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UBE2L3 Polymorphism Amplifies NF-kB Activation
and Promotes Plasma Cell Development, Linking
Linear Ubiquitination to Multiple Autoimmune Diseases

Myles J. Lewis,1,6,* Simon Vyse,1,6 Adrian M. Shields,1 Sebastian Boeltz,1 Patrick A. Gordon,2

Timothy D. Spector,3 Paul J. Lehner,4 Henning Walczak,5 and Timothy J. Vyse1,*

UBE2L3 is associated with increased susceptibility to numerous autoimmune diseases, but the underlyingmechanism is unexplained. By

using data from a genome-wide association study of systemic lupus erythematosus (SLE), we observed a single risk haplotype spanning

UBE2L3, consistently aligned across multiple autoimmune diseases, associated with increased UBE2L3 expression in B cells and mono-

cytes. rs140490 in the UBE2L3 promoter region showed the strongest association. UBE2L3 is an E2 ubiquitin-conjugating enzyme,

specially adapted to function with HECT and RING-in-between-RING (RBR) E3 ligases, including HOIL-1 and HOIP, components of

the linear ubiquitin chain assembly complex (LUBAC). Our data demonstrate that UBE2L3 is the preferred E2 conjugating enzyme

for LUBAC in vivo, and UBE2L3 is essential for LUBAC-mediated activation of NF-kB. By accurately quantifying NF-kB translocation

in primary human cells from healthy individuals stratified by rs140490 genotype, we observed that the autoimmune disease risk

UBE2L3 genotype was correlated with basal NF-kB activation in unstimulated B cells and monocytes and regulated the sensitivity of

NF-kB to CD40 stimulation in B cells and TNF stimulation in monocytes. The UBE2L3 risk allele correlated with increased circulating

plasmablast and plasma cell numbers in SLE individuals, consistent with substantially elevated UBE2L3 protein levels in plasmablasts

and plasma cells. These results identify key immunological consequences of the UBE2L3 autoimmune risk haplotype and highlight

an important role for UBE2L3 in plasmablast and plasma cell development.
Introduction

UBE2L3 is strongly associated with systemic lupus erythe-

matosus (SLE) in genome-wide association studies and

other genetic studies,1–4 as well as multiple autoimmune

diseases (Table S1).5–11 UBE2L3 is an E2 ubiquitin-conju-

gating enzyme, also known as UbcH7. Although UBE2L3

was one of the first E2 conjugating enzymes to have its

structure determined,12 its cellular functions have re-

mained largely unknown. Because E2 enzymes appeared

to be substitutable in ubiquitination assays, it was initially

assumed that there was redundancy and lack of specificity

between E2 enzymes. E2 enzymes have greater specificity

than was first apparent, and they function with only

selected E3 ligases in vivo. E2 enzymes have a critical role

in determining ubiquitin (Ub) chain type.13 Because E2 en-

zymes act as ubiquitin shuttles, the kinetics of transfer of

Ub from E2 to substrate in the case of RING E3 ligases, or

onto the E3 in the case of HECT enzymes, might limit

the speed of polyUb chain formation. Klevit and coworkers

showed that UBE2L3 is incapable of conjugating ubiquitin

onto free lysine and directly onto the target substrate, as is

necessary for standard RING E3 ligases.14 UBE2L3 is there-

fore restricted to HECT-like E3s and co-operates with only a

highly restricted set of dual RING E3 ligases with a RBR
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motif (RING-in-between-RING) and seven of the nine

