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Abstract
We consider a model due to Piero Poletti and collaborators that adds spontaneous
human behavioral change to the standard SIR epidemic model. In its simplest form,
the Poletti model adds one differential equation, motivated by evolutionary game
theory, to the SIRmodel. The new equation describes the evolution of a variable x that
represents the fraction of the population following normal behavior. The remaining
fraction 1 − x uses altered behavior such as staying home, social isolation, mask
wearing, etc. Normal behavior offers a higher payoff when the number of infectives is
low; altered behavior offers a higher payoff when the number is high.We show that the
entry–exit function of geometric singular perturbation theory can be used to analyze
the model in the limit in which behavior changes on a much faster time scale than that
of the epidemic. In particular, behavior does not change as soon as a different behavior
has a higher payoff; current behavior is sticky. The delay until behavior changes is
predicted by the entry–exit function.

Keywords Epidemiological modeling · Entry–exit function · Geometric singular
perturbation theory · Imitation dynamics · Evolutionary game theory

Mathematics Subject Classification 92D30 · 34E15 · 91A22

1 Introduction

An infectious disease epidemic in a human population, such as measles, influenza, or
covid-19, spreads due to a combination of pathogen characteristics and human behav-
ior. Pathogen characteristics determine the circumstances under which an infected

B Stephen Schecter
schecter@ncsu.edu

1 Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-021-01605-2&domain=pdf
http://orcid.org/0000-0002-6676-3858


54 Page 2 of 26 S. Schecter

person can readily infect another. Human behavior determines how frequently those
circumstances occur.

Baseline human behavior varies with the society. In a city, crowded conditions in
housing, public transportation, schools and workplaces may lead to frequent close
human interactions; in a rural area this may be less true. In East Asia mask-wearing
in public is fairly common in normal circumstances (Teng 2020); in other parts of the
world it is rare.

During an epidemic, human behavior may change due to government policies that
close schools and businesses, require people to stay at home, or encourage social
distancing and mask-wearing.

Spontaneous changes in human behavior also affect the course of an epidemic.
Peoplemay react to an epidemic, or to information presented to them, by spontaneously
reducing social contacts, staying home to the extent possible, adopting more stringent
hygiene or social distancing, or wearing a mask. People may adopt these behaviors
independent of government policies; and, to the extent that they feel motivated to
adopt such behaviors, they are more likely to comply with government orders and
encouragement to do so.

Similarly, when an epidemic wanes, or when people are presented with information
that an epidemic is waning or that the infection is less dangerous than originally feared,
peoplemay spontaneously return to normal behavior. If restrictive government policies
are still in place, compliance may decline.

In the simplest epidemic models, SIR models, the transmissibility of an infectious
disease in captured in a single parameter, β, defined as the number of “adequate
contacts” per unit time that an infected person has with other people (Hethcote 2009).
If these other people are susceptible to the infection (not immune due to previous
infection and not currently infected), an adequate contact results in a new infected
individual. The basic reproduction number of the infectious disease, R0, is β times
the typical length of time that an infected person remains infective. If R0 > 1, then
initially, when the susceptible fraction of the population is close to 1, the number of
infected individuals will grow.

Epidemic control measures aim to reduce β by enforcing or encouraging changes
in behavior. To determine what measures to institute, governments rely on epidemic
models that estimate β under normal circumstances (perhaps using information from
similar pathogens or past epidemics) and under various restrictive policies.

Bauch et al. (2013) pointed out that a weakness of all epidemic models in then-
current use is that they ignored spontaneous behavioral change. As far as I know, the
situation has not changed. For example, the Imperial College covid-19 model (Fergu-
son et al. 2020), which influenced the United Kingdom and United States government
to institute social distancingmeasures (Booth 2020), was based on a very detailed 2006
influenza epidemic model by the same group (Ferguson et al. 2006). According to the
2006 paper, “We do not assume any spontaneous change in the behaviour of unin-
fected individuals as the pandemic progresses, but note that behavioural changes that
increased social distance together with some school and workplace closure occurred
in past pandemics …and might be likely to occur in a future pandemic even if not part
of official policy. …Such spontaneous changes in population behaviour might more
easily reduce peak daily case incidence.”
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Epidemiologists appear to bewell aware that spontaneous behavioral change should
be incorporated inmodels. There is a fairly extensive literature onways to do it; review
articles include Bauch et al. (2013), Verelst et al. (2016), Wang (2016). There does not
appear to be agreement on what modeling approach is best. This probably should not
be regarded as a serious problem; a variety of different models are commonly used
in epidemiology. A more serious issue is that there has been little work on how to
determine the values of the parameters in the models (Verelst et al. 2016). Without
approximate values for the parameters, models of spontaneous behavioral change can
only yield qualitative predictions.

The goal of this paper is not to deal with the various issues of how best to account
for behavioral change in epidemic models. Instead we want to direct attention to a
particular approach to behavioral change (Poletti et al. 2009, 2012; Poletti 2010) in
its simplest form. This model, which we call the Poletti model, adds one equation,
motivated by evolutionary game theory (Nowak and Sigmund 2004; Hofbauer and
Sigmund 2003), to the standard SIR model. It is thus a “coupled disease-behavior
model” (Wang2016).Our goal is to showhow the entry–exit function (DeMaesschalck
2008) of geometric singular perturbation theory (Jones 1995; Kuehn 2015) can be used
to analyze this model. Given values for the parameters, the entry–exit function enables
one to make precise predictions in the limit where behavioral change occurs on amuch
faster time scale than the epidemic itself.

To my knowledge, there have been two previous uses of the entry–exit function in
epidemiological models, Li et al. (2016) and Jardón-Kojakhmetov et al. (2020).

Figure 1 shows a typical simulation of the Poletti model. There are three variables.
Two, S and I , are the familiar susceptible and infective population fractions from the
SIR model. The third variable, x , represents the fraction of the population following
normal behavior. When x = 1, in this simulation, the model reduces to an SIR model
with R0 = 3. When x = 0, the entire population uses altered behavior; in this
simulation, the model reduces to an SIR model with R0 = .6. In the simulation,
behavior changes on a time scale 200 times faster than that of the epidemic itself.
Thus, if the time scale for the epidemic is days, 1000 time units in the simulation
equals 5 days. The simulation shows 20,000 fast time units, or 100 days.

Altered behavior yields a negative payoff due to loss of income, loss of social
interactions, and so on. However, altered behavior reduces the chance of getting the
infectious disease. In this simulation, normal behavior yields a higher payoff to the
individual when I < .1. When I > .1, altered behavior yields a higher payoff. There
is therefore a tendency to adopt altered behavior, which moderates the epidemic, when
I passes .1. When I falls below .1, there is a tendency to resume normal behavior.
Resuming normal behavior can result in a “second wave” of infections, as seen in the
simulation.

