it might have
no relation to the postponed changes in mitochondria structure developed after ELS. So,
what might be a mechanism of ELS-induced long-lasting changes in mitochondria activity?
Presumably, it relates to epigenetic changes in mitochondrial or nuclear DNA leading to
altered mitochondrial dynamics or diminished activity of mitochondrial enzymes. Such
proposal has got some arguments in recent experimental studies and was excellently re-
viewed in [124]. Particularly, early-life social isolation results in elevated levels of neuronal
H3K9me2, which corresponds to reduced expression of NMDA receptor subunits, NR1,
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and AMPA receptor subunits, GluR1 and GluR2 in rat hippocampus [125]. Methylation of
BDNF gene was found to be altered in the prefrontal cortex of mice exposed to ELS [126].
However, the pattern of epigenetic modifications caused by ELS depends on the specific
type of ELS model applied (i.e., social isolation vs. social stress) since different brain
regions might be affected [127]. Dual-activation hypothesis was proposed to connect the
activity of HPA and sensory networks at particular critical developmental periods with
transient or permanent epigenetic changes induced by ELS: epigenetic reprogramming of
HPA is completed due to changes in the expression of genes encoding stress hormones or
neuropeptides (i.e., glucocorticoid hormone and its receptors, arginine vasopressin and
its receptors, oxytocin and its receptors) in brain cells. For instance, changes in the DNA
methylation of a gene promoter site and histone acetylation would result in altered binding
of transcription factors and modified expression of a corresponding gene, thereby leading
to prominent changes in the responsivity of HPA axis in the conditions of acute stress [128].
At the level of neural networks, epigenetic reprogramming is a result of aberrant gene
expression in NSCs/NPCs and their progeny caused by DNA methylation and demethyla-
tion known to affect activity-dependent neurogenesis [129]. Synaptic experience-driven
plasticity is under the control of DNA methylation and histone modifications [130]. Thus,
prenatal and juvenile postnatal periods known as sensitive phases of brain development are
compromised by significant and long-lasting changes in HPA responsivity and functional
integration of newly-formed neurons [131]. Later in life, this could lead to development of
stress-related brain disorders, accelerated aging, and neurodegeneration.

How might mitochondria be involved in such epigenetic mechanisms? From one
side, mitochondria produce huge number of metabolites that affect nuclear and mitochon-
drial epigenetic machinery: FAD, NAD+, acetyl–CoA and α-ketoglutarate of mitochondria
origin are associated with the processes of active methylation/demethylation or acetyla-
tion/deacetylation of DNA histones [132]. In the case of mitochondrial DNA, modification
of histones is not possible because of their absence there, but mitochondrial DNA itself
is a target for methylation/demethylation occurring predominantly at non-CpG sites,
which result in long-lasting or even permanent changes in mitochondrial activity [133–135].
In addition, the presence of mitochondrial DNA in a close vicinity to ROS produced in
mitochondria matrix leads to accumulation of nucleoside 8-hydroxy-2-deoxy-guanosine
(8-OHdG) and impairment of mtDNA transcription/replication [136]. Thus, epigenetic
mechanisms of long-lasting changes in mitochondrial metabolism in ELS-effected brain
are plausible. However, it is still rather difficult to clearly distinguish the molecular mech-
anisms of metabolic events that are caused by acute stress and those developed in the
affected brain later in life.

3. Neurogenesis and Cerebral Angiogenesis: Search for a Common Regulator of
Metabolic Reprogramming

It is commonly accepted that cognitive reserve depends not only on the efficacy of
neurogenesis or synaptogenesis [137], but also on adequate neurovascular coupling: human
fMRI studies demonstrate that hippocampal vascularization pattern modulates cognitive
performance and hippocampal integrity, thereby suggesting that mixed blood supply
from both the posterior cerebral artery and the anterior choroidal artery is most effective
to support cognitive functions [138]. Thus, it is reasonable that under the conditions of
enhanced demand for neurogenesis (e.g., learning), suppression of cerebral angiogenesis
results in the impairment of learning and memory [139]. Exercise-induced angiogenesis
in brain tissue is well-documented phenomenon and might be partially responsible for
cognition-enhancing effect of regular physical activity [140]. Also, it is known that post-
ischemic angiogenesis contributes to brain tissue repair and neuronal remodeling via
metabolic support of developing neuronal cells, guidance of cells and axons toward the
ischemic locus, and oxygen supply to the neurogenic niches for initiating proliferation and
differentiation of cells [141].