HECT E3 ligases.15

Linear ubiquitination, which involves sequential

bonding of a ubiquitinmoiety onto theMet-1 (M1) residue

of ubiquitin,16 is mediated by the 600 kDa E3 complex

LUBAC (linear ubiquitin chain assembly complex),

composed of HOIL-1, HOIP, and Sharpin.17–21 LUBAC

forms linear (M1) Ub chains on NEMO to activate the

IKK complex. Deficiency of HOIL-1 or Sharpin inhibits

phosphorylation and degradation of the NF-kB seques-

tration protein IkBa, leading to impaired activation of

NF-kB. HOIL-1-deficient mice have defective NF-kB re-

sponses,17 and rare human loss-of-function mutations in

HOIL-1 led to defective TNF signaling and abnormal IL-1

responses.22 Sharpin deficiency diminishes NF-kB activa-

tion, while increasing proinflammatory TNF-induced cell

death, responsible for chronic proliferative dermatitis in

Sharpin-deficient Cpdm mice.19 Thus LUBAC has been

shown to be critical for NF-kB activation downstream of

the TNF receptor 1 (TNFR1) and CD40. Presence of HOIP

in B cells was necessary for CD40 signaling,23 and reduced

immunoglobulin levels and impaired peritoneal B-1 cell

development were observed in mice with conditional

HOIP deficiency in B cells.24 HOIL-1 and HOIP are both

RBR E3 ligases, so we hypothesized that UBE2L3 would
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be required for LUBAC to function in vivo. Recombinant

HOIP and HOIL-1 or Sharpin can generate polyubiquitin

chains with UBE2L3 in biochemical ubiquitination as-

says,16,20 although this might not be limited to UBE2L3,

as hinted by the fact that the promiscuous E2 enzymes

UBE2D1, UBE2D2, and UBE2D3 (UbcH5a, UbcH5b, and

UbcH5c) can substitute for UBE2L3 in these assays.16 In

this study we set out to investigate the relative importance

of UBE2L3 to LUBAC function in vivo.
Subjects and Methods

Individuals and Genotyping
The study was approved by the UK National Research Ethics Ser-

vice and institutional review boards of collaborators’ institutions

prior to the commencement of the study. All study participants

providedwritten consent at the time of sample collection. Samples

from 4,946 individuals with SLE of European ancestry and 1,286

control subjects collected frommultiple sites as part of an ongoing

GWAS in SLE were genotyped on the Illumina Human Omni1-

Quad BeadChip platform. Quality-control analysis of genotyping

was carried out in accordance with Illumina’s Technical Note on

Infinium Genotyping Data, excluding SNPs with poor clustering

separation or call rate <0.95. Additional controls from the Health

and Retirement study (dbGaP accession phs000428.v1.p1) geno-

typed on the Illumina Human Omni2.5-Quad platform were

included in the analysis. Additional quality-control checks were

made for individual missingness, SNPmissingness, autosomal het-

erozygosity, identity-by-descent (via PLINK algorithm), Hardy-

Weinberg equilibrium, and population structure (via EIGENSTRAT

algorithm) with a panel of 50 ancestry informative markers. After

quality-control analysis, 4,036 SLE-affected individuals and 6,959

control subjects with 696,085 SNPs were imputed with 1000

Genomes reference data via IMPUTE2.2 algorithm across region

21.60 Mb to 22.20 Mb on chromosome 22 spanning UBE2L3. To

ensure reliability, imputed SNPs with an information score less

than 0.9 were discarded. Single marker analysis was performed

with SNPTEST (v.2.2) with four principal components as covari-

ates in logistic regression. All SLE-affected individuals fulfilled

the American College of Rheumatology (ACR) classification

criteria for the diagnosis of SLE. SLE subphenotype data were avail-

able on a subset of 1,751 SLE-affected individuals. Case-case sub-

phenotype statistical analysis was performed with SNPTEST with

four principal components as covariates. Presence of lupus

nephritis was defined by renal disorder subcomponent of the

ACR diagnostic criteria.