In the Poletti model, susceptibles are assumed to change their behavior from normal
to altered, or vice-versa, due to imitation of other susceptibles they encounter who
are using the opposite behavior and experiencing a higher payoff. The mathematical
formulation of this notion is called imitation dynamics and comes from evolutionary
game theory (Hofbauer and Sigmund 2003). It was introduced into mathematical
epidemiology by Bauch (2005) in a study of vaccination behavior.
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Fig. 1 A simulation of the Poletti model. At the start (S, I , x) = (.96, .04, .98). Since I < 1, almost all
the population quickly adopts normal behavior. After I rises to about .18 (showing behavior stickiness),
the population switches to altered behavior. I falls to about .05 (again showing behavior stickiness); the
population returns to normal behavior; and I rises to about .13 (second wave). After two more behavioral
switches, the epidemic dies out

Since behavior changes because of encounters with other people, in the simula-
tion, behavior does not change immediately when I passes .1; the current behavior
is “sticky.” The delay until behavior changes can be calculated in the limit from the
entry–exit function.

d’Onofrio et al. (2011), in a discussion of imitation dynamics in a vaccination
model, noted that imitation dynamics would inherently involve delay. In their model,
however, the delay occurred near an equilibrium at a rate determined by an eigenvalue
of the equilibrium. In our situation the delay has a different origin.

The Poletti model, in my view, plays a role similar to the SIR model: it gives the
essence of the situation, stripped of complications, and can form the basis for more
realistic models. I expect that geometric singular perturbation theory will also prove
useful in analyzing more realistic extensions of the model.

In the next few sections of the paper we review the SIR model (Sect. 2), introduce
the Poletti model (Sect. 3), and describe and exploit the model’s slow–fast structure
(Sect. 4). The main result of the paper, Theorem 1, is stated at the end of Sect. 4.
We then provide examples (Sect. 5) and proofs (Sect. 6), and conclude with a brief
discussion (Sect. 7).

2 The SIRmodel

In this section we review some standard results about the SIR model from Hethcote
(2000) that will be used in the remainder of the paper. The SIR model for an epidemic
is
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Ṡ = −βSI , (1)

İ = βSI − γ I , (2)

Ṙ = γ I , (3)

with ˙ = d
dt . The variables S, I , and R are population fractions; they sum to 1. (Since

Ṡ + İ + Ṙ = 0, the sum S + I + R is constant.) S is the fraction of the population
that is susceptible to acquiring the infectious disease; I is the fraction that is currently
infected; R is the fraction that has recovered. (For simplicity we assume that the
infection is serious but never fatal.) Thus the equation for R can be ignored; R can be
recovered from R = 1 − S − I . The system reduces to

Ṡ = −βSI , (4)

İ = βSI − γ I (5)

on the triangle T = {(S, I ) : S ≥ 0, I ≥ 0, S + I ≤ 1}.
Let T̂ = {(S, I ) ∈ T : S > 0 and I > 0}. In T̂ the orbits of (4)–(5) satisfy the

differential equation d I
dS = −1 + γ

βS , so they are curves

I + S − γ

β
ln S = C . (6)

The parameter β was discussed in the introduction. The average length of time
an individual is infected is 1

γ
. Thus the basic reproduction number of the infectious

disease R0 mentioned in the introduction is β
γ
.

Phase portraits on T in the cases 0 < R0 < 1 and R0 > 1 are shown in Fig. 2.
In both cases the system has the line segment of equilibria I = 0, 0 ≤ S ≤ 1. Each
solution approaches one of the equilibria (S f , 0). In other words, when the epidemic
ends, no one is infected, and R = 1−S f is the fraction of the population that contracted
the infection in the course of the epidemic.

In T̂ , Ṡ < 0, so the number of susceptibles steadily falls. If 0 < R0 < 1, İ < 0
in T̂ as well, so the number of infectives also steadily falls. If R0 > 1, İ < 0 (resp.
İ > 0) for 0 < S <

γ
β
(resp. γ

β
< S < 1). Thus if a solution starts with γ

β
< S < 1,

then I increases until S has fallen to β
γ
; after that I decreases.

3 The Poletti model

In the Poletti model, susceptible individuals have two available behaviors, normal, for
which β = βn with basic reproduction number R0 = βn

γ
> 1, and altered, for which

β = βa with basic reproduction number R0 = βa
γ

< 1. Altered behavior may include
staying home to the extent possible, practicing social distancing, mask wearing, etc.

Each behavior has a payoff to a susceptible who adopts it. The payoffs are

pn = −mn I and pa = −k − ma I
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Fig. 2 Phase portraits of SIR models. a β = 1/10, γ = 1/6, so R0 = 6/10. b β = 1/2, γ = 1/6, so
R0 = 3. In case (b), the vertical line S = γ /β = 1/3 at which solutions attain their maximum value of I
is also shown. All solutions move to the left as time increases

with mn , ma and k positive and mn > ma . The negative payoff −mn I is due to the
possibility that a susceptible with normal behavior will contract the infectious disease;
it is proportional to I , the fraction of infectives in the population. The negative payoff
−ma I is due to the possibility that a susceptible with altered behavior will contract the
infection; it is also proportional to I , but the proportionality constant is less negative.
In addition, altered behavior has a negative payoff−k independent of I that represents
loss of income, loss of valued social interactions, etc. The payoff from altered behavior
is higher if and only if I > k

mn−ma
, i.e., if and only if the fraction of infectives in the

population is sufficiently high. We assume
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k

mn − ma
< 1.

This assumption allows altered behavior to sometimes have a higher payoff.
We recall from the introduction that susceptibles are assumed to change their behav-

ior from normal to altered, or vice-versa, due to imitation of other susceptibles they
encounter who are using the opposite behavior and experiencing a higher payoff. Let
x denote the fraction of the susceptibles following normal behavior, so that 1 − x is
the fraction using altered behavior. We continue to let S and I denote the susceptible
and infected fractions of the population. Then the complete model is

Ṡ = −(
βnx + βa(1 − x)

)
SI , (7)

İ = (
βnx + βa(1 − x)

)
SI − γ I , (8)

ẋ = x(1 − x)(βa − βn)I + ρx(1 − x)
(
k − (mn − ma)I

)
, (9)

with ˙ = d
dt . The state space is the prism

P = {(S, I , x) : S ≥ 0, I ≥ 0, S + I ≤ 1, 0 ≤ x ≤ 1}.