Vascular control of neurogenesis: supply of oxygen and regulatory molecules. In the whole
brain, hippocampal vascularization seems to be reduced compared with neocortex due to
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increased capillary spacing in hippocampus, specific (less-contractile) morphology of hip-
pocampal pericytes, and low ability of hippocampal BMECs to promote vasodilation [142].
Thus, it is not surprising that hippocampal cells survive in less availability of oxygen
comparing to cortex cells, and low oxygen concentrations exist in neurogenic niches that
are important for maintaining the pool of NSCs/NPCs [143]. Hypoxia prevents recruitment
of NSCs/NPCs and increases their survival, whereas local hyperoxia stimulates prolif-
eration and differentiation of embryonic cells in vitro [143,144]. That is why hyperbaric
oxygen therapy promotes neurogenesis in post-stroke rats in vivo [145]. When hypoxia
within neurogenic niche is reduced by newly-formed microvessels, NSCs diminish their
glycolysis and start to differentiate in the embryonic brain [146]. In this context, it is rea-
sonable that functional hyperemia in the adult dentate gyrus promotes experience-induced
hippocampal neurogenesis required for efficient learning, as was demonstrated in [147].

Since neoangiogenesis is functionally coupled to neurogenesis, it is tempting to spec-
ulate that in “dormant” neurogenic niches in hippocampus, basal level of blood supply
results in relatively low local oxygen tension, suppression of mitochondrial ATP generation
and corresponding changes in mitochondrial dynamics (mitochondrial fragmentation),
elevated production of lactate in glycolysis, and self-renewal of NSCs/NPCs. This is
quite different from the severe hypoxia caused by global brain ischemia, which stimulates
recruitment of NSCs/NPCs, probably due to elevated levels of extracellular lactate [148],
thereby contributing to reparative neurogenesis. In the case of experience-driven brain plas-
ticity (e.g., learning), local functional hyperemia leads to the stimulation of mitochondrial
fusion and biogenesis, increased ATP production, and proliferation and differentiation of
NSCs/NPCs and their progeny to support learning and memory [143,145]. These events
are associated with reversible and partial BBB breakdown to provide better access of regu-
latory molecules to the niche, and elevated endothelium-mediated transport of lactate [91]
(Figure 2).

Biomedicines 2021, 9, x FOR PEER REVIEW 10 of 25 
 

or primed [156], but according to the commonly accepted view, NSCs/NPCs have higher 
glycolytic requirements than mature neurons [157]. Thus, the question arises: what are the 
key regulators of metabolic reprogramming of cells with pro-neurogenic or pro-angio-
genic potential? One may propose that such regulatory molecules should have direct re-
lation to the main metabolic pathways that contribute to ATP production; however, their 
involvement in other biochemical processes, i.e., those related to amino acid metabolism, 
could be considered as well [156]. 

 
Figure 2. Metabolic reprogramming in NSCs/NPCs associated with conversion from the quiescent 
into activated state. Neurogenic niche is represented here as a simplified model. In a quiescent niche, 
relatively low oxygen tension keeps the cells out of cell cycle. Activation of neurogenesis by physi-
ological stimuli (e.g., learning) is associated with functional hyperemia and local BBB breakdown to 
provide better access to pro-neurogenic factors, and with the switch from glycolytic to mitochon-
drial ATP production associated with mitochondrial biogenesis and oxidative stress to support pro-
liferation and differentiation of cells. 

Glycolysis- and OXPHOS-(re)generated NAD+. One of the factors controlling the mech-
anism of metabolic reprogramming is the activity of pyruvate dehydrogenase (PDH): its 
activation means generation of acetyl-CoA fueling TCA cycle, whereas its inhibition 
means activation of pyruvate–lactate conversion in glycolysis. Activity of PDH is nega-
tively regulated by insulin-driven C-Jun N-terminal kinase (JNK), and this effect is abol-
ished by protein kinase C (PKC) [158]. More generally, this means that a cell can increase 
the availability of NAD+ for numerous metabolic events (activity of NAD+-dependent en-
zymes, NAD+-consuming enzymes) by reducing PDH activity. Indeed, regeneration of 
NAD+ accompanies pyruvate-to-lactate conversion as well as activity of the mitochondrial 
electron–transport chain. In mammalian cells, metabolism of NAD+ is required for various 
enzymes controlling proliferation and differentiation: poly(ADP-ribosyl)polymerase 
(PARP) serving for DNA replication and repair, mono(ADP-ribosyl)transferases affecting 
cell signaling, histone deacetylases/sirtuins regulating gene transcription, and NAD+-gly-
cohydrolases synthesizing second messengers with Ca2+ mobilizing activity (cyclic ADP-
ribose or nicotinic acid adenine dinucleotide phosphate) [159–162]. 

Thus, if a cell actually needs more NAD+ than ATP, activation of glycolysis is pre-
ferred [163]. Since self-renewing/proliferating stem cells are under permanent replication 

Figure 2. Metabolic reprogramming in NSCs/NPCs associated with conversion from the quiescent
into activated state. Neurogenic niche is represented here as a simplified model. In a quiescent
niche, relatively low oxygen tension keeps the cells out of cell cycle. Activation of neurogenesis
by physiological stimuli (e.g., learning) is associated with functional hyperemia and local BBB
breakdown to provide better access to pro-neurogenic factors, and with the switch from glycolytic
to mitochondrial ATP production associated with mitochondrial biogenesis and oxidative stress to
support proliferation and differentiation of cells.
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Memory formation is associated, upon encoding, with a hypoxic signal triggering
transitory cerebral angiogenesis in specific cortical regions aimed to support memory
storage and retrieval some weeks later [149]. Therefore, one may assume that hypoxia-
driven cortical neoangiogenesis might be responsible for the so-called hippocampal-cortical
memory trace transfer [150] and mechanism of hippocampal clearance to minimize the
interference of old and new memories [151]. Thus, conversion of a hippocampal neurogenic
niche from the quiescent to the activated state might be coupled with transient local
vasodilation and BBB breakdown, whereas memory consolidation in the cortex requires
extensive neurogenesis and neoangiogenesis.

The above-mentioned events reflect the situation of metabolic reprogramming, which
is a widely-spread phenomenon related to the ability of cells to change their metabolism
on demand [152]. Mammalian cells often face situations when they have to switch their
metabolism to the most preferable mode of functioning. For instance, neural stem and pro-
genitor cells advance the way of proliferation-differentiation-migration: proliferation and
self-renewal require extensive glycolysis, lowered OXPHOS and mitochondria fragmenta-
tion, whereas differentiation means activation of OXPHOS and mitochondria elongation,
finally resulting in development of mature post-mitotic neurons enriched in mitochon-
dria [153–155]. Such dramatic metabolic changes vary in cells that are naïve or primed [156],
but according to the commonly accepted view, NSCs/NPCs have higher glycolytic require-
ments than mature neurons [157]. Thus, the question arises: what are the key regulators
of metabolic reprogramming of cells with pro-neurogenic or pro-angiogenic potential?
One may propose that such regulatory molecules should have direct relation to the main
metabolic pathways that contribute to ATP production; however, their involvement in other
biochemical processes, i.e., those related to amino acid metabolism, could be considered as
well [156].

Glycolysis- and OXPHOS-(re)generated NAD+. One of the factors controlling the mecha-
nism of metabolic reprogramming is the activity of pyruvate dehydrogenase (PDH): its
activation means generation of acetyl-CoA fueling TCA cycle, whereas its inhibition means
activation of pyruvate–lactate conversion in glycolysis. Activity of PDH is negatively
regulated by insulin-driven C-Jun N-terminal kinase (JNK), and this effect is abolished
by protein kinase C (PKC) [158]. More generally, this means that a cell can increase the
availability of NAD+ for numerous metabolic events (activity of NAD+-dependent en-
zymes, NAD+-consuming enzymes) by reducing PDH activity. Indeed, regeneration of
NAD+ accompanies pyruvate-to-lactate conversion as well as activity of the mitochondrial
electron–transport chain. In mammalian cells, metabolism of NAD+ is required for vari-
ous enzymes controlling proliferation and differentiation: poly(ADP-ribosyl)polymerase
(PARP) serving for DNA replication and repair, mono(ADP-ribosyl)transferases affecting
cell signaling, histone deacetylases/sirtuins regulating gene transcription, and NAD+-
glycohydrolases synthesizing second messengers with Ca2+ mobilizing activity (cyclic
ADP-ribose or nicotinic acid adenine dinucleotide phosphate) [159–162].

Thus, if a cell actually needs more NAD+ than ATP, activation of glycolysis is pre-
ferred [163]. Since self-renewing/proliferating stem cells are under permanent replication
stress, they always need high levels of intracellular NAD+ to support PARP activity for
efficient DNA repair [164]. Therefore, stem cells keep glycolytic flux at the high level, and
they are well-equipped with the machinery for efficient NAD+ synthesis and metabolism.
For instance, ablation of nicotinamide phosphoribosyl transferase (NAMPT)—the key
enzyme for NAD+ synthesis—in NSCs/NPCs reduces the pool and proliferation of these
cells in the hippocampus of mice [165]. In human embryonic stem cells, NAD+ increases
mitochondrial oxidative metabolism, partially suppresses glycolysis, stimulates amino acid
turnover, doubles the consumption of glutamine, and these effects are coupled with the
expression of markers of pluripotency and proliferation, thereby suggesting that NAD+ is
required for self-renewal and prevention of differentiation of stem cells [166]. In human
mesenchymal stem cells, decrease of NAD+/NADH ratio results in cellular senescence and
loss of sirtuin1 activity [167]. Supplementation of NAD+ with its precursors prevents stem
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cells senescence [167], rejuvenates aged intestinal stem cells [168], and delays senescence
of NSCs in mice [169]. Thus, it is rather reasonable that restoration of NAD+ levels sup-
ports prenatal cerebral angiogenesis and improves postnatal behavioral phenotype [36],
stimulates adult neurogenesis [170], prevents neurodegeneration [171], and supports stress
response [172]. Preservation of NAD+ levels with precursors of NAD+ (e.g., nicotinamide
mononucleotide) prevents age-dependent decline in cerebral angiogenesis and reduces
endothelial oxidative stress in rats [173]. NAD+ deficiency in pregnant rodents results
in congenital malformations in offspring and miscarriage [174], thus suggesting the im-
portance of keeping the adequate levels of NAD+ for normal development. Promotion
of adult neurogenesis in offspring could be achieved by NAD+ supplementation (using
nicotinamide riboside as NAD+ precursor) of mice mothers in the postpartum period, prob-
ably, through transition of NAD+ with mother milk to pups [175]. Moreover, behavioral
abnormalities (social deficits and anxiety) seen in CD157 knockout mice can be efficiently
corrected with nicotinamide riboside replenishing the intracellular NAD+ levels needed
for oxytocin release and establishment of appropriate social (re)cognition [176].

Switching from glycolysis to mitochondrial respiration in brain cells is associated with
extensive mitochondrial biogenesis. It is interesting that mitochondrial dynamics itself
affects neurogenesis: in embryonic cortical neurogenesis in mice, mitochondrial fusion
redirects cells towards self-renewal status in NAD+- and sirtuin1-dependent manner [177].
The same might be true for angiogenesis: in endothelial tip-cells migration, activation and
differentiation are supported by glycolytic flux and mitochondrial fragmentation [67,178],
but proliferation of endothelial stalk-cells depends on balanced combination of glycolysis
and OXPHOS [179]. Activation of microglia or astroglia in the loci of neuroinflammation
is associated with the metabolic switch from OXPHOS to glycolysis (similar to Warburg
effect) to provide support for cytotoxicity and cytokines release [180]. All these changes
are accompanied by reciprocal mitochondrial dynamics: fission/fragmentation of mito-
chondria or even mitophagy occurs in cells with predominant glycolysis, whereas fusion of
mitochondria or mitochondrial biogenesis are important for cells with elevated demand for
OXPHOS and other homoeostatic events in mitochondria (production of ROS, Ca2+ release
and Ca2+ uptake, synthesis of steroids, synthesis of heme, etc.) [181]. Since mitochondrial
biogenesis is driven by sirtuin1-PGC-1-dependent mechanisms [182], one may assume that
high intracellular levels of NAD+ required for sirtuin1 activity control the establishment
of new functional mitochondria and balance of self-renewal and differentiation capacity
of NSCs/NPCs as well as EPCs/endothelial stalk-cells. However, some studies revealed
that increase in intracellular NAD+/NADH ratio and activation of sirtuin1 could lead
to mitochondrial fragmentation and mitophagy in fibroblasts [183], thereby suggesting
variability in mitochondrial dynamics-mediated processes in different cell types or in
various conditions.

Recent data reveal that chronic prenatal stress in mice suppressed expression of NAD+

synthesis enzymes associated with abnormal brain cortical GABA interneuron develop-
ment, axonal degeneration in the hippocampus, progression of cognitive deficits and
depression-like behavior in offspring [184]. It is well-known that any stress leads to deple-
tion of intracellular NAD+ levels due to development of mitochondrial dysfunction, over-
production of ROS, oxidative damage of DNA, and hyperactivation of NAD+-consuming
enzyme PARP, which further inhibits glycolysis, thereby leading to energetic catastrophe
and cell death [185]. Theoretically, cells may combat such conditions by activating AMP
kinase (AMPK) able to stimulate NAD+ biosynthesis via salvage pathways [186]. How-
ever, since expression of NAD+ synthesis enzymes is disrupted by prenatal stress [184],
this mechanism would be non-functional in the ELS-affected brain. At the same time,
AMPK can stimulate mitochondrial biogenesis in a PGC-1-dependent manner [187]; thus,
this effect might be very relevant. Indeed, PGC-1 levels are decreased in the brain of
adult offspring rats that underwent prenatal stress [188], but stimulation of PGC-1-driven
mitochondrial biogenesis is efficient in reducing the negative consequences of prenatal
hypoxic-ischemic brain injury in rats [189]. Thus, bioavailability of NAD+ might be a key
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regulatory factor in brain cells metabolic reprogramming. If so, stress-driven depletion of
intracellular NAD+ could lead to suppression of PDH, metabolic switch between glycolysis
and OXPHOS, and aberrant activity of NAD+-converting enzymes. Numerous examples
of mitochondrial programming caused by ELS in rodents and humans have been ana-
lyzed in detail [190,191], but it is still unclear whether such changes contribute to altered
neurogenesis and cerebral angiogenesis in early life.

Neurotransmitters derived from the TCA cycle metabolites. Glutamate which may undergo
transamination to α-ketoglutarate to support the TCA cycle is one of the most important
excitatory neurotransmitters, whereas GABA is synthesized from glutamate due to activity
of glutamic acid decarboxylase (GAD) to provide inhibitory neurotransmission in the adult
brain [192]. In immature neurons, GABA acts as an excitatory neurotransmitter, but in the
postnatal mature brain, it is the main inhibitory neurotransmitter. Such excitatory (depolar-
izing) effect of GABA on neural progenitors is required for their maturation [193]. In the
adult hippocampal dentate gyrus, local parvalbumin interneurons are also depolarized by
GABA, which is necessary for keeping NSCs in quiescent conditions and preventing the
depletion of NSCs pool [194,195]. It should be noted that newly synthesized and integrated
hippocampal neurons respond to the action of GABA as immature ones (depolarization)
and they gradually become hyperpolarized along their functional and morphological matu-
ration, whereas the depolarizing effect of glutamate is critical for their competitive survival
and synaptic integration [196]. GABA regulates neurogenesis [197], partly, due to BMECs-
derived GABA, which supports neuronal migration [198]. Thus, two neurotransmitters
derived from the TCA cycle contribute to the regulation of cell fate in the developing brain
or in neurogenic niches of adult brain. Whether or not PDH activity could dictate the
balance of depolarizing and hyperpolarizing signals in stem/progenitor or neuronal cells
requires further assessment.

The exact mechanism of such regulation relates to the phenomenon of excitation/inhibition
(E/I) balance: stem and progenitor cells serve as targets for the action of GABA in neuro-
genic and oligovascular niches [199]. As is shown, the ratio of excitatory and inhibitory
conductance (E/I balance) is required for preventing inappropriate response of neurons
to input strength; this mechanism matures at the early postnatal period (P8-P18 in mice)
due to changes in the expression of chloride transporters NKCC1 and KCC2 induced by
intranatal action of oxytocin [199,200]. Thus, it was proposed that one of the main goals
of adult neurogenesis might be the restoration of E/I balance in the pre-existing neural
circuits of hippocampus [199,201].

ELS induced by maternal separation in rats accelerates synaptic activity in hippocam-
pus; thus, LTP peaks in adolescence (P22–24) but not in adulthood [202], and age-dependent
shift in spontaneous excitatory synaptic currents relative to inhibitory synaptic currents
was significantly accelerated by ELS in mice [203]. ELS-induced changes in E/I balance are
not specific for hippocampus, since neurons in the prefrontal area [204] and infralimbic
prefrontal layer II/III [203] are affected as well. In sum, E/I balance is greatly affected in
ELS, thereby contributing to the changes in stem and progenitor cells proliferation and
differentiation.

Bioactive lipids. Recent experimental findings suggest that changes in E/I balance in
the activated hippocampus (hippocampus-dependent contextual exploration) might relate
to the metabolism and activity of sphingosine-1-phosphate (S1P) whose local signaling
through sphingosine-1-phosphate receptor 2 (S1PR2) was increased to provide suppression
of excitation and survival of newborn dentate gyrus cells [205]. Currently, S1P is considered
as one of the candidates for the key regulators of adult neurogenesis and angiogenesis, and
one may assume that it contributes to some of the ELS-mediated changes in brain plasticity.
S1P is a sphingolipid which may elicit its effects either extracellularly or intracellularly
being synthesized in the pathway from sphingomyelin to ceramide and sphingosine due
to activity of membrane-bound or cytosolic sphingosine kinases, respectively [206]. Extra-
cellular activity of S1P is mediated by receptors S1PR1–5 that are activated in paracrine
or autocrine manner in various cells. Being expressed in the brain tissue, S1PR1 has been
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reported to take part in controlling the differentiation of brain endothelial cells, embryonic
and adult angiogenesis and vascular maturation, maintenance of endothelial barrier struc-
tural and functional integrity by strengthening tight junction machinery; S1PR2 regulates
excitation of pyramidal neurons and increases endothelial barrier permeability, thereby
allowing development of neuroinflammation; S1PR5 controls proliferation of oligoden-
drocytes [207–210]. Recent data suggest that S1P might be important for the regulation of
mitochondrial dynamics. In ECs, S1PR2 is involved in the high glucose-induced fission
and fragmentation of mitochondria [211,212], thus, it is tempting to speculate that such
activity might underlie S1PR2-driven BBB breakdown. Mitochondria may produce S1P
due to sphingosine kinase 2 whose activity seems to be indispensable for mitochondrial
respiration [213]. Intracellular targets for S1P are mitochondria, endoplasmic reticulum
(ER), and various enzymes, i.e., β-site amyloid precursor protein (APP) cleaving enzyme-1,
thereby, it directly regulates autophagy and proteolysis of intracellular proteins in neuronal
cells [214,215]. Thus, taking into consideration numerous effects of S1P in brain cells, it is
not surprising that deregulation of S1P metabolism and signaling attributes to pathogene-
sis of neurodevelopmental, neuroinflammatory, and neurodegenerative disorders [216].
However, involvement of S1P metabolism or activity in the brain development or in the
pathogenesis of ELS remains unclear and requires further studies.

Experimental data confirm that S1P may act as an universal regulator of neurogenesis
and angiogenesis within neurogenic niches. S1P action results in proliferation of neural pro-
genitor cells in vitro that express S1PR1,2,3,5 [217]. Embryonic neural progenitor epithelial
cells are sensitive to stimulatory action of S1P [218], and changes in the expression of S1PR1
leads to shift in the direction of migration of neuroblasts in vivo [219]. Application of
FTY720, which acts on S1PRs, leads to enhanced migration of NPCs transplanted into mice,
thus showing its potential as neurogenesis-promoting drug [220]. S1PR1 and S1PR3 medi-
ate stimulatory action of S1P on ECs, resulting in their proliferation and migration [221].
However, some data taken from S1pr1−/− mice suggest that activation of S1PR1 results
in inhibition of angiogenic sprouting [222].

As we discussed before, oxygen tension within the neurogenic niche controls the
fate of NSCs/NPCs. In erythrocytes, S1P may act as a hypoxia-responsive lipid which
promotes glycolysis [223], but it might be not true for mitochondria-containing cells. Indeed,
S1P stimulates mitochondrial respiration in cardiac cells [213], promotes mitochondrial
biogenesis in Hep G2 cells acting through PGC-1 [224], but negatively affects OXPHOS
and mobilization of endogenous lipids to fuel FAO in T cells [225]. Thus, it might be
hypothesized that production of S1P in NSCs/NPCs or accessory cells within neurogenic
niches might coordinate metabolic reprogramming associated with the recruitment of stem
cells. Particularly, basal levels of sphingimyelin-ceramide-S1P metabolism would result in
suppression of OXPHOS to keep the pool of stem and progenitor cells, but activation of
S1P production could lead to proliferation and migration of cells. At the same time, S1P
stimulates establishment of new microvessels and BBB whose integrity would depend on
the predominant expression of S1PRs on BMECs. However, whether or not this mechanism
is functional in neurogenic niches in the brain remains to be evaluated.

4. Conclusions and Further Prospects: Strategies Aimed to Restore Metabolic
Plasticity of Brain Cells for Efficient Neurogenesis and Angiogenesis

There is growing evidence that metabolic status of brain cells controls brain plasticity
and vulnerability to the action of stimuli affecting brain development [226], and it was
clearly demonstrated in various physiological conditions or brain diseases, including those
caused by ELS (Figure 3). Diversity of metabolic characteristics of brain cells at various
stages of ontogenesis and in different brain regions, in immature or mature states, in active
or resting conditions, suggests that it might be quite difficult to figure out the unified
“metabolic pattern” of the brain activity. Thus, metabolism, in general, or mitochondrial
dynamics and energy metabolism cannot be attributed to the whole brain tissue or even
some brain regions, because it is an integral parameter derived from many types of cells
with different activities [227].



Biomedicines 2021, 9, 1092 14 of 24

Biomedicines 2021, 9, x FOR PEER REVIEW 14 of 25 
 

on the predominant expression of S1PRs on BMECs. However, whether or not this mech-
anism is functional in neurogenic niches in the brain remains to be evaluated. 

4. Conclusion and Further Prospects: Strategies Aimed to Restore Metabolic Plasticity 
of Brain Cells for Efficient Neurogenesis and Angiogenesis 

There is growing evidence that metabolic status of brain cells controls brain plasticity 
and vulnerability to the action of stimuli affecting brain development [226], and it was 
clearly demonstrated in various physiological conditions or brain diseases, including 
those caused by ELS (Figure 3). Diversity of metabolic characteristics of brain cells at var-
ious stages of ontogenesis and in different brain regions, in immature or mature states, in 
active or resting conditions, suggests that it might be quite difficult to figure out the uni-
fied “metabolic pattern” of the brain activity. Thus, metabolism, in general, or mitochon-
drial dynamics and energy metabolism cannot be attributed to the whole brain tissue or 
even some brain regions, because it is an integral parameter derived from many types of 
cells with different activities [227]. 

 
Figure 3. Acute and long-lasting/postponed changes in brain metabolism and plasticity induced by ELS. 

However, numerous pharmacological agents that might affect energy production, 
mitochondrial dynamics and mitochondrial quality control in the tissue have been already 
tested in experimental conditions or even proposed for their application in clinical prac-
tice: dynasore and cilnidipine as inhibitors of mitochondrial fission, leflunomide as pro-
moter of mitochondrial fusion, p53 and TSPO (mitochondrial translocator protein) inhib-
itors, iron chelator deferiprone, resveratrol as modulators of mitophagy, glycolysis inhib-
itors, nicotinamide, nicotinamide riboside and NAMPT activators as NAD+ boosting mol-
ecules [228–231]. Pharmacological agents that have been suggested for preventing or re-
ducing the negative consequences of ELS, i.e., inhibitors of fatty acid amide hydrolase and 
cyclooxygenase-2, antidepressants with evident pro-neurogenic activity, methionine, 
valproic acid, theophyllin, fluoxetine and trichostatin A as epigenome-modulating agents, 
VEGF as neurogenesis- and angiogenesis-promoting factor, agents affecting oxytocinergic 
mechanisms, as well as enriched environment, are able to attenuate some neuropatholog-
ical changes induced by ELS [232–235]. However, most of them have not been systemati-
cally tested as drugs or factors affecting brain cells metabolism, particularly, in the context 
of metabolic reprogramming of proliferating and differentiating cells within the neuro-
genic/neurovascular niches. 

Presumably, focusing on the exact population of brain cells with similar functional 
competencies will allow deciphering the key biochemical and physiological signatures 
corresponding to particular regimens of brain activity in ELS. In this context, assessment 
of metabolic status and mitochondrial activity/dynamics in cells with confirmed neuro-
genic and angiogenic potential (NSCs, NPCs, EPCs, tip- and stalk-endothelial cells) either 
in vitro or in vivo is of great importance for the identification of molecular targets sensitive 
to pharmacological agents and drug candidates [236,237]. 

Figure 3. Acute and long-lasting/postponed changes in brain metabolism and plasticity induced
by ELS.

However, numerous pharmacological agents that might affect energy production,
mitochondrial dynamics and mitochondrial quality control in the tissue have been al-
ready tested in experimental conditions or even proposed for their application in clinical
practice: dynasore and cilnidipine as inhibitors of mitochondrial fission, leflunomide as
promoter of mitochondrial fusion, p53 and TSPO (mitochondrial translocator protein)
inhibitors, iron chelator deferiprone, resveratrol as modulators of mitophagy, glycolysis
inhibitors, nicotinamide, nicotinamide riboside and NAMPT activators as NAD+ boosting
molecules [228–231]. Pharmacological agents that have been suggested for preventing or
reducing the negative consequences of ELS, i.e., inhibitors of fatty acid amide hydrolase
and cyclooxygenase-2, antidepressants with evident pro-neurogenic activity, methionine,
valproic acid, theophyllin, fluoxetine and trichostatin A as epigenome-modulating agents,
VEGF as neurogenesis- and angiogenesis-promoting factor, agents affecting oxytocinergic
mechanisms, as well as enriched environment, are able to attenuate some neuropathological
changes induced by ELS [232–235]. However, most of them have not been systematically
tested as drugs or factors affecting brain cells metabolism, particularly, in the context
of metabolic reprogramming of proliferating and differentiating cells within the neuro-
genic/neurovascular niches.

Presumably, focusing on the exact population of brain cells with similar functional
competencies will allow deciphering the key biochemical and physiological signatures
corresponding to particular regimens of brain activity in ELS. In this context, assessment of
metabolic status and mitochondrial activity/dynamics in cells with confirmed neurogenic
and angiogenic potential (NSCs, NPCs, EPCs, tip- and stalk-endothelial cells) either in vitro
or in vivo is of great importance for the identification of molecular targets sensitive to
pharmacological agents and drug candidates [236,237].

Analysis of current data on the role of metabolic reprogramming of stem and progen-
itor cells involved in neurogenesis and cerebral angiogenesis during their development
reveals the following approaches that might have prospects in translational studies and
clinical applications: (i) modulation of mitochondrial activity and glycolytic flux in target
cells; (ii) modulation of mitochondrial dynamics, intracellular mitochondrial redistribution
and intercellular mitochondrial transfer; (iii) manipulations with the intracellular NAD+

levels; (iv) modulation of cell-to-cell and intracellular signaling mediated by common
metabolites; (v) modulation of neurovascular effects and local permeability of BBB for
adequate supply of nutrients, oxygen, metabolites, and regulatory molecules, utilization of
hypoxia/hyperoxia-driven metabolic control of neurogenesis and angiogenesis; (vi) modu-
lation of E/I balance in the loci of neurogenesis and angiogenesis; (vii) differential targeting
of neurogenic cells residing in conventional neurogenic niches (SGZ, SVZ), non-classic
neurogenic niches (hypothalamus, amygdala, cerebellum, etc.), or non newly-generated
DCX+PSA-NCAM+ immature neurons in the cortex, as well as of angiogenic cells (bone-
marrow-derived EPCs, BMECs), and, probably some circulating multipotent cells of bone
marrow origin for manipulating with developmental and experience-dependent brain
plasticity. This is a new and exciting chapter in exploring the mechanisms of brain develop-



Biomedicines 2021, 9, 1092 15 of 24

ment and searching for effective ways to prevent the negative effects of early life stress on
cognition and behavior.
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