Expression Data
Microarray data from eQTL studies were obtained for lymphoblas-

toid cell lines from 270 HapMap individuals (GEO database

GSE6536)25 and for CD19þ B cells and CD14þ monocytes isolated

from peripheral blood mononuclear cells (PBMCs) from 288

healthy individuals (ArrayExpress E-MTAB-945).26 For both data

sets, SNPs across region 21.60 Mb to 22.20 Mb on chromosome

22 were processed with IMPUTE2.2 to generate imputed genotype

data at rs140490. For protein studies, healthy individuals, whose

genotypes had been imputed at rs140490, were recalled from the

TwinsUK resource. PBMCs were obtained from blood samples,

and CD4þ T cells and CD19þ B cells were isolated by positive (Mil-

tenyi) and negative (Invitrogen) selection, respectively, via mag-
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netic beads and lysed with ice-cold RIPA buffer with protease

and phosphatase inhibitors (Complete Mini and PhosSTOP,

Roche). BCA assay (Pierce) was used to equalize total protein con-

centration. UBE2L3 protein levels were assessed by immunoblot.

Densitometry was quantified with ImageJ software (NIH) normal-

ized to actin.

Plasmids and Cell Culture
The followingplasmids on the pCMV6vectorwere purchased from

Origene: untagged UBE2L3, HOIP, UBE2D1, UBE2D2, UBE2D3,

Sharpin-Myc-DDK, and empty vector (pCMV6-AC). pCMV6-

HOIL-1-Myc-DDK (Origene) was subcloned into pCMV6AC to re-

move the C terminus Myc-DDK tag. pcDNA3.1-V5-His-HOIP and

pcDNA3.1-V5-His-HOIP (p.Cys885Ser) were kind gifts of H. Walc-

zak. pFlagCMV2-UbcH8 (UBE2L6) was obtained from Addgene.

Variant p.Cys86Ser UBE2L3 was generated by site-directed muta-

genesis (Stratagene Quikchange II XL). All plasmid ORF were veri-

fied by full sequencing. HEK293 cells (ATCC) were maintained in

DMEMwith 10% FBS.

Antibodies
The following antibodies were used: anti-IkBa (C-21), rabbit anti-

p65 (sc-372), anti-actin (sc-1616), and anti-UBE2L3 (C-20) from

Santa Cruz; anti-Sharpin (4444), anti-p-IkBa (5A5), anti-JNK

(56G8), anti-p-JNK (98F2), anti-ERK1/2 (137F5), anti-p-ERK1/2

(D13.14.4E), and anti-UBE2D3 (D60E2) from Cell Signaling;

and anti-HOIL-1 (HPA024185, Sigma), anti-HOIP (SAB2102031,

Sigma), anti-tubulin (AA13, Sigma), anti-UBE2L3 (20/UbcH7, BD

Bioscience and A-640, Boston Biochem), anti-pan-UbcH5 (A-615,

Boston Biochem), anti-FLAG (Sigma), and anti-V5-AlexaFluor647

(AbD Serotec). Mousemonoclonal anti-UBE2L3 antibodywas con-

jugated to PE via Lynx rapid RPE conjugation kit (AbD Serotec) as

per the manufacturer’s instructions.

Luciferase Reporter Assay
GloResponse NF-kB-RE-luc2P HEK293 cell line (Promega) with sta-

bly integrated pGL4.32[luc2P/NF-kB-RE/Hygro] luciferase reporter

were transiently transfected with combinations of plasmids via

Fugene 6 (Promega). Luciferase activity was assayed by Luciferase

Assay Reagent II (Promega) or One-Glo (Promega) on Berthold

Orion luminometer, normalized to cell viability measured by

CellTiterGlo assay (Promega).

RNA Interference
GloResponse NF-kB-RE-luc2P HEK293 cells were seeded at 10,000

cells/well in 96-well plates. After 24 hr, cells were transfected

with siRNA at a final concentration of 25 nmol/l with Dharmafect

reagent #1. After 72 hr, cells were stimulated with TNF and

analyzed by NF-kB luciferase reporter assay. For signaling pathway

analysis, HEK293 cells at a density of 100,000 cells/well in 24-well

plates were transfected as before and stimulated with TNF and

lysed in the presence of protease and phosphatase inhibitor cock-

tail for immunoblot. Western blot gel electrophoresis, transfer,

and detection was performed in parallel with identical film expo-

sure duration. The following siRNA sequences were used: UBE2L3

sense 50-CCGCAAAUGUGGGAUGAAA-30, anti-sense 50-UUUCAU

CCCACAUUUGCGG-30; HOIL-1 sense 50-GCUCAGAUGCACACC

GUCA-30 and anti-sense 50-UGACGGUGUGCAUCUGAGC-30;
HOIP sense 50-GGCGUGGUGUCAAGUUUAA-30 and anti-sense

