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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause signifi-

cant social, communication, and behavioral challenges. Diagnosis of ASD is complicated

and there is an urgent need to identify ASD-associated biomarkers and features to help

automate diagnostics and develop predictive ASD models. The present study adopts a

novel evolutionary algorithm, the conjunctive clause evolutionary algorithm (CCEA), to

select features most significant for distinguishing individuals with and without ASD, and is

able to accommodate datasets having a small number of samples with a large number of

feature measurements. The dataset is unique and comprises both behavioral and neuroim-

aging measurements from a total of 28 children from 7 to 14 years old. Potential biomarker

candidates identified include brain volume, area, cortical thickness, and mean curvature in

specific regions around the cingulate cortex, frontal cortex, and temporal-parietal junction,

as well as behavioral features associated with theory of mind. A separate machine learning

classifier (i.e., k-nearest neighbors algorithm) was used to validate the CCEA feature selec-

tion and for ASD prediction. Study findings demonstrate how machine learning tools might

help move the needle on improving diagnostic and predictive models of ASD.

Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that can cause significant

social, communication, and behavioral challenges. According to the most recent report from

the Center for Disease Control and Prevention (CDC), the number of children in the U.S.

diagnosed with ASD are about 1 in every 54 [1]. While genetic and environmental factors have

been linked to the development of ASD, at present there is no identified cause or cure of ASD.

ASD is characterized by impairments in social communication and social interaction and

the presence of restricted and repetitive behaviors, interests, or activities [2–5]. At the core of

social impairment is often a difference in theory of mind (ToM), the ability to recognize and

understand the thoughts, feelings and perspectives of others. Some symptoms of ASD are not
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evident until age two or later. In fact, a child may appear to be developing according to typical

milestones until the age of two and then stop learning new skills and may even lose skills [6, 7].

Currently, the diagnosis of autism is based on behavioral symptoms alone, often assessed

through the Autism Diagnostic Observation Schedule-Second edition (ADOS-2) and the

Autism Diagnostic Interview-revised (ADI-R) [8, 9]. A typical diagnostic appointment consists

of evaluations lasting several hours at a designated clinical office. The rigorous and time-con-

suming nature of ASD diagnostic examinations often leads to a demand that exceeds the

capacity to see patients. As a result, many diagnostic centers have expanding wait lists for

appointments. This bottleneck can translate to delays in diagnosis of 13 months and longer [6,

10–16]. It is also believed that a substantial number of individuals on the spectrum remain

undetected [17]. With growing awareness of ASD, there is a high demand for a faster and

more automated ASD diagnostic approach that might allow for more efficient diagnosis and

early identification of high-risk populations [18].

Building an automated diagnostic and predictive model of ASD is timely as many studies

have adopted machine learning approaches to identify significant biomarkers that include

both behavioral and biological features. For instance, Duda and colleagues (2016) applied

machine learning to distinguish ASD from attention deficit hyperactivity disorder (ADHD)

using the Social Responsiveness Scale for children between 5 to 13 years old [19]. Bone et al.

(2015) trained their models to diagnose children with ASD versus neurotypical (NT) children

also using the Social Responsiveness Scale and the ADI-R score for children between 5 to 17

years old [20]. Other studies aggregated items from the ADOS and scores from the Autism

Quotient (AQ) to accurately classify an ASD group [21]. Although behavioral outcome mea-

sures remain the gold standard for ASD diagnosis and assessment with solid reliability and

validity, there are some limitations when using behavioral measures to classify participants.

Specifically, these measures are often subjected to clinicians’ and care providers’ opinions built

upon their training and experiences. In addition, they are typically prone to performance

demands, as well as environmental and personal factors that could influence responses on any

given day. In contrast, it is important that neuroimaging techniques and measures supplement

behavioral measures to provide objective metrics that allow us to identify more consistent

ASD markers. As a result of the wide range and subjective nature of behavioral measures used

in diagnosing ASD, many studies are exploring brain-based biological markers (e.g., measur-

able via magnetic resonance imaging (MRI)) to identify a common etiology across individuals

with ASD. Currently, these less subjective markers are attractive not only for diagnostic pur-

poses, but as possible targets for interventions [22]. Independent structural MRI studies have

found differences in whole brain volume and the developmental trajectories between individu-

als with and without ASD [23–31]. Other structural brain abnormalities associated with ASD

include cortical folding signatures that appear in the following regions of the brain: temporal-

parietal junction, anterior insula, posterior cingulate, lateral and medial prefrontal cortices,

corpus callosum, intraparietal sulcus, and occipital cortex [23–31]. Evidence also shows that

an accelerated expansion of cortical surface area, but not cortical thickness, causes an early

overgrowth of the brain in children with ASD [32], while other studies suggest that individuals

with ASD tend to have thinner cortices and reduced surface area as an effect of aging [33].

With these clear brain differences among those with and without ASD, it is informative and

critical to look for brain-based ASD biomarkers.