There is also an equation for the recovered fraction of the population R, Ṙ = γ I ; we
ignore it since R can be recovered from S = 1 − R − I .

For the derivation of the model, see (Poletti et al. 2009; Poletti 2010). It can be
intuitively understood as follows.

The equations for Ṡ and İ come from assuming that both susceptibles with normal
behavior and susceptibles with altered behavior satisfy SIR models.

The first summand in the equation for ẋ is negative; it expresses the fact that
susceptibles with normal behavior acquire the infectious disease more easily than
susceptibles with altered behavior, and hencemore readily leave the susceptible group.
Thus the fraction of susceptibles following normal behavior tends to decrease.

The second summand represents the the rate of change of x due to imitiation
dynamics (Hofbauer andSigmund2003). The rate atwhich susceptibles using different
behaviors encounter each other is proportional to x(1− x). The difference in payoffs
of the two behaviors, given the current level of I , is

pn − pa = k − (mn − ma)I .

When this number is positive, normal behavior yields a larger payoff, so x increases at
a rate proportional to the difference between the payoffs; when this number is negative,
x decreases in the same manner.

The rate constant ρ is the product of two constants: the proportionality constant
that determines how the rate at which suceptibles encounter each other depends on
the product x(1 − x), and the influence on behavior per encounter.
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4 Slow–fast structure

In the remainder of the paper we will assume that the rate constant ρ in (9) is large,
indicating that behavior can change on a much faster time scale than that of the
epidemic itself. We therefore write ρ = 1

ε
with ε > 0 small.

4.1 Slow–fast structure

We consider system (7)–(9) with ρ = 1
ε
and ε > 0 small, and we recall that ˙ = d

dt .
This system is a slow–fast system (Jones 1995; Kuehn 2015) with two slow variables,
S and I , and one fast variable, x ; t is the slow time.

Such systems are more commonly written with the equation for the fast variable
multiplied on both sides by ε:

Ṡ = −(
βnx + βa(1 − x)

)
SI , (10)

İ = (
βnx + βa(1 − x)

)
SI − γ I , (11)

ε ẋ = εx(1 − x)(βa − βn)I + x(1 − x)
(
k − (mn − ma)I

)
. (12)

The fast time τ satisfies t = ετ . With ′ = d
dτ
, system (10)–(12) becomes

S′ = −ε
(
βnx + βa(1 − x)

)
SI , (13)

I ′ = ε
(
βnx + βa(1 − x)

)
SI − εγ I , (14)

x ′ = εx(1 − x)(βa − βn)I + x(1 − x)
(
k − (mn − ma)I

)
. (15)

The slow system (10)–(12) and the fast system (13)–(15) have the same phase
portraits for ε > 0, but they have different limits at ε = 0. For ε = 0, the slow system
(10)–(12) becomes the slow limit system

Ṡ = −(
βnx + βa(1 − x)

)
SI , (16)

İ = (
βnx + βa(1 − x)

)
SI − γ I , (17)

0 = x(1 − x)
(
k − (mn − ma)I

)
, (18)

and the fast system (13)–(15) becomes the fast limit system

S′ = 0, (19)

I ′ = 0, (20)

x ′ = x(1 − x)
(
k − (mn − ma)I

)
. (21)

A singular orbit is a sequence of orbits of the slow limit system (in our case (16)–
(18)) and the fast limit system (in our case (19)–(21)), with each orbit after the first
starting where the previous orbit ends. In many situations, orbits for small ε > 0 are
close to singular orbits.
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4.2 Fast limit system

For the fast limit system (19)–(21), each line segment (S, I ) = (S0, I0) is invariant,
and the triangles x = 0 and x = 1 consist of equilibria. (The plane I = k

mn−ma
also

consists of equilibria, but we will not make direct use of them.) On line segments
(S, I ) = (S0, I0) with 0 ≤ I0 < k

mn−ma
, ẋ > 0, so the solution x(t) of (21) satisfies

limt→−∞ x(t) = 0 and limt→∞ x(t) = 1. On line segments (S, I ) = (S0, I0) with
k

mn−ma
< I0 ≤ 1, ẋ < 0, so the solution x(t) of (21) satisfies limt→−∞ x(t) = 1 and

limt→∞ x(t) = 0. The fast dynamics just reflect the fact that normal behavior gives a
higher payoff if I < k

mn−ma
, and altered behavior gives a higher payoff if I > k

mn−ma
.

If one linearizes the fast limit system (19)–(21) at an equilibrium, there must be at
least two zero eigenvalues, since the first two rows of the matrix of the linearization are
identically zero. The equilibrium is called normally hyperbolic if the other eigenvalue
is nonzero. It is called normally attracting (resp. normally repelling) if the other
eigenvalue is negative (resp. positive).

Thus equilibria of (19)–(21) are normally attracting (resp. normally repelling) if
∂ ẋ
∂x is negative (resp. positive) at the equilibrium. One can check that equilibria with
x = 0 are normally repelling for I < k

mn−ma
and normally attracting for I > k

mn−ma
.

Equilibria with x = 1 are the reverse.

4.3 Slow limit system

The slow limit system (16)–(18) makes sense on the triangles x = 0 and x = 1.
On the triangle x = 0, the slow limit system reduces to

Ṡ = −βa S I , (22)

İ = βa S I − γ I . (23)

This is just an SI R model with β = βa and basic transmission number R0 < 1.
Similarly, on the triangle x = 1, the slow limit system reduces to

Ṡ = −βn S I , (24)

İ = βn S I − γ I . (25)

This is just an SI R model with β = βn and basic transmission number R0 > 1.
For ε > 0, the triangles x = 0 and x = 1 remain invariant. The slow system

(10)–(12), restricted to x = 0, remains (22)–(23). Restricted to x = 1 it remains
(24)–(25). Thus the line segments {(S, I , x) : 0 ≤ S ≤ 1, I = 0, x = 0} and
{(S, I , x) : 0 ≤ S ≤ 1, I = 0, x = 1} remain equilibria.