50-UUAAACUUGACACCACGCC-30; and Sharpin sense 50-CCUG

GAAACUUGACGGAGA-30 and anti-sense 50-UCUCCGUCAAGU
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UUCCAGG-30. siGENOME RISC-Free Control siRNA (Dharmacon)

was used as a control.

Real-Time Quantitative PCR
HEK293 cells were transfected with control, UBE2L3, or HOIP

siRNA for 48 hr and stimulated with TNF 10 ng/ml for up to

6 hr. mRNA was isolated with Trizol reagent (Life Technologies),

reverse transcribed into cDNAwith SuperScript III First-strand Syn-

thesis kit (Life Technologies), and quantified by real-time quantita-

tive PCR with SYBR fast qPCR kit (Kapa) on an Applied Biosystems

7900HT instrument. Data normalized against b-actin levels were

analyzed with Applied Biosystems RQ manager and GraphPad

Prism software. The following gene specific primers were used:

NFKBIA (IkBa) 50-ATGCTCAGGAGCCCTGTAATG-30 and 50-CCC
CACACTTCAACAGGAGT-30; CCL2 50-GAAAGTCTCTGCCGCC

CTT-30 and 50-ATTGATTGCATCTGGCTGAGCG-30; TNFAIP3

(A20) 50-GCGTTCAGGACACAGACTTG-30 and 50-TTCATCATTCC
AGTTCCGAGTATC-30; and VCAM1 50-TTTGCAGCTTCTCAAGC

TTTT-30 and 50-CCTGTGGTGCTGCAAGTC-30.

NF-kB Translocation
HEK293 cells were transiently transfected for 24 hr with HOIL-1,

V5-His-HOIP, Sharpin, and/or UBE2L3. Cells were detached with

TrypLE (Life Technologies), stimulated with TNF for 30 min, fixed

with BD cytofix, permeabilized with 0.1% Triton X-100, and

stained with rabbit anti-p65 (Santa Cruz), PE-conjugated anti-

UBE2L3, and anti-V5-AlexaFluor647. Cells were washed, incu-

bated with AlexaFluor488 F(ab)2 donkey anti-rabbit IgG (Jackson),

washed, stained with DAPI. 20,000 cells per condition were ac-

quired on Imagestream X imaging flow cytometer (Amnis). For

ex vivo cell analysis, PBMCs were isolated via Histopaque from

blood samples from previously genotyped healthy individuals

(TwinsUK). CD19þ B cells were isolated by magnetic bead positive

selection (Miltenyi) and CD14þ monocytes were isolated by nega-

tive selection (Miltenyi). Endotoxin-free MACS buffer was used

throughout. Cell purity was confirmed by flow cytometry. B cells

and monocytes were cultured in RPMI and stimulated with

0.1 mg/ml CD40L (Enzo) and 10 ng/ml TNF (Axxora), respectively,

for up to 60 min. Cells were fixed and stained for p65 as above,

washed, and stained with DRAQ5 (eBioscience), and 15,000–

20,000 events per sample were acquired by Imagestream X. Data

analysis was entirely automated with IDEAS software batch func-

tion applied to the entire cohort and performed fully blinded to

genotype.

Genotyping
Previously genotyped healthy twins were selected on the basis

of imputed genotype at rs140490. Genotyping was confirmed

in these individuals as well as in all SLE-affected individuals

by TaqMan genotyping assay on Applied Biosystems 7900HT

instrument.