Machine learning (ML) has been introduced to the neuroimaging field to identify the atypi-

cal brain regions in individuals with ASD. The support vector machine (SVM) is an algorithm

that avoids overfitting and is known for high classification accuracy without requiring large

sample sizes. It has been used to classify ASD from NT participants using extracted features

from functional connectivity metrics and grey matter volume [34–37]. Other ASD applications
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of ML classifiers include deep neural networks [38] and the random forest (RF) algorithm; the

latter uses random ensembles of independently grown decision trees [39]. Although these

methods have demonstrated high accuracy for classifying ASD, to our knowledge most of

them have not been used to identify input variables most closely associated with ASD (i.e., fea-

ture selection). A recent review paper indeed highlighted some machine learning methods

involving feature selection for ASD [40]; however, it is worth noting that the majority of ASD

studies still focus on classification. In addition, many studies use data from the Autism Brain

Imaging Data Exchange (ABIDE) dataset, which includes 1112 existing resting-state functional

MRI (rs-fMRI) datasets with corresponding structural MRI and phenotypic information from

539 individuals with ASD and 573 age-matched NT controls between the ages of 7 and 64 col-

lected from 24 international brain imaging laboratories [41]. For example, Guo et al. (2017)

selected features associated with ASD using a deep neural network from brain resting-state

functional connectivity patterns using the ABIDE dataset [42]. However, findings using data-

sets from various sites have several limitations.

Specifically, classification across a heterogeneous population as is true in autism is challeng-

ing [43–45], particularly when neuroimaging data are pooled from multiple acquisition sites

such as the ABIDE dataset, which has considerable variation in demographic and phenotypic

profiles. Data variance introduced via scanner hardware, imaging protocols, operator charac-

teristics, regional demographics, and other site-specific acquisition factors can also affect the

classification performance. It is often difficult to collect neuroimaging data from individuals

with ASD given the scanner noises and high expectations for individuals to remain still. In

fact, most individual site datasets have small sample sizes that can lead to overfitting and classi-

fication inaccuracies using traditional ML algorithms. Moreover, while the ultimate goal for

ML-based diagnostic classification in neuroimaging is to identify discriminative features that

provide insight into atypical structure and connectivity patterns in the affected population

[46], many of the ML algorithms applied to ASD were designed to classify large amounts of

data (e.g., ABIDE) rather than optimize the selection of input features.

ASD drivers or markers are likely the result of a complex interaction of factors with no sin-

gle factor (i.e., main effect or univariate model) driving the system. As such, traditional statisti-

cal tools (e.g., logistic regression) that search for univariate drivers of ASD are unlikely to find

consistent patterns. Thus, ML techniques that explore large search spaces for multivariate

interactions are both needed and becoming popular in helping to elucidate the complex inter-

actions in systems such as ASD. Our study employs one such ML tool: an evolutionary algo-

rithm [47] called the conjunctive clause evolutionary algorithm (CCEA) [48]. The CCEA was

specifically designed to efficiently explore large search spaces for complex interactions between

features and some associated nominal outcome (e.g., ASD or NT). In addition, the CCEA has

built-in tools to prevent overfitting to produce easily interpretable parsimonious models.

This study examines the utility of using the CCEA for feature selection in ASD, particularly

to address traditional statistical challenges associated with datasets having small sample sizes

and a large number of feature measurements. Additionally, the selected features are validated

and used for diagnostic classification by applying a separate and more traditional ML classifier

(i.e., the k-nearest neighbors (KNN) algorithm). The dataset in the present study has a rela-

tively large number of features, consisting of both behavioral and neuroimaging measure-

ments. Although some behavioral features may seem less objective compared to an assessment

of neuroanatomical features, they are often easier to obtain and more pragmatic for children

with ASD especially if they have strong psychometric properties. Clinicians seldom place a

child with ASD in a scanner to obtain neuroanatomical information before conducting behav-

ioral assessment for the purpose of diagnosis and treatment. The combination of behavioral

measures with neuroanatomical information supports the value of making brain-behavior
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connections that will advance our understanding of ASD. In the present study, the behavioral

measurements include scores of language ability, intellectual ability, and ToM. The neuroim-

aging measurements include brain volume, brain surface area, cortical thickness, and cortical

curvature extracted from MRI whole-brain T1-weighted scans. These features were collected

from a total of 28 children ages 7 to 14, of which 9 children had been diagnosed with ASD

[49]. Only a subset of these 28 children were used for feature selection in the CCEA (7 children

with ASD and 14 NT children), as another subset (2 children with ASD and 5 NT children)

were enrolled at a later time (i.e., after the CCEA was trained). While this later cohort was not

included in the CCEA feature selection analysis, it was included in the subsequent validation

and predictive k-nearest neighbors (KNN) modeling.

Using the CCEA, we aim to identify discriminative biomarkers and behavioral features to

help develop an automated diagnostic and predictive system for ASD. We believe this is a pio-

neering study for:

• Selecting discriminative biomarkers among children from 7 to 14 years old and classifying

ASD.

• Including both behavioral and neuroimaging measurements in the feature selection model

for better prediction and understanding of ASD.

• Identifying models (sets of features) that most strongly correlate to children with ASD given

a dataset with a relatively small sample size (i.e., N = 28) and a large number of features (i.e.,

247 neuroimaging features and 13 behavioral features).

• Developing a predictive ML model using input features selected by the CCEA.

Materials and methods

Participants

A total of 9 children with ASD (1 female) and 19 NT children (7 female), ages 7–14, were

enrolled in the study. In addition to the behavioral assessments described below, the ASD

group also completed the ADOS-2 and the Social Communication Questionnaire-Lifetime

version (SCQ) [50] to confirm their ASD diagnosis. Although diagnosis of ASD is typically

done at an early age, the characteristics of ASD are long-term, and classification with addi-

tional neurobiological information at any age recognizes the potential for brain-behavior com-

parisons with NT populations. Potential changes behaviorally and neurobiologically at any age

may also inform types, duration, and intensity of intervention that may influence these

changes. Therefore, although we tested older children, this study informs an increased under-

standing of likely biomarkers of ASD that can be applied to younger populations.

Ethical statement

The present study was approved by the University of Vermont (UVM) Research Protection

Office and IRB committee. The specific staff member who approved the study protocol, 19–

0005, was Karen Crain. Consent forms were obtained from each participant’s legal guardian

and assent forms were obtained from each participant.

Behavioral measurements

All children participated in 2–3 hours of baseline behavioral assessments that included the

Comprehensive Assessment of Spoken Language (CASL) [51], the Universal Nonverbal Intelli-

gence Test-2 (UNIT-2) [52, 53], the Theory of Mind Task Battery (ToMTB) [54] and the
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Theory of Mind Inventory-2 (ToMI-2) [55, 56]. Measures of language and cognition are typi-

cal in the assessment of ASD, as the Diagnostic and Statistical Manual of Mental Disorders

(DSM-5) requires an assessment of language and intellectual functioning beyond the diagnosis

of ASD.

The CASL is an orally administered research-based assessment consisting of 15 subtests

measuring language for individuals ranging from 3 to 21 years of age. For the present study,

only those basic subsets that establish the CASL language core are used: Antonyms, Sentence

Completion, Syntax Construction, Paragraph Comprehension, and Pragmatic Judgment. Reli-

ability for the core subtests ranges from 0.80 to 0.90 with composite scores ranging from 0.92

to 0.96. Test-retest reliability for individual subtests range from 0.65 to 0.95 with core compos-

ite coefficients from 0.92 to 0.93. The UNIT-2 is a multidimensional assessment of intelligence

for individuals with speech, language, or hearing impairments. It consists of nonverbal tasks

that test symbolic memory, non-symbolic quantity, analogic reasoning, spatial memory,

numerical series, and cube design. Reliability studies include internal consistency, test-retest,

and scorer reliability. Subtest coefficients range from 0.88 to 0.96 and 0.93 to 0.98 for the com-

posites. Content, criterion and construct validity were largely correlated with other cognitive

measures and demonstrated the value of the UNIT-2 for the assessment of diverse groups of

children.

ToM is a core deficit in ASD that is often used to explain the social impairments of the dis-

order. ToM is the ability to reason about the thoughts and feelings of self and others, including

the ability to predict what others will do or how they will feel in a given situation on the basis

of their inferred beliefs [57, 58]. Children with ASD often achieve early and basic ToM skills

later developmentally than their neurological peers and frequently fail to achieve competence

in advanced ToM. Thus, ToM is a good marker for social-cognitive performance differences

that can be aligned with neurological differences. Scores from both the ToMTB and ToMI-2

were included to provide representative measures of a child’s social cognition level. The

ToMTB and ToMI-2 are two norm-referenced tools and behavioral tasks used as outcome

measures to assess ToM [57, 58]. Scores from both the ToMTB and ToMI-2 provide valid rep-

resentations of a child’s social cognition level. The ToMI-2 is a parent-informant measure of a

child’s functional level of ToM. Each of the 60 items assesses a particular ToM dimension

using items that range from simple content to those that evaluate more complex skills. Each

item is rated on a 20-unit continuous scale anchored by “Definitely Not” and “Definitely.”

Respondents indicate their response with a vertical hash mark at the point on the scale that

best reflects their attitude. Item, subscale, and composite scores range from 0–20 with higher

values reflecting greater parental confidence that the child possesses a particular ToM skill.

The ToMI-2 is designed to be a socially and ecologically valid index of ToM as it occurs in

everyday social interactions. It has demonstrated excellent test-retest reliability, internal con-

sistency, and criterion-related validity for both NT and ASD children as well as contrasting-

group validity and statistical evidence of construct validity (i.e., factor analysis). The ToMTB

directly assesses a child’s understanding of a series of scenarios tapping ToM. It consists of 15

test questions within nine tasks, arranged in ascending difficulty. Tasks are presented as short

vignettes that appear in a story-book format. Each page has color illustrations and accompa-

nying text. For all tasks, children are presented with one correct response option and three

plausible distractors. Memory control questions are included that must be passed for credit on

the test questions. The ToMTB demonstrates excellent internal consistency and inter task

agreement (α = 0.91 at T1 and α = 0.94 at T2) and strong construct validity (r = 0.66, p< .01)

[54, 56, 59].

In selecting potential features for the CCEA, we included 13 behavioral features. These

included the total score of the CASL, full scale score of the UNIT-2, abbreviated score of the
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UNIT-2, total score of the ToMTB, total composite mean of the ToMI-2 (i.e., assessing overall

ToM ability), early subscale mean of the ToMI-2 (i.e., assessing early-developing ToM abilities

such as regulating desire-based emotion and recognition of happiness and sadness), basic sub-

scale mean of the ToMI-2 (i.e., assessing basic ToM ability such as recognition of surprise),

advanced subscale mean of the ToMI-2 (i.e., assessing advanced ToM ability such as recogni-

tion of embarrassment). Drawn from a larger study examining the neural mechanisms under-

lying ToM and emotion recognition [49], we also included scores from single ToMI-2 items

assessing recognition of simple emotions such as happiness and sadness, as well as more com-

plex emotions such as surprise and embarrassment, which ASD children often find difficult to

recognize and process [60–63]. Table 1 provides an overview of scores on the 13 behavioral

measures. Results from independent sample t-tests found that NT participants scored signifi-

cantly higher (p<0.05) than ASD participants on the CASL, UNIT-2 full scale, ToMTB, ToMI-

2 total, ToMI-2 early subscale, ToMI-2 basic subscale, ToMI-2 advanced subscale, as well as

ToMI-2 single items of surprise, embarrassment and desire-based emotion. In its psychomet-

ric development, the ToMI and ToMTB were tested against children with and without autism

with scores on both measures, discriminating those children with a diagnosis of ASD from

those without such a diagnosis. These measures of ToM also showed a delay in development

of early developing and basic ToM skills and a failure to achieve more advanced ToM skills

[54–56].

MRI acquisition and preprocessing

All data were acquired using the MRI Center for Biomedical Imaging 3T Philips Achieva

dStream scanner and 32-channel head coil at the University of Vermont (UVM). Parameters

for T1 acquisition were TR 6.4s, TE 2.9s, flip angle 8 degree, 1mm isotropic imaging resolution

with a 256 x 240 mm2 field of view and 225 slices. Participants watched three videos at home

before coming to the MRI center. The first was a cartoon video explaining what an MRI is, and

what one might experience while lying in an MRI scanner [64]. The second video, recorded at

the UVM MRI mock scanner room, helped visualize the real setting and procedures a child

would experience. The third video explained the procedures of wearing earplugs. All partici-

pants practiced laying still and became familiar with the scanner noise in the mock scanner

room. The T1 structural scan was preprocessed using the Human Connectome Project (HCP)

Table 1. Participant behavioral assessments scores: NT vs. ASD.

NT Group (n = 19) ASD Group (n = 9) Group Difference

Age 10.2 (7–14) 11 (8–13) p = 0.36

CASL 113 (89–132) 78.8 (40–121) p< 0.001��

UNIT-2 Full Scale 111.9 (100–135) 96.2 (56–127) p< 0.05�

Unit-2 Abbreviation 110.9 (91–124) 102 (67–121) p = 0.16

ToMTB 13.3 (11–15) 11.1 (5–14) p< 0.05�

ToMI-2 Total 17.2 (11.5–19.3) 12.4 (9.1–17.6) p< 0.001��

Early Subscale 17.7 (13.8–20) 14.6 (11.6–17.9) p< 0.05�

Basic Subscale 18 (13.2–19.7) 14 (8.5–19.2) p< 0.001��

Advanced Subscale 16 (8.3–18.9) 9.4 (6–16.4) p< 0.001��

Happy 18.5 (14.1–20) 17.3 (12.5–20) p = 0.24

Sad 17.5 (7.1–20) 16.9 (13.1–20) p = 0.62

Surprise 17.8 (12.2–20) 15.3 (10.3–20) p< 0.05�

Embarrassment 15.3 (5.8–20) 10.3 (4.8–20) p< 0.05�

Desire-Based 18.9 (15–20) 16.7 (14.6–20) p< 0.05�

https://doi.org/10.1371/journal.pone.0269773.t001
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minimal preprocessing pipelines, including spatial artifact/distortion removal, surface genera-

tion, cross-modal registration, and alignment to standard space. These pipelines are specially

designed to capitalize on the high-quality data offered by the HCP. The final standard space

makes use of a recently introduced CIFTI file format and the associated grayordinates spatial

coordinate system. This allows for combined cortical surface and subcortical volume analyses

while reducing the storage and processing requirements for high spatial and temporal resolu-

tion data [65]. Brain anatomical features were extracted using FreeSurfer aparcstats2tabl script

[66], which reads brain parcellation statistics directly from T1 scan and exports them to excel

sheets. These extracted anatomical features include volume, cortical thickness, mean curva-

ture, and area of all ROIs for each subject. These ROIs were defined using the automatic seg-

mentation procedures that assign one of 37 labels to each brain voxel, including left and right

caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala [67].