We will use the following notation where convenient:

– φε
(
(S0, I0, x0), t

) = solution of (13)–(15) with φε
(
(S0, I0, x0), 0

) = (S0, I0, x0).
– ψ0

(
(S0, I0), t

) = solution of (22)–(23) with ψ0
(
(S0, I0), 0

) = (S0, I0).
– ψ1

(
(S0, I0), t

) = solution of (24)–(25) with ψ1
(
(S0, I0), 0

) = (S0, I0).
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4.4 Entry–exit function for the triangle x = 0

In the triangle x = 0, let (S0, I0) ∈ T̂ with I0 > k
mn−ma

, so (S0, I0) lies in the

attracting portion of the triangle. Let (S(t), I (t)) = ψ0
(
(S0, I0), t

)
, let t1 > 0, and let

(S1, I1) = (
S(t1), I (t1)

)
. The solution

(
S(t), I (t)

)
traces out a curve Γ , which from

(6) has the equation

I + S − γ

βa
ln S = v0, v0 = I0 + S0 − γ

βa
ln S0 = I1 + S1 − γ

βa
ln S1. (26)

We define the entry–exit integral

I0
(
(S0, I0), (S1, I1)

) =
∫ t1

0
k − (mn − ma)I (t) dt

=
∫ S1

S0

k − (mn − ma)(v0 − S + γ
βa

ln S)

βa S(v0 − S + γ
βa

ln S)
dS. (27)

The second integral follows from the first bymaking the substitutions S = S(t), dS =
−βa S(t)I (t) dt , and I = v0 − S + γ

βa
ln S, which follows from (26). It cannot be

evaluated analytically, but is readily evaluated numerically.
The integrand of the first integral is negative when I > k

mn−ma
and positive when

I < k
mn−ma

. The integral represents accumulated attraction to (resp. repulsion from)
the plane x = 0 where the integrand is negative (resp. positive).

Proposition 1 For each point (S0, I0) in T̂ with I0 > k
mn−ma

, there is exactly one
t1 > 0 such that (S1, I1) = (S(t1), I (t1)) satisfies
I0

(
(S0, I0), (S1, I1)

) = 0.

Of course, (S1, I1) lies in the region I < k
mn−ma

. Intuitively, at (S1, I1) the accumu-
lated repulsion from the plane x = 0 balances the accumulated attraction to the plane.
We shall see that for small ε > 0, a solution of (13)–(15) that enters a neighborhood
of the plane x = 0 near (S0, I0) will track a solution of (22)–(23) near (S(t), I (t))
until it leaves the neighborhood near (S1, I1). See Fig. 3 and Sect. 6.2.

4.5 Entry–exit function for the triangle x = 1

In the triangle x = 1, let (S0, I0) ∈ T̂ with I0 < k
mn−ma

, so (S0, I0) lies in the

attracting portion of the triangle. Let (S(t), I (t)) = ψ1
(
(S0, I0), t

)
, let t1 > 0, and let

(S1, I1) = (
S(t1), I (t1)

)
. The solution

(
S(t), I (t)

)
traces out a curve Γ , which from

(6) has the equation

I + S − γ

βn
ln S = v0, v0 = I0 + S0 − γ

βn
ln S0 = I1 + S1 − γ

βn
ln S1. (28)
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Fig. 3 A solution of (13)–(15)
approaches the triangle x = 0
near a point (S0, I0), follows the
solution of (22)–(23) through
(S0, I0) until
I0

(
(S0, I0), (S1, I1)

) = 0, then
leaves the triangle

We define the entry–exit integral

I1
(
(S0, I0), (S1, I1)

) = −
∫ t1

0
k − (mn − ma)I (t) dt

=
∫ S1

S0

k − (mn − ma)(v0 − S + γ
βn

ln S)

βn S(v0 − S + γ
βn

ln S)
dS. (29)

The second integral follows from the first as in the previous subsection.
The integrand of the first integral is negative when I < k

mn−ma
and positive when

I > k
mn−ma

. The integral represents accumulated attraction to (resp. repulsion from)
the plane x = 1 where the integrand is negative (resp. positive).

The system (24)–(25) on T has a unique orbit that is tangent to the line I = k
mn−ma

.

The point of tangency is (S∗, I ∗), I ∗ = k
mn−ma

. Let Γ ∗ denote the part of this orbit

with S∗ < S < 1. Let Γ ∗ have the equation S = S∗(I ), 0 < I < k
mn−ma

. Let

V− = {(S, I ) ∈ T̂ : 0 < S < S∗(I ) and I < k
mn−ma

}, and let V+ = {(S, I ) ∈ T̂ :
S∗(I ) ≤ S and I < k

mn−ma
}. See Fig. 4.

Let (S0, I0) ∈ V− and let (S(t), I (t)) = ψ1
(
(S0, I0), t

)
. Then(

S(t), I (t)
) ∈ V− for all t ≥ 0. Thus I1

(
(S0, I0), (S1, I1)

)
is never 0. As t → ∞,(

S(t), I (t)
)
approaches an equilibrium (S f , 0) of (24)–(25). In this case, for small

ε > 0, a solution of (13)–(15) that enters a neighborhood of the plane x = 1 near
(S0, I0)will track a solution of (24)–(25) near (S(t), I (t)) and approach an equilibrium
(Sε

f , 0, 1) of (13)–(15) with Sε
f near S f . See Sect. 6.4.

Let (S0, I0) ∈ V+ and let (S(t), I (t)) = ψ1
(
(S0, I0), t

)
. Then

(
S(t), I (t)

)
enters

the region I ≥ k
mn−ma

at t = tin > 0 and leaves that region at t = tout ≥ t = tin.

If − ∫ tout
0 k − (mn − ma)I (t) dt < 0, then there is no point (S1, I1) where

I1
(
(S0, I0), (S1, I1)

) = 0. As in the previous paragraph, let (S f , 0) = limt→∞
(
S(t),

I (t)
)
. In this case also, for small ε > 0, a solution of (13)–(15) that enters a neigh-

borhood of the plane x = 1 near (S0, I0) will track a solution of (24)–(25) near
(S(t), I (t)) and approach an equilibrium (Sε

f , 0, 1) of (13)–(15) with Sε
f near S f .
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Fig. 4 Phase portrait of the fast limit system (24)–(25) in the triangle x = 1 with βn = 1/2 and γ = 1/6.
The vertical line S = γ /β = 1/3 and the horizontal line I = k

mn−ma
= 1

10 are shown, as are the sets V−
and V+ bounded above by this line. Solutions that start in V− approach equilibria without crossing the line
I = k

mn−ma
; solutions that start in V+ cross the line

If − ∫ tout
0 k − (mn − ma)I (t) dt > 0, then there is a unique point (S1, I1), with

I1 > k
mn−ma

, where I1
(
(S0, I0), (S1, I1)

) = 0. For small ε > 0, a solution of (13)–
(15) that enters a neighborhood of the plane x = 1 near (S0, I0)will track a solution of
(24)–(25) near (S(t), I (t)) until it leaves the neighborhood near (S1, I1). See Sect. 6.3.

4.6 Singular orbits

Motivated by the previous subsections, we construct singular orbits (which were
defined at the end of Sect. 4.1) of the system (13)–(15) (or equivalently (10)–(12)).