Flow Cytometry
Fresh PBMCs were isolated from blood obtained from 29 SLE-

affected individuals and 25 healthy control subjects. Cells were

stained with LIVE/DEAD Fixable Blue Dead cell stain (Invitrogen)

to exclude dead cells, Fc receptor blocked (Human TruStain FcX,

Biolegend), and surface-stained with the following markers:

IgD-BrilliantViolet(BV)421 (IA6-2), CD19-BV510 (HIB19), CD27-

BV650 (O323), CD138-FITC or CD138-PE-Cy7 (MI15), CD24-

PerCP-Cy5.5 (ML5), CD95-PE-Cy7 (DX2), CD38-APC (HB7),
The Americ
CD20-APC-H7 (2H7) from Biolegend or BD. Cells were fixed

with BD stabilizing fixative reagent. Cells were permeabilized

with BD perm/wash buffer I and stained for UBE2L3-PE (described

above) or permeabilized with Foxp3 permeabilization buffer

(eBioscience) and stained for both UBE2L3-PE and Ki-67-Alexa488

(B56). Freshly stained cells were acquired on 5 laser BD SORP

LSRFortessa instrument. BD CS&T beads were used immediately

prior to every sample run to maintain instrument consistency

throughout the entire study. Data were analyzed with FlowJo

v.10 for the entire cohort by a single individual completely blind

to genotype. Statistical analysis was performed with one-way

ANOVA. SLE-affected individual demographics and disease charac-

teristics are summarized in Table S2. On the same day that samples

were drawn for flow cytometry, SLE disease activity was recorded

with the SELENA modification of the SLEDAI. Measurement of

erythrocyte sedimentation rate (ESR), anti-dsDNA antibody titer,

and complement C3 and C4 levels were performed as part of

routine clinical care.
Results

rs140490 Is Associated with SLE and the rs140409 Risk

Allele Increases Expression of UBE2L3

UBE2L3 genotype data from an ongoing SLE GWAS

(T.J.V., data not shown) was imputed with 1000 Genomes

reference data, identifying rs140490 as the most strongly

associated SNP, located at �270 bp of the promoter

region of UBE2L3 (p ¼ 8.6 3 10�14, OR 1.30, 95%

CI: 1.21–1.39) (Figure 1A). Haplotype analysis from

SLE-affected individuals shows that a single risk haplo-

type spans the entire gene (Figure S1A) and is the

same risk haplotype across all autoimmune diseases

(Figure S1B). Case-case subphenotype analysis available

on a subset of 1,751 SLE case subjects demonstrated

that rs140490 was associated with increased risk of lupus

nephritis (p ¼ 0.0036, OR 1.27, 95% CI: 1.08–1.49), sug-

gesting that UBE2L3 is associated with increased disease

severity.

Genotypes from eQTL studies25,26 with microarray

expression data for UBE2L3 were imputed to 1000 Ge-

nomes level, showing that the rs140490 risk allele was

strongly correlated with increased UBE2L3 expression in

EBV-transformed lymphoblastoid cell lines from HapMap

individuals25 (p ¼ 6.06 3 10�25). A similarly strong linear

relationship was noted between alleles of rs140490 and

UBE2L3 expression in primary human B cells (p ¼ 1.28 3

10�9) and monocytes (p ¼ 2.54 3 10�27)26 (Figure 1B).

Samples from genotyped healthy individuals (TwinsUK)

confirmed that rs140490 increased UBE2L3 protein levels

in CD19þ B cells isolated from peripheral blood (p ¼
0.0094) but that the risk SNP rs140490 did not signifi-

cantly alter UBE2L3 protein levels in CD4þ T cells

(Figure 1C). Consistent with this, eQTL microarray data

on primary CD4þ T cells showed a lower p value (p ¼
4.4 3 10�4) compared to CD14þ monocytes (p ¼ 3.4 3

10�8) for rs7444, which is in strong LD with rs140490,

showing a reduced effect on UBE2L3 expression in CD4þ

T cells (data not shown).27
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Figure 1. rs140490 Is Associated with SLE and a Cell-Specific Increase in UBE2L3 Production
(A) Locuszoom plot showing SNPs around UBