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Abstract.
BACKGROUND: Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmen-
tation is the first step for automatic dermoscopy image assessment.
OBJECTIVE: The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion
region.
METHODS: To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense decon-
volution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are
combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the
global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance fea-
tures via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain
final high-resolution output.
RESULTS: Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016
and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% in-
crease over the traditional method, respectively.
CONCLUSIONS: By utilizing Dense Deconvolution Net, the average time for processing one testing images with our pro-
posed framework was 0.253 s.

Keywords: Dermoscopy image, skin lesion segmentation, deep residual network, dense deconvolution net, hierarchical super-
vision

1. Introduction

According to cancer statistics released by the American Cancer Society, melanoma increasing at a
growth rate of 14% and skin cancer has a death rate of 75% [1,2]. However, these diseases are curable
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Fig. 1. Illustration of challenges of automatic segmentation of skin lesions in dermoscopy images. The main challenge includes
distinguishable inter-class, indistinguishable intra-class variations, artifacts and inherent cutaneous features in natural images.
(a–c) skin lesions are covered with hairs or exploded with blood vessels; (d) air bubbles and marks occlude the skin lesions;
(e–f) dye concentration downgrades the segmentation accuracy. Note that white contours indicate the skin lesions.

if they are diagnosed timely and treated properly. Clinically, dermoscopy is adopted to assist dermatolo-
gists in classifying melanoma from nevi. The recent reports suggest that the human visual inspection only
depends on ‘Ugly Duckling’ sign or experience [3]. Therefore, valid morphological features are required
for the accurate segmentation. The manual segmentation process is often labor-intensive and subjective.
However, clinicians who acquired the adequate levels of expertise are scarce in unprivileged countries.
Otherwise, the blurry and irregular boundary degrades the segmentation accuracy. Figure 1 illustrates the
main challenges for accurate diagnosis. Moreover, segmentation is critical in reducing screening errors
and aiding the identification of benign and malignant melanoma. For example, deep polynomial net-
works can achieve more decent performance by leveraging the result of segmentation [4–6]. Automated
dermoscopy image analysis is an effective way to tackle these problems.

For automatic quantitative analysis of skin lesion, deep learning has attracted intensive attention and
become a focus due to its ability to boost performance [6,7]. Currently, the most popular deep learning
method is convolutional network (CNN) [8,9]. However, the outputs of multi-scale CNN are too coarse to
fulfill the requirement of segmentation. A new type of CNN, fully convolutional network (FCN) has wit-
nessed a great success and achieved unprecedented progress in the development of segmentation. FCN
allows researchers to concentrate on network architecture design without sophisticated pre-processing
and post-processing algorithms.

Meanwhile, recent studies demonstrate that increasing network depth can further boost performance
due to the discriminative representations from deep layers of a network [10]. The latest generation CNN
deep residual neural network (ResNet) is proposed by He et al. [11], which outperforms state-of-the-
art techniques in classification task by solving vanishing/exploding gradient problem which inhibits
convergence. However, ResNet has degraded segmentation accuracy due to the contradiction between
classification and localization. When the network gets deeper, the spatial resolution of the feature maps
(layer outputs) decreases significantly when CNN is employed in a fully convolutional way. In addition,
obtaining spatial transformation invariant features for a classifier needs to discard local information. De-
spite the use of CNN, there are still significant differences between the result of automatic segmentation
and the dermatologist’s delineation.

Many previous works have concentrated on solve this problem and obtained promising segmentation
performance. The typical works include deconvolution and the conditional random field (CRF) algo-
rithm. Deconvolution, also named as transposed convolution, has been widely used in deep-learning
based method with up-sampling requirement. In encoder-decoder architecture, the coarse probability
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Fig. 2. Flowchart of the proposed network architecture for melanoma segmentation; (a) Multi-path processing to fuse various
contrast information with deep supervision; (b) Comparison of Dice loss and Classification loss; (c) dense deconvolution layer
further refines the contour.

maps flow through the stacked deconvolution path to recover spatial resolution. Specifically, fully con-
nected residual network (FCRN) adopted the encoder-decoder based network to boost performance [12].
Also, Krähenbühl and Koltun [13] adopted the CRF to integrate all pairs of pixels on an image to lever-
age spatial low-level information since obtaining spatial transformation invariant features through down-
sampling path needs to discard local information.

Although traditional deconvolution layers and CRF have witnessed their capability for reconstruction,
they are trapped in ‘checkerboard’ problem [14,15]. Also, the methods with the CRF cannot train the
network in an end-to-end way and lack the ability of semantic interpretation. These previous works
have their inherent limitations. To address the limitations, we construct a network in this paper using
multi-path features for segmentation with direct relationship between the intermediate probability maps.
The combination of the deep refinement network and dense deconvolution layer has been proposed for
segmenting dermoscopy in this paper. Figure 2 illustrates the flowchart of our proposed method.

2. Methodology

2.1. Residual block

Our network starts with residual block inspired by ResNet. The first part of residual block contains an
adaptive convolution layer via fine-tuning to maintain the weights of pretrained ResNet for our task. The
main part of ResNet is the skip-connection and residual block. To train a very deep network for segmen-
tation, we leverage a novel method named residual learning. The characteristics of residual learning are
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the skip connection to refine the flow of gradient. Also, a combination of multiple skip-connection struc-
ture has demonstrated an evident activity of early layers. Accordingly, the residual learning can speed up
the convergence of deep network and maintain accuracy gains by substantially increasing the network
depth. Moreover, we also adopt the dropout mechanism, batch normalization, and careful initialization
to address the problem of gradient vanishing. A residual block with identity mapping is formulated as

hl+1 = Relu(hl + F(hl, wl)), (1)

where hl+1 denotes the output of the l-th residual block, hl represents identical mapping and F(hl, wl)
is the residual mapping.

By directly applying skip-connection, our network suffers from the drawback of the small receptive
field. To tackle it, each input path is followed by two residual blocks, which are similar to that in the
original ResNet. In our architecture, the filter channel for each input path is set to 512, and the remaining
ones are fixed to 256 for keeping dimension balanced in our experiments.

2.2. Dense deconvolution block

Since FCRN and U-Net still suffer from down-sampling and losing fine structure, a coarse-to-fine
strategy is developed to recover high resolution [16,17]. Instead of fusing all path inputs into the highest
resolution feature map at once, we only integrate two features with adjacent size in each stage. This layer
first performs convolutions for input adaptation, which generates feature maps of the same number, and
then uses dense deconvolution layer to interpolate smaller feature maps with the largest resolution of the
inputs. All feature maps are fused by summation.

During the dense deconvolution layer, we perform the up-sampling to combine two path inputs to-
gether. In this paper, dense deconvolution layer explores a two-layer strategy named dense deconvo-
lution layer to improve the process of multi resolution fusion, namely dense deconvolution layer and
fusion layer. Dense deconvolution layer is shown in Fig. 3.

2.2.1. Dense generation layer
The first step of dense deconvolution layer is to generate intermediate probability maps and add the re-

lationship among them [18]. Note that Dense Generation Layer generates intermediate probability maps
one-by-one rather than simultaneously since adjacent pixels are from different intermediate probability
maps. In this method, we introduce dense connection to form any intermediate probability map from all
subsequent intermediate probability maps. The relationship among intermediate probability maps not
only adds dependence among intermediate probability maps, but also enhances the information flow.
Therefore, there isn’t checkerboard phenomenon in the final result. Given M1, M2, Ml−1 as input, con-
catenating the intermediate probability maps product in layer 0, 1, l − 1 as below

Ml = F ([M1,M2, . . . ,Ml−1]), (2)

where F refers to the convolution operation.

2.2.2. Fusion layer
After generating four intermediate probability maps, we interweave them together to get the final prob-

ability maps Assuming that (i′, j′) are the coordinates of a pixel situation and (i, j) are the coordinates
of a pixel situation, the probability maps P (i′, j′) can be calculated as

P (i′, j′) = Pm,n(i ∗ s+m, j ∗ s+ n), (3)

m= i mod s,m = j mod s. (4)
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Fig. 3. Illustration of proposed method; (a) Deep RefineNet; (b) residual block; (c) chained residual pooling; (b) dense decon-
volution block.

2.3. Chained residual pooling block

After the size observation and analysis of skin lesions, there is rich contextual information. Recently,
pooling can utilize global image-level feature to support our research. Feature map passes sequentially
to the chained residual pooling block, and is schematically depicted in Fig. 3. Fused feature map passes
sequentially one max-pooling layer and one convolution layer. Nevertheless, pooling once needs large
pooling window in network for the segmentation task. The proposed chained residual pooling method
concatenates pooling layers as a chain with learnable weight. Noted that ReLu is adopted to improve
the pooling efficiency. During the course of training, two pooling blocks are adopted and each is with
stride 1.
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The output of all pooling blocks is concatenated together with the input feature map by summation
of skip-connection. We employ skip-connections to facilitate gradient propagation during training. In
one pooling block, each pooling operation is followed by convolutions, which serve as a weighting
layer for the summation fusion. We expect that chained residual pooling can be learnable to identify the
importance of pooling layers during the training course.

2.4. Dense deconvolution net with hierarchical supervision

The first phase of segmentation is to obtain every pixel’s prediction. Since the output of ResNet is
a probability of each class being designed for classification, a multi-prediction layer should replace the
single label prediction layer. Hence, segmentation can be viewed as a dense prediction problem. The final
prediction is based on feature maps from various receptive fields. The requirement of complex boundary
delineation is met by local intensity information which only appears early in forward propagation. The
main idea of the proposed dense deconvolution net is shown in Fig. 3.

Directly training such deep network may cause difficulty in optimization due to the issue of vanishing
gradients. Motivated by the previous studies on training neural networks with deep supervision, we
utilize four side-output layers in our net to supervise early layers [19]. Each side-output layer is in
charge of one size of feature maps. However, explosion at high level side-output layers does not work
well. By probing the outputs from the first side-output layer associated with the smallest feature maps,
we cannot find any cue between the dense prediction and ground truth. The underlying reason for this is
that the small skin lesions cannot be captured. Hence, we only exploit side-output layers on the last two
layers. To address the above-mentioned problems, we combine all side-output layers and final-output
layers, which is formulated as

L(I,W ) =
∑

s
wsLs(I,W ) + Lmwm(I,W ), (5)

Ls(I,W ) =− log(p0(xi,j , ti,j)), (6)

where the first part is side-output loss terms and another one is main function between the predicted
results and ground truth, ws and wm are hyper-parameters for balancing the weight of loss layers,
p0(xi,j , ti,j) is the predicted probability for true labels.

The skin lesions occupy only small regions, and the learning process is trapped into local minima.
Therefore, we fit dermoscopy images’ characteristics by taking different loss functions into account.
Therefore, our network is defined with per-pixel categorization [20]. The main loss layer is formulated
as

Lm(I,W ) =
2
∑N

i

∑M
j xi,jti,j∑N

i

∑M
j x2i,j +

∑N
i

∑M
j t2i,j

, (7)

where xi,j denotes the predicted segmentation and ti,j denotes the ground truth. Lm(I,W ) is loss func-
tion based on dice coefficient between predicted results and ground-truth. Using dice loss can balance
weights between different sizes of skin lesions.

3. Experiments and results

3.1. Dataset and implementation

In this study, we perform the experiment to evaluate performance of our purposed method using the
public challenge datasets – ISBI skin lesion segmentation dataset released in 2016 and 2017. The skin
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Table 1
Segmentation results of ISBI 2016 and 2017 dataset

Network Parameter DC JA AC Dataset DC JA AC Dataset Time
FCRN [16] 91M 0.689 0.816 0.905 2016 0.814 0.721 0.928 2017 0.153
RN 410M 0.890 0.824 0.941 2016 0.828 0.735 0.931 2017 0.245
RN-CRF 410M 0.908 0.841 0.952 2016 0.830 0.741 0.934 2017 0.320
RN-ML-CRF 410M 0.924 0.860 0.956 2016 0.843 0.758 0.938 2017 0.343
RN-ML-DDL 412M 0.931 0.871 0.960 2016 0.845 0.761 0.939 2017 0.253

Table 2
Segmentation algorithm comparison based on ISBI 2016 and 2017 dataset

Method DC JA AC Dataset Method DC JA AC Dataset
EXB 0.910 0.843 0.953 2016 ResNet [21] 0.842 0.758 0.934 2017
CUMED 0.897 0.829 0.949 2016 RECOD [22] 0.839 0.754 0.931 2017
Mahmudur 0.895 0.822 0.952 2016 FCN [12] 0.837 0.752 0.930 2017
SFU-mial 0.885 0.811 0.944 2016 SMCP [23] 0.839 0.749 0.930 2017
UiT-Seg 0.881 0.806 0.939 2016 INESC TECNALIA [24] 0.810 0.718 0.922 2017
Our proposed 0.931 0.871 0.960 2016 Our proposed 0.845 0.761 0.939 2017

images are based on the International Skin Imaging Collaboration (ISIC) Archive, acquired from various
international clinical centers’ devices. The dataset released in 2016 consists of 900 images for training
and 350 images for validation, which are extended to 2000 and 600 respectively in 2017. Due to inde-
pendent evaluation, the organizer excludes the ground truth of the validation part.

Our algorithm is implemented in MATLAB R2014b based on MatConvNet with a NVDIA TITAN
X GPU. We utilize stochastic gradient descent (SGD) to optimize our objective function. The mini-
batch involves 20 images. We adopt a weight decay of 0.0001 and a momentum of 0.9. The learning
rate is 0.00001 for the first 300 epochs and 0.000001 for the next 300 epochs. Apart from the hyper-
parameters set above, we incorporate the dropout layers (dropout rate is set as 0.5) in our network to
prevent co-adaptation of feature detectors. When we train Deep RefineNet, we decouple our algorithm
to two stages due to computational efficiency We train our network without CRF during the first step
During the second step, we fix our network’s parameters. For the CRF parameters, we assume that the
unary terms are fixed.

3.2. Results

Due to rich parameters to learn, our network cannot train efficiently unless enough number of training
images is provided. Despite the skin lesion images provided by the ISBI 2016 challenge, the segmen-
tation performance is still greatly affected by image processing due to the huge intra-class variations.
Labeling extra medical images are extremely tedious. Accordingly, data enlarging or augmentation is of
great importance to boost the segmentation performance. Performing spatial transformation is one of the
most effective ways to solve this problem. Motivated by this, lesion images are rotated to four degrees
with (0◦, 90◦, 180◦, 270◦) to enlarge the dataset. In the challenge dataset, the segmentation errors are
mainly caused by illumination variances and dye concentration. Meanwhile, the huge interclass varia-
tion further aggravates this issue. We utilize per-image-mean method instead of all-image-mean, thus
each image is normalized to zero before processing our network, which alleviates bad influence caused
by unobvious inter-class variations.

We apply our proposed method and evaluate our models in ISBI skin lesions datasets released in both
2016 and 2017. We use the models pretrained in ImageNet and all settings are consistent to assess our
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Fig. 4. Segmentation results of various methods. The pink and white contours denote the segmentation results of our method
and ground truth, respectively. The upper rows are FCRN method and the bottom rows are the proposed method.

method fairly. Models are trained with and without deep supervised method, dice loss and CRF for
performance comparison. The segmentation performance is evaluated based on Dice coefficient (DC),
jaccard index (JA), accuracy (AC). Table 1 shows the segmentation results of various methods and the
computational cost of per image at stage of validation, where ML is multi-path loss DDL is dense de-
convolution network and CRF represent training with CRF. We can see that our proposed RN-ML-DDL
method achieves the best result due to the multi-path information exploration and dense deconvolu-
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tion layer. From the comparison, we can see that our proposed method overcomes the shortcoming of
CRF method and is efficient due to end-to-end training. In addition, DDL reuses the local spatial infor-
mation to make one more step in skin-lesions’ recovery, which boosts the segmentation performance.
In Table 2, we provide the segmentation algorithm comparison based on ISBI 2016 and 2017 dataset.
Compared with the listed methods, our proposed method gets the best segmentation performance. The
main explanation is that we integrate local information and global information. Our proposed method
achieved considerable improvement in terms of good DC and JA values.

Figure 4 shows segmentation results of various methods. From the comparison of the proposed auto-
matic method and the provided doctor’s ground truth, we can see that the proposed segmentation method
is consistent with ground truth. Also, our proposed method outperforms the traditional FCRN method.

4. Discussions

We propose a novel network for skin lesion segmentation, which adopt dense deconvolution layer
(DDL) to reconstruct high-resolution image during the phase of decoder. By dense connections, DDL can
enhance flow of information and gradients DDL throughout the network. The hierarchical supervision
ensures the rapid convergence of the DDN, since gradient feedback can easily reach the early layers.
Accordingly, our network possesses more discriminative feature than network without the hierarchical
supervision. The prior experience that the shape of skin lesion can be approximated by the ellipse has
been learned by our proposed method. However, even if it is easy to distinguish by human naked eye, it
is still confused in our proposed method.

5. Conclusion

In this paper, we proposed a deep learning framework for dermoscopy image segmentation based on
DDL with multi-path processing. The advantage of our proposed network based on multi-path has been
fully demonstrated. Meanwhile, we performed the extensive experiments on the publicly available ISBI
2016 and 2017 challenge skin lesion datasets. Experiments showed that our proposed method outper-
forms state-of-the-arts methods. Our future work will focus on how to integrate texture information in
our network.
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