There were 276 brain features included in total.

Conjunctive clause evolutionary algorithm

We used an evolutionary algorithm to identify the features associated with ASD. The CCEA is

a machine learning tool that searches for both the combinations of features associated with a

given category (e.g., ASD) as well as their corresponding range of feature values [48]. The

CCEA can find feature interactions even in the absence of main-effects, and can, therefore,

identify feature combinations that would be difficult to discover using traditional statistics.

The CCEA selects for the best conjunctive clauses (CCs) of the form:

CCk ¼ Fi 2 ai ^ Fj 2 aj . . . ; ð1Þ

where Fi represents a risk factor i whose value lies in the range ai; and the symbol ^ represents

a conjunction (i.e., logical AND). One benefit of the CCEA is that it produces parsimonious

models that are correlated with a select category (e.g., ASD). The models generated by the evo-

lutionary algorithm can be described by their order or total number of features in the conjunc-

tive clause. One example of a parsimonious second order conjunctive clause is: a person with a

right hemisphere isthmus cingulate volume of 3,300–4,100 mm3 AND a right hemisphere pos-

terior cingulate volume of 4,100–6,200 mm3 is more likely to have ASD than someone who

does not meet these criteria. The CCEA was able to generate models that ranged from 1st to

5th-order in the present study. Since we are only interested in the most parsimonious (i.e.,

lowest order models) to draw meaningful conclusions and to avoid the overfitting that often

occurs with higher-order models, we focused on second-order models (i.e., those having only

two features) with the highest fitness (PMF) in which all of the features identified were brain

anatomical features. Because of our desire to explore the predictive capability of the behavioral

features, we also expanded our analysis to include third-order models (i.e., model combina-

tions with three features) in which behavioral features were included.

The fitness of each conjunctive clause (CC) is evaluated using the hypergeometric probabil-

ity mass function (PMF), and only the most-fit conjunctive clauses are saved. The hypergeo-

metric PMF is not a p-value and thus, is not constrained by issues associated with what

threshold is “significant” [68–70]. To prevent overfitting, the CCEA performs feature sensitiv-

ity on each conjunctive clause to ensure each feature contributes to the overall fitness. The sen-

sitivity of each feature is calculated by taking the difference between the conjunctive clause

fitness and the fitness when that feature is removed. Thus, a feature’s sensitivity may be viewed

as the amount of fitness that it contributes to the conjunctive clause. Positive predictive value

(PPV) is the number of true positives divided by the sum of true and false positives; and class

coverage is the number of true positives divided by the sum of true positives and false negatives
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(i.e., the percent of ASD individuals that match the conjunctive clause). In this work, the

CCEA was run five times using the training set to ensure a more thorough search of the fitness

landscape.

K-nearest neighbors algorithm and leave-one-out cross validation

In order to further validate the CCEA’s selection of features capable of discriminating between

children with and without ASD, we built a separate KNN classification model and used leave-

one-out cross validation on all 28 subjects. The KNN is a classification algorithm that assumes

that things that exist in close proximity (i.e., nearer to each other) are more similar. In this

study, each subject was classified into one of two output classes (i.e., ASD or NT) based on a

plurality vote of its neighbors, with the subject being assigned to the class most similar to its k-

nearest neighbors. When k = 1, then the subject is assigned to the class of a single nearest

neighbor [71]. Leave-one-out cross validation is a special case of cross validation where the

number of folds equals the number of subjects in the data set. Thus, the KNN algorithm is

applied once for each subject, using all other instances as the training set and using the selected

subject as a single-item test set [72]. After model validation, we trained three separate KNN

classifiers using a balanced dataset (6 NT and 6 ASD subjects) and feature sets identified by the

CCEA to classify the remaining 16 subjects. See Table 2.

Results

CCEA feature selection: 14 NT and 7 ASD

When using the CCEA for feature selection, 2438 CCs (i.e., models or sets of features) were

generated ranging from first-order to fifth-order. The PPV of the 2438 models ranged from

46.47% to 100% and their class coverage ranged from 42.86% to 100%. Among these models,

we looked for the most parsimonious (i.e., lowest order models) to draw meaningful conclu-

sions and to avoid the overfitting that often occurs with higher-order models. As a result, we

selected 8 second-order models (i.e., those having only two features) with the highest fitness

(PMF) among the total 520 second-order models. These 8 “best performing” models each have

100% PPV and 100% class coverage, see Table 3. All of the features identified were brain ana-

tomical features.

Using CC 113 (Table 3) as an example, this second-order model can be interpreted as: any

subject whose posterior cingulate gyrus volume was within the range of 3500 to 4600 mm3

AND left rostral middle frontal gyrus volume was within the range of 20,000 to 25,000 mm3

would be classified as having ASD. The volume of the left hemisphere posterior cingulate

gyrus and the volume of the right hemisphere isthmus of the cingulate gyrus were the two

Table 2. Subject inclusion and distribution.

Models Subjects Include Subjects Used In CCEA? N = 21

(14 NT & 7 ASD)

Include Subjects from the Later Cohort That Was Not Used In

CCEA? N = 7 (5 NT & 2 ASD)

CCEA NT = 14

ASD = 7

All None

KNN Validation Model NT = 19

ASD = 9

All All

KNN Prediction

Model

Training NT = 6 NT = 6 NT = None

ASD = 6 ASD = 4 ASD = 2

Testing NT = 13

ASD = 3

NT = 8 NT = 5

ASD = 3 ASD = None

https://doi.org/10.1371/journal.pone.0269773.t002

PLOS ONE Feature selection using machine learning in ASD

PLOS ONE | https://doi.org/10.1371/journal.pone.0269773 July 7, 2022 8 / 19

https://doi.org/10.1371/journal.pone.0269773.t002
https://doi.org/10.1371/journal.pone.0269773


features to appear most frequently (i.e., four times) across all second-order models, suggesting

that the volume of cingulate gyrus is a potentially important biomarker for ASD. Fig 1 provides

a 2D visualization for the range of feature values (numerical boundaries) associated with these

models and the placement of each subject within this range.

Because of our desire to explore the predictive capability of the behavioral features, we

expanded our analysis to include third-order models (i.e., model combinations with three fea-

tures). There were 651 third-order models in total; while some consisted only of 310 anatomi-

cal brain features, others included two behavioral features plus one brain anatomical feature.

We selected the 6 best-performing third-order models with the highest fitness (PMF); each

had 100% PPV and 100% class coverage, see Table 4. Each of these third-order models con-

tained two behavioral features and one brain anatomical feature.

Using CC 46 (Table 4) as an example, any subject who had a total score on ToMTB within

the range of 5 to 13 AND an early subscale mean score on ToMI-2 within the range of 12 to 18

AND a mean curvature value of the left hemisphere pars orbitalis within the range of 0.17 to 2

would be classified as having ASD. The ToMTB total score feature occurred in all of our best-

fit, third-order models; and the ToMI-2 early subscale mean score occurred in all but one (CC

1163) of the models, where the ToMI-2 total composite mean played a role. Such a finding fur-

ther suggests that the ToMTB and ToMI-2 might be effective for ASD testing and diagnosis.

See Fig 2.

KNN leave-one-out cross validation

As mentioned earlier, a cohort of new subjects comprising 2 ASD and 5 NT children were

enrolled at a later time. This later cohort was combined with the 21 subjects used in CCEA to

cross-validate the KNN classifiers. Using the 8 unique features of the second-order model, the

KNN (k = 3) achieved 89.29% classification accuracy (ACC), where 17 of the 19 NT subjects

and 8 of the 9 ASD were classified accurately; see Table 5, diagonals of the second-order confu-

sion matrix.

Using the 9 unique features of the third-order model, the KNN (k = 7) validation accuracy

fell to 78.57% compared to when using the 8 unique features from the second-order model,

where 15 of the 19 NT and 7 of the 9 ASD subjects were classified accurately. See Table 5, diag-

onals of third-order confusion matrix.

Given the better ASD classification performance of the second-order neuroanatomical fea-

tures, and that the behavioral measurements/features are relatively easier to collect among chil-

dren with ASD, it was important to explore whether the ASD prediction results might be

improved when the behavioral features were combined with the second-order features. As a

result, we added the three behavioral features (i.e.,ToMTB total score, ToMI-2 total composite

Table 3. Second-order CC model features and range of values.

CC # Feature One Value Feature Two Value

113 lh posteriorcingulate volume [3500,4600] lh rostralmiddlefrontal volume [20000,25000]

679 lh posteriorcingulate volume [3500,4600] rh rostralmiddlefrontal volume [21000,26000]

1449 lh posteriorcingulate volume [3500,4600] lh medialorbitofrontal thickness [2.6,2.8]

2199 lh posteriorcingulate volume [3500,4600] rh rostralmiddlefrontal area [6400,8500]

887 rh isthmuscingulate volume [3300,4100] rh posteriorcingulate volume [4100,6200]

1488 rh isthmuscingulate volume [3300,4100] lh medialorbitofrontal thickness [2.6,2.8]

2200 rh isthmuscingulate volume [3300,4100] rh rostralmiddlefrontal area [6400,8500]

2269 rh isthmuscingulate volume [3300,4100] rh posteriorcingulate area [1400,2900]

https://doi.org/10.1371/journal.pone.0269773.t003
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mean and ToMI-2 early subscale mean) from the third-order models to the 8 second-order

brain anatomical features and cross-validated a new KNN (k = 2) classifier. With the total of

11 unique features, a validation accuracy of 85.71% was achieved with 16 of the 19 NT subjects

and 8 of the 9 ASD being classified accurately. See the confusion matrix of Table 5.

Classification of ASD and NT subjects using the KNN model

To further examine whether the KNN classifier could discriminate subjects with ASD and NT,

we developed three classification models–one using the 8 unique features from the second-

order models, one using the 9 features from the third-order models, and one using the 11-fea-

ture model (i.e., eight second-order neuroanatomical features and three behavioral features).

The best classification accuracy was achieved using a balanced training set that consisted of 6

NT and 6 ASD subjects, among which only 2 of the 6 ASD subjects were not part of the origi-

nal CCEA feature selection. The remaining 16 subjects were used for testing (13 NT and 3

ASD).

The KNN (k = 1) results for the second-order model features are shown in Table 6, columns

2 and 3; a classification accuracy of 87.5% was achieved, with all 3 of the ASD subjects and 11

of the 13 NT being classified accurately. Both of the misclassified NT subjects were part of the

original CCEA feature selection.

The KNN (k = 3) classification accuracy for the third-order model features was 81.25%,

with all 3 of the ASD subjects and 10 of the 13 NT subjects correctly classified. Of the 3 misclas-

sified NT subjects, 2 were included in the original CCEA feature selection. See Table 6, col-

umns 4 and 5.

Lastly, the KNN (k = 3) predictions for the combined 11-feature model (8 neuroanatomical

features and three behavioral features) are shown in Table 6, columns 6 and 7; classification

accuracy is 93.75%, with all 3 of the ASD subjects and 12 out of 13 NT subjects classified accu-

rately. The one misclassified NT subject was not part of the original CCEA feature selection

analysis.

Discussion

This study used a new ML feature selection tool, the CCEA, to identify biomarkers and behav-

ioral features capable of successfully discriminating between children (7 to 14 year of age) with

and without ASD given a small dataset collected from a single research site. ML tools have

long been applied to ASD research, but it remains a far-reaching goal to build a diagnostic sys-

tem for ASD that incorporates both feature selection and prediction. Previous studies face the

challenge of using datasets across different research sites for classification purposes, rather

Fig 1. 2D visualization of second-order CC models. Green dots represent ASD subjects and group together within

the rectangle defining the range of values in Table 3.

https://doi.org/10.1371/journal.pone.0269773.g001

Table 4. Third-order CC model features and range of values.

CC # Feature One Value Feature Two Value Feature Three Value

46 ToMTB total [5,13] ToMI early subscale mean [12,18] lh parsorbitalis meancurv [0.17,0.2]

191 ToMTB total [5,13] ToMI early subscale mean [12,18] rh superiorparietal thickness [2.4,2.7]

264 ToMTB total [5,13] ToMI early subscale mean [12,18] rh parsorbitalis meancurv [0.18,0.2]

317 ToMTB total [5,13] ToMI early subscale mean [12,18] rh inferiortemporal meancurv [0.15,0.18]

1163 ToMTB total [5,13] ToMI total composite mean [9,18] lh postcentral thickness [2.2,2.5]

1446 ToMTB total [5,13] ToMI early subscale mean [12,18] lh medialorbitofrontal thickness [2.6,2.8]

https://doi.org/10.1371/journal.pone.0269773.t004
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Fig 2. 3D visualization of third-order CC models. Green dots represent ASD subjects and group together within the

pink cube defining the range of values in Table 4.

https://doi.org/10.1371/journal.pone.0269773.g002

Table 5. Cross validation confusion matrices.

N = 28 (9 ASD & 19 NT) Second-order Model Features ACC Score:

89.29%
Third-order Model Features ACC Score:

78.57%
Second-order Model Features Plus Three

Behavioral Features ACC Score: 85.71%
Predicted ASD Predicted NT Predicted ASD Predicted NT Predicted ASD Predicted NT

True ASD 8 1 7 2 8 1

True NT 2 17 4 15 3 16

https://doi.org/10.1371/journal.pone.0269773.t005
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than identifying input variables most closely associated with ASD (i.e., feature selection) [19,

20, 34–37, 38–41, 73, 74]. Additionally, traditional ML algorithms do not work well with ASD

datasets given the large amount of variance and the heterogeneous nature of the disorder [43,

44]. Meanwhile, it requires tremendous effort to include ASD individuals in a research study

given the social, cognitive, and language challenges of this population. Thus, nearly all ASD

datasets have a large number of features with relatively small sample sizes which, despite being

unsuitable for many ML algorithms, often leads to overfitting and poor classification accuracy.

However, the CCEA in this work was able to address such issues by efficiently exploring large

search spaces for feature interactions associated with some nominal outcome (e.g., ASD or

NT). It also adopted built-in tools to prevent overfitting to produce parsimonious models.

The present study demonstrated exceptionally good performance (i.e., 100% ASD PPV and

100% class coverage) of the features identified by the CCEA. The selected CCEA features from

the parsimonious second and third order models included volume, area, cortical thickness,

and mean curvature in specific regions around the cingulate cortex, frontal cortex, and tempo-

ral-parietal junction areas as biomarkers for ASD (e.g., the pericalcarine cortex, posterior cin-

gulate cortex, isthmus of the cingulate gyrus, pars orbitalis, etc.). Such findings are consistent

with previous literature suggesting that individuals with ASD have abnormalities in these

brain regions [19, 23–31, 75–77], which facilitates our identification of potential ASD bio-

markers. Additionally, third-order models from the training set include measurements from

the ToMI-2 and the ToMTB as important features [56, 59]. This provides evidence that out-

come measures from ToMI-2 and ToMTB are able to distinguish ASD from NT which further

validates the use of these tools in ASD assessments.

It is impressive that the KNN classifiers are able to achieve such high classification accuracy

given our sample size, and validation of the discriminant features selected by the CCEA mod-

els. In particular, the KNN classifiers perform better using the second-order neuroanatomical

features than the third-order feature models, which emphasizes the importance of focusing on

parsimonious models selected by the CCEA. In addition, the KNN achieved the highest classi-

fication accuracy when adding the behavioral features from the third-order models to the

neuroanatomical features from the second-order models. In most cases, neuroimaging mea-

surements are conducted along with behavioral assessments. As the third-order models are

included to explore the potential role that behavioral features might play along the side of

neuroanatomical features, it is convincing to see the highest classification accuracy achieved

when combining the behavioral features and the neuroanatomical features. These findings

highlight the heterogeneous and multi-facet characteristics of ASD itself. Thus, although it is

more difficult to implement MRI among children with ASD, such findings support the idea

that neuroanatomical measurements increase confidence in diagnosis. It also suggests that a

good ASD prediction model should consider including both behavioral and neuroanatomical

features to establish brain-behavior connections to advance our understanding of ASD.

This study further demonstrates the robustness of the CCEA as a feature selection method-

ology. The accuracy of these features when used as input variables in the KNN classifier sug-

gests their potential to help clinicians and researchers target specific domains in ToM in

Table 6. Classification confusion matrices.

N = 16 (3 ASD & 13 NT) Second-order Model Features ACC Score:

87.5%
Third-order Model Features ACC Score:

81.25%
Second-order Model Features Plus Three

Behavioral Features ACC Score: 93.75%
Predicted ASD Predicted NT Predicted ASD Predicted NT Predicted ASD Predicted NT

True ASD 3 0 3 0 3 0

True NT 2 11 3 10 1 12

https://doi.org/10.1371/journal.pone.0269773.t006
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treating the social challenges most often seen in children with ASD. The implications of our

findings for clinical researchers reinforce earlier findings regarding the brain-behavior con-

nections for children with and without ASD related to ToM understanding [55, 57, 59, 78–80].

Knowing these connections may guide future researchers in the assessment of change follow-

ing intervention at both a behavioral and neurobiological level. This may also lead to knowl-

edge about which interventions may be most effective for children with specific

neurobiological markers.

The present study has established important biomarker candidates of ASD. These bio-

marker candidates support previous research adopting traditional neuroimaging measure-

ments identifying similar brain regions to explain the abnormalities in ASD [19, 23–31].

Importantly, ML methodologies can perform as well as the traditional approaches in the field

of neuroscience and specifically in our assessment of ASD in selecting neuroanatomical bio-

markers. Although ML techniques have been adopted to help with diagnosis and treatment

development in medicine [81–84], the heterogeneity in ASD creates challenges. Typically,

large, diverse, and comprehensive datasets are required to extract solid biomarkers, which can

be time-consuming and may be less accurate with traditional approaches. Under such circum-

stances, ML techniques as described in this study can help advance the development of an

automatic diagnostic and predictive system for ASD. Although one can argue that the sample

size of this study may introduce few limitations, it is important to note that the goal was not to

map out the complete “real-world” process. Instead, it aims to find patterns, (i.e., feature selec-

tion) and identify important parameters and highlight interesting feature interactions to help

with the downstream process of understanding the system behavior involved in ASD biomark-

ers. The present study has not identified definitive answers on whether the selected features

will continue to be correlated in a much larger population, however, unearthing these features

enables researchers to hone in on a much smaller search space (i.e., thousands of features

reduced to a handful of targeted features) in order to refine hypotheses and design more exact-

ing experiments, such as simulation studies to test whether the correlation is robust with the

potential for causal connections. In addition, disseminating these feature interactions will help

the community of domain experts spur more refined hypotheses. In summary, the present

study provides a new direction for adopting ML techniques in ASD research and other areas

of medicine with similar heterogeneity in disease conditions.
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