First we consider a singular orbit S with starting point (S0, I0, x0), (S0, I0) ∈ T̂ ,
I0 < k

mn−ma
, and 0 < x0 < 1. At this point, ẋ > 0.

1. The first orbit in S is a fast orbit: the portion of the line (S, I ) = (S0, I0) with
x0 ≤ x < 1.

2. To describe the next orbit in S , there are three cases. Let (S(t), I (t)) =
ψ1

(
(S0, I0), t

)
, and, given t1 > 0, let (S1, I1) = (

S(t1), I (t1)
)
.

2a. Suppose there exists t1 > 0 suchI1
(
(S0, I0), (S1, I1)

) = 0 and I1 > k
mn−ma

.
The next orbit of S is {(S(t), I (t)) : 0 ≤ t ≤ t1}, a slow orbit.

2b. Suppose there exists t1 > 0 such that I1
(
(S0, I0), (S1, I1)

) = 0, and I1 =
k

mn−ma
. In this case the construction of the singular orbit fails. (Notice t1 = tout

from the previous subsection. We discuss this case further after the proof of
Theorem 2 in Sect. 6.1.)
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2c. Suppose there is no t1 > 0 such thatI1
(
(S0, I0), (S1, I1)

) = 0. Then the next
orbit of S is {(S(t), I (t)) : t ≥ 0}, a slow orbit. This orbit approaches an
equilibrium of (24)–(25). The construction of S terminates.

3. We continue the construction ofS in case 2a. The next orbit inS is a fast orbit:
the portion of the line (S, I ) = (S1, I1) with 0 < x < 1.

4. Let (S(t), I (t)) = ψ0
(
(S1, I1), t

)
. By Proposition 1 there is exactly one t1 > 0

such that (S2, I2) = (S(t1), I (t1)) satisfies I0
(
(S1, I1), (S2, I2)

) = 0. We have
I1 < k

mn−ma
. The next orbit of S is {(S(t), I (t)) : 0 ≤ t ≤ t1}, a slow orbit.

5. The next orbit in S is a fast orbit: the portion of the line (S, I ) = (S2, I2) with
0 < x < 1.

We now continue the construction at step 2, setting (S0, I0) equal to (S2, I2).
Next we consider a singular orbit S with starting point (S0, I0, x0), (S0, I0) ∈ T̂ ,

I0 > k
mn−ma

, and 0 < x0 < 1. In this case the first orbit inS is again a fast orbit: the
portion of the line (S, I ) = (S0, I0) with 0 < x ≤ x0. We continue the construction
of S at step 4 above, setting (S1, I1) equal to (S0, I0).

In both cases the singular orbitS is an alternating sequence of fast and slow orbits,
with the first orbit fast. The slow orbits alternate between orbits in x = 0 and orbits
in x = 1. The last orbit is a slow orbit in x = 1 that approaches an equilibrium, for
which I = 0.

Theorem 1 Let (S0, I0, x0) satisfy (S0, I0) ∈ T̂ , I0 	= k
mn−ma

, and 0 < x0 < 1.
Suppose the construction of the singular orbitS that starts at (S0, I0, x0) never fails
at step 2 and terminates after a finite number of steps at (S f , 0, 1). Let Γ ε denote the
orbit of (13)–(15) that starts at (S0, I0, x0). Then as ε → 0, Γ ε → S . The terminal
point (Sε

f , 0, 1) of Γ
ε converges to (S f , 0, 1).

Theorem 1 applies only to singular orbits with a finite number of segments. I suspect
that, in the context of Theorem 1, all singular orbits have a finite number of segments,
but have not been able to prove it.

Roughly speaking, the fast jumps between x = 0 and x = 1 occur because the
predominant behavior among the susceptibles has become less rewarding than the
alternative.When normal behavior predominates (x near 1), if the fraction of infectives
becomes high, behavior may switch to the altered form (x near 0). When altered
behavior predominates (x near 0), the fraction of infectives becomes low, and behavior
swiches to the normal form (x near 1).

However, the switch does not occur immediately when the number of infectives
crosses the threshhold value I = k

mn−ma
. As was mentioned in the introduction,

behavior changes because of encounters with other people whose behavior offers a
higher payoff than one’s own, so the current behavior is “sticky.” The delay until
behavior changes can be calculated in the limit from the entry–exit function.
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5 Examples

We consider the system (10)–(12) with the parameter values

βn = 1/2, βa = 1/10, γ = 1/6, k = 3/10, mn = 5, ma = 2.

From the values of βn , βa , and γ , we see R0 = 3 for normal behavior and .6 for altered
behavior. The phase portrait of (22)–(23) in the triangle x = 0 (resp. (24)–(25) in the
triangle x = 1) is given by Fig. 2a (resp. Fig. 2b). The plane I = k

mn−ma
is I = 1/10.

We shall consider singular orbits that start at Pstart = (S0, I0, .98) with I0 < 1/10.
Such a singular orbit starts with a fast solution from Pstart to (S0, I0, 1). One possibility
is that the singular orbit immediately ends with an orbit of (24)–(25) from (S0, I0, 1)
to a point Pend = (S f , 0, 1); we would represent such a singular orbit by the sequence
(Pstart, Pend). Otherwise we represent the singular orbit by a sequence

(Pstart, P1, P2, . . . , P2k, Pend),

where

– the first fast orbit goes from Pstart = (S0, I0, .98) to (S0, I0, 1);
– the first slow orbit goes from (S0, I0, 1) to P1 = (S1, I1, 1);
– the second fast orbit goes from P1 = (S1, I1, 1) to (S1, I1, 0);
– the second slow orbit goes from (S1, I1, 0) to P2 = (S2, I2, 0) (unless it’s the last
slow orbit, see below);

– the third fast orbit goes from P2 = (S2, I2, 0) to (S2, I2, 1);

...

– the last fast orbit goes from P2k = (S2k, I2k, 0) to (S2k, I2k, 1);
– the last slow orbit goes from (S2k, I2k, 1) to Pend = (S f , 0, 1).

In other words, P1, …, P2k are the starting points of fast jumps; Pi with i odd is in
x = 1, and Pi with i even is in x = 0.

Using the Matlab routines in the appendix, one can compute singular orbits for this
system.We give three examples. Corresponding to each example we show the solution
of the fast system (13)–(15) with the same starting point and ε = .005, on the interval
0 ≤ t ≤ 20,000, computed using the Matlab ODE solver ode23s with the options
RelTol = 1e−10 and AbsTol = 1e−11. Because ε = .005, 1000 units of fast time
correspond to five units of slow time, i.e., 5 days. To compare with the singular orbits,
we give the value of I at x = 1/2 along each jump, and the value of S at t = 30,000.

Example 1 A singular orbit with two jumps.

Pstart = (.97, .03, .98)

P1 = (.6713533014, .2059798507, 1)

P2 = (.5714338970, .0373213930, 0)
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Fig. 5 Example 1, Pstart = (.97, .03, .98). a Phase portrait of the slow limit system in the triangle x = 1,
with the vertical line S = βn

γ = 1
3 and the horizontal line I = k

mn−ma
= 1

10 shown. The slow orbits
from Pstart to P1 and from P2 to Pend are shown in this phase portrait. The slow orbit from P1 to P2 lies
in the triangle x = 0; see Fig. 2a. b Solution of the fast system (13)–(15) with the same starting point and
ε = .005

Pend = (.1400580768, 0, 1)

See Fig. 5. For the computed solution, jumps in x occur successively at I = .20535
and I = .03735; S = .14017 at t = 30,000. Infections initially rise, then the epidemic
is controlled by altered behavior for a while. When the population switches back to
normal behavior, infections rise for a while, then fall to zero.
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Fig. 6 Example 2, Pstart = (.96, .04, .98). a Phase portrait of the slow limit system in the triangle x = 1,
with the vertical line S = βn

γ = 1
3 and the horizontal line I = k

mn−ma
= 1

10 shown. The slow orbits from
Pstart to P1, from P2 to P3, and from P4 to Pend are shown in this phase portrait. The slow orbits from P1
to P2 and from from P3 to P5 lie in the triangle x = 0; see Fig. 2a. b Solution of the fast system (13)–(15)
with the same starting point and ε = .005

Example 2 A singular orbit with four jumps. This example was shown in the introduc-
tion.

Pstart = (.96, .04, .98)

P1 = (.7197479246, .1842413292, 1)

P2 = (.6258761345, .0451988482, 0)
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P3 = (.2763360357, .1222273345, 1)

P4 = (.2682106618, .0806111708, 0)

Pend = (.1459222576, 0, 1)

See Fig. 6. For the computed solution, jumps in x occur successively at I = .17815,
I = .04756, I = .13366, and I = .07233; S = .15656 at t = 30,000. In this
example, when infections rise after the population switches back to normal behavior,
the population again switches to altered behavior. Eventually it switches back to normal
behavior; this time there is no rise in infections, and infections fall to zero.

Example 3 A singular orbit with six jumps.

Pstart = (.93, .07, .98)

P1 = (.8251362461, .1349850649, 1)

P2 = (.7667769297, .0710900559, 0)

P3 = (.6515152002, .1320533864, 1)

P4 = (.6155232547, .0733319974, 0)

P5 = (.4804269385, .1258291260, 1)

P6 = (.4615380487, .0778669034, 0)

Pend = (.1387323862, 0, 1)

See Fig. 7. For the computed solution, jumps in x occur successively at I = .13931,
I = .07344, I = .12876, I = .07547, I = .12329, and I = .07959; S = .13760
at t = 30,000. In this example, the population switches to altered behavior three
times after a rise in infections with normal behavior. After the final episode of altered
behavior, when the population switches back to normal behavior, infections rise and
then fall to zero.

6 Proofs

6.1 Entry–exit function

Let U be an open subset of Rn , n ≥ 1, and consider the system

ċ = p(c, z, ε), (30)

ε ż = zq(c, z, ε), (31)

with (c, z, ε) ∈ U × [0, z0) × [0, ε0) and ˙ = d
dt . We assume p and q are of class

Cr , r ≥ 2. This is a slow–fast system with n-dimensional slow variable c and one-
dimensional fast variable z; t is the slow time.

The fast time τ satisfies t = ετ . With ′ = d
dτ
, system (30)–(31) becomes the fast

system

c′ = ε p(c, z, ε), (32)
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Fig. 7 Example 3, Pstart = (.93, .07, .98). a Phase portrait of the slow limit system in the triangle x = 1,
with the vertical line S = βn

γ = 1
3 and the horizontal line I = k

mn−ma
= 1

10 shown. The slow orbits from
Pstart to P1, from P2 to P3, from P4 to P5, and from P6 to Pend are shown in this phase portrait. The slow
orbits from P1 to P2, from P3 to P4, and from P5 to P6 lie in the triangle x = 0; see Fig. 2a. b Solution of
the fast system (13)–(15) with the same starting point and ε = .005

z′ = zq(c, z, ε). (33)

The slow and fast systems have the same phase portraits for ε > 0 but have different
limits at ε = 0. For ε = 0, the slow system (30)–(31) becomes the slow limit system

ċ = p(c, z, 0), (34)

0 = zq(c, z, 0), (35)
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and the fast system (32)–(33) becomes the fast limit system

c′ = 0, (36)

z′ = zq(c, z, 0). (37)

The fast limit system (36)–(37) has the n-dimensional plane of equilibria z = 0.
The linearization of the fast limit system at one of these equilibria has at least n zero
eigenvalues. The equilbrium is called normally hyperbolic if the (n+1)th eigenvalue is
nonzero. More precisely, the equilibrium is called normally attracting (resp. normally
repelling) if the (n + 1)th eigenvalue is negative (resp. positive).

Let p̃(c) = p(c, 0, 0) and q̃(c) = q(c, 0, 0). Then the equilibrium (c, 0) of the fast
limit system (36)–(37) is normally attracting (resp. normally repelling) if q̃(c) < 0
(resp. q̃(c) > 0). We assume

(E) if q̃(c) = 0, then Dq̃(c) p̃(c) > 0.

Assumption (E) says in particular that if q̃(c) = 0, then Dq̃(c) 	= 0. This implies
that the equation q̃(c) = 0 defines a Cr codimension-one submanifold S of U . It
separates points (c, 0) where q̃(c) < 0, i.e., normally attracting equilibria of the fast
limit system (34)–(35), from points (c, 0) where q̃(c) > 0, i.e., normally repelling
equilibria of the fast limit system.

For c0 ∈ U with q̃(c0) < 0, letψ(c0, t) denote the solution of (34) withψ(c0, 0) =
c0. Assumption (E) implies that ψ(c0, t) crosses the manifold S at most once, say at
t = t̃ > 0. Moreover, assumption (E) implies that for t < t̃ , q̃(ψ(c0, t)) < 0, so
(ψ(c0, t), 0) is a normally attracting equilibrium of the slow limit system; and for
t > t̃ , q̃(ψ(c0, t)) > 0, so (ψ(c0, t), 0) is a normally repelling equilibrium of the
slow limit system.

Given t1 > 0, let c1 = ψ(c0, t1). Define the entry–exit integral

I (c0, c1) =
∫ t1

0
q̃(ψ(c0, t)) dt . (38)

Theorem 2 For the system (30)–(31)with p and q of class Cr , assume (E), q̃(c̄0) < 0,
andI (c̄0, c̄1) = 0, so that we necessarily have q̃(c̄1) > 0. For a small neighborhood
Ũ of c̄0 in U, define the entry–exit function P0 : Ũ → U by P0(c0) = c1, where c1 is
defined implicitly by I (c0, c1) = 0. Fix δ > 0 sufficiently small. For a given ε > 0,
consider the solution of (32)–(33) that starts at (c, z) = (c0, δ), with c0 ∈ Ũ . Then:

1. For ε > 0 sufficiently small, the solution reintersects the section z = δ at a point
(c, z) = (Pε(c0), δ).

2. Pε and P0 are Cr functions, and Pε → P0 in the Cr sense as ε → 0.
3. Let Γ ε denote the orbit of (32)–(33) from (c0, δ) to (Pε(c0), δ). As ε → 0, Γ ε

approaches the singular orbit of (32)–(33) consisting of

(a) the line segment [(c0, δ), (c0, 0)), an orbit of (36)–(37);
(b) (Γ , 0), where Γ is the orbit of ċ = p̃(c) from c0 to c1 = P0(c0); (Γ , 0) is an

orbit of (34)–(35).
(c) the line segment

(
(c1, 0), (c1, δ]

)
, an orbit of (36)–(37).
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Fig. 8 Illustration of Theorem 2
with n = 2: singular orbit
connecting two points with
z = δ, and, for a small ε > 0, the
actual orbit Γ ε with the same
starting point. The starting point
of both orbits is A = (c0, δ).
The singular orbit consists of
two vertical lines and (Γ , 0),
where Γ is the orbit of ċ = p̃(c)
from c0 to c1, which has been
chosen so that I (c0, c1) = 0.
Thus c1 = P0(c0). The singular
orbit ends at
B = (c1, δ) = (P0(c0), δ). The
actual orbit Γ ε ends at
C = (Pε(c0), δ)

See Fig. 8.
Theorem2 is proved inDeMaesschalck (2008) under the assumption that for ε = 0,

the system (32)–(33) has been written in a standard form. The relation of the standard
form to the form (32)–(33) is explained in Liu (2000).

In Theorem 2, we assumedI (c̄0, c̄1) = 0, and we used the fact that for c0 near c̄0
there exists c1 near c̄1 such that I (c0, c1) = 0. This can be shown using the Implicit
Function Theorem; it requires that c̄0 lie in the region where q̃ > 0. If c̄0 were in the
boundary of this region, the construction would not work; in addition, we could not
necessarily define Pε(c̄0) near P0(c̄0). This is why, in Sect. 4.6, the construction of
the singular orbit fails in case 2b.

6.2 Entry–exit function for the Poletti model in the triangle x = 0

The Poletti model (13)–(15) satisfies the hypotheses of Theorem 2 for n = 1 and
any r ≥ 2, with (S, I ) corresponding to p and x corresponding to z. The set U is T̂ ,
and S is the line I = k

mn−ma
. (T̂ is not open, since it includes a segment of the line

S + T = 1, but this does not cause any difficulty.)
Let (S0, I0) ∈ T̂ with I0 > k

mn−ma
. Let (S(t), I (t)) = ψ0

(
(S0, I0), t

)
, let t1 > 0,

and let (S1, I1) = (S(t1), I (t1)). The formula (27) for the entry–exit integral I0
follows immediately from (38).

Proof of Proposition 1 We consider the solution (S(t), I (t)) of (22)–(23) defined
above. Since I (t) is decreasing, there is a unique t∗ > 0 such that I (t∗) = k

mn−ma
.

The integral
∫ t1
0 k − (mn − ma)I (t) dt is negative and decreasing for 0 < t ≤ t∗

and is increasing for t > t∗. To prove Proposition 1 it suffices to show that
∫ ∞
0 k −

(mn − ma)I (t) dt = ∞. Since
∫ ∞
0 k dt = ∞, it suffices to show that

∫ ∞
0 (mn −

ma)I (t) dt is finite. To see this, just note that (S(t), I (t)) approaches a normally
attracting equilibrium (S f , 0), so I (t) → 0 exponentially.
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6.3 Entry–exit function for the Poletti model in the triangle x = 1

To treat the Poletti model (13)–(15) near x = 1, we first make the change of variables
y = 1 − x . We obtain the system

S′ = −ε (βn(1 − y) + βa y) SI , (39)

I ′ = ε (βn(1 − y) + βa y) SI − εγ I , (40)

y′ = ε(1 − y)y(βn − βa)I − (1 − y)y (k − (mn − ma)I ) . (41)

Define the curve C to be the union of the line I = k
mn−ma

, 0 < S ≤ S∗, and Γ ∗
defined in Sect. 4.5. Let U be the part of T above C .

The system (13)–(15) satisfies the hypotheses of Theorem 2 for n = 1 and any
r ≥ 2, with (S, I ) corresponding to p and y corresponding to z. The set U is defined
above, and S is the line segment I = k

mn−ma
, S∗ < S < 1. (Again the set U is not

open because it includes a segment of the line S + T = 1, but this does not cause any
difficulty.)

As in the previous subsection, the formula for the entry–exit integral
I1

(
(S0, I0), (S1, I1)

)
follows immediately from (38).

6.4 Solutions that approach equilibria

Recall the sets V− and V+ defined in Sect. 4.5.

Proposition 2 Let K be a compact subset of V−. For each (S0, I0) ∈ K, let (S f , 0) =
limt→∞ ψ0

(
(S0, I0), t

)
. Define Q0 : K → R by Q0(S0, I0) = S f . Let δ > 0 be

small. Then:

1. For small ε > 0 and for each (S0, I0) ∈ K, there exists Sε
f ∈ R such that

limt→∞ φε
(
(S0, I0, δ), t

) = (Sε
f , 0, 1).

2. Define Qε : K → R by Qε(S0, I0) = Sε
f . Then Qε and Q0 are Cr−1 functions,

and Qε → Q0 in the Cr−1 sense as ε → 0.

Proof Let K̂ be a compact subset of V− that contains K in its interior. Let K̃ denote
the union of K̂ , solutions of (24)–(25) that start in K , and the limits of these solutions.

For the system (13)–(15) with ε = 0, K̃ is a union of equilbria that is compact,
normally hyperbolic, and normally attracting. The point (S0, I0, δ) is in the stable fiber
(S0, I0, 1).

For small ε > 0, the set K̃ remains normally hyperbolic and normally attracting.
(S0, I0, δ) is in the stable fiber of a point (Sε, I ε, 1) near (S0, I0, 1). The slow system
(10)–(12), restricted to x = 1, is still (24)–(25). The solution of (24)–(25) through
(Sε, I ε) lies near the solution of (24)–(25) through (S0, I0).

Given these observations, the proposition follows from the theory of normally
hyperbolic invariant manifolds. 
�

For each (S0, I0) ∈ V+, there exists tin(S0, I0) > 0 and tout(S0, I0) ≥ tin(S0, I0)
such that ψ1

(
(S0, I0), t

)
enters the region I ≥ k

mn−ma
at t = tin(S0, I0) and leaves

that region at t = tout(S0, I0).
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Proposition 3 Let K be a compact subset of V+. Assume that for each (S0, I0) ∈ K,
− ∫ tout(S0,I0)

0 k − (mn − ma)I (t) dt < 0, where I (t) is defined by (S(t), I (t)) =
ψ1

(
(S0, I0), t

)
. Choose t1 > supKtout(S0, I0). Define Q

0 : K → V− by Q0(S0, I0) =
ψ1

(
(S0, I0), t1

)
. Let δ > 0 be small. For small ε > 0, define Qε(S0, I0) and Z ε(S0, I0)

by (Qε(S0, I0), Z ε(S0, I0)) = φε
(
(S0, I0, δ), t1

)
. Then:

1. Qε , Z ε and Q0 are Cr functions.
2. Qε → Q0 in the Cr sense.
3. There exists A > 0 such that Z ε ≤ δe−At1 .

Proof See Proposition 3 of De Maesschalck (2008) and the remark that follows it.
The key assumption needed is that for (S0, I0) ∈ K and 0 < t2 ≤ t1,

∫ t2
0 k − (mn −

ma)I (t) dt < 0. 
�
Proposition 4 Proposition 2 also holds for a compact subset K of V+ that satisfies
the assumption of Proposition 3.

Proof Roughly speaking, we want to apply Proposition 2 to the compact set φ1(K , t1)
in V−. However, corresponding to the point (S1, I1) = φ1

(
(S0, I0), t1

)
, we want to

look not at the solution of (13)–(15) that starts at (S1, I1, δ), but at the solution that
starts at φε

(
(S0, I0, δ), t1

)
. This requires minor changes to Proposition 2.

In the situation of Proposition 2 or 3, we can also describe the limiting position of
orbits.

Proposition 5 Let K be a compact subset of V− that satisfies the assumption of
Proposition 2, or a compact subset of V+ that satisfies the assumption of Proposi-
tion 3. Let (S0, I0) ∈ K. Then there is an equilibrium (S f , 0) of (24)–(25) such that
φ1(S0, I0), t) → (S f , 0) as t → ∞. Let Γ ε denote the orbit of (13)–(15) that starts
at (S0, I0, δ). As ε → 0, Γ ε approaches the singular orbit of (13)–(15) consisting of

1. the line segment [(S0, I0, δ), (S0, I0, 1));
2. {φ1(S0, I0), t) : t ≥ 0}.

6.5 Proof of Theorem 1

We will only consider one type of singular orbit; the proof for other types is similar.
Let (S0, I0, x0) satisfy (S0, I0) ∈ T̂ , I0 > k

mn−ma
, and 0 < x0 < 1. We will consider

the following singular orbitS :

1. Fast orbit from (S0, I0, x0) to (S0, I0, 0).
2. Slow orbit Γ1 from (S0, I0, 0) to (S1, I1, 0) with I1 < k

mn−ma
and

I0
(
(S0, I0), (S1, I1)

) = 0.
3. Fast orbit from (S1, I1, 0) to (S1, I1, 1).
4. Slow orbit Γ2 from (S1, I1, 1) to (S f , 0, 1).

For a small δ > 0, let E0 = {(S, I , x) ∈ P : x = δ} and E1 = {(S, I , x) ∈ P :
x = 1−δ}. For a small ε > 0, letΓ ε be the orbit of (13)–(15) that starts at (S0, I0, x0).
We break Γ ε into parts.
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1. Γ ε
1 from (S0, I0, x0) to (S̃0, Ĩ0, δ) ∈ E0.

2. Γ ε
2 from (S̃0, Ĩ0, δ) to the next intersection with E0 at (S̃1, Ĩ1, δ).

3. Γ ε
3 from (S̃1, Ĩ1, δ) to (

˜̃S1, ˜̃I1, 1 − δ) ∈ E1.

4. Γ ε
4 from (

˜̃S1, ˜̃I1, 1 − δ) ∈ E1 to an equilibrium (S̃ f , 0, 1).

Then, as ε → 0:

1. By considering the fast system (13)–(15) on δ ≤ x ≤ x0, we see thatΓ ε
1 converges

to the line segment [S0, I0, x0), (S0, I0, δ)].
2. From Theorem 2, Γ ε

2 converges to the union of the line segment [(S0, I0, δ),
(S0, I0, 0)], the curve Γ1, and the line segment [(S1, I1, 0), (S1, I1, δ)].

3. By considering the fast system (13)–(15) on δ ≤ x ≤ 1− δ, we see Γε3 converges
to the line segment [(S1, I1, δ), (S1, I1, 1 − δ)].

4. From Proposition 5, Γε4 converges to the union of the line segment [(S1, I1, 1 −
δ), (S1, I1, 0)] and the curve Γ2. Moreover, the limiting equilibrium (Sε

f , 0, 1)
converges to (S f , 0, 1).

7 Discussion

One mathematical issue has been left hanging. We recall that Theorem 1 applies only
to singular orbits with a finite number of segments. The question of whether, in the
context of Theorem 1, singular orbits can have an infinite number of segments has
been left open.

The model discussed in this paper could be generalized in several tantalizing
directions.. One is to replace the susceptible group by several subgroups with dif-
ferent payoff functions. The groups could represent, for example, those with sufficient
resources to survive staying home, or with the ability to work from home, and those
who need to work outside the home. A second direction, suggested by the covid-19
pandemic, is to replace the infective group by subgroups. There could be a group
that is infected, and infective, but so far asymptomatic, so unaware of being infective.
Those in this group would continue to use the behavior they used when susceptible.
Some in this group would later become symptomatic; they would presumably change
their behavior at this point.
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me to epidemiological modeling. Their work on epidemiology is supported by FAPERJ and Instituto
Serrapilheira.
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AMatlab routines

The file findsingorbit.m is used to find a singular orbit. Parameter values are entered
in the file epimconstants.m. The files entryexitint0.m and entryexitint1.m are used by
findsingorbit.m to evaluate entry–exit integrals in x = 0 and x = 1 respectively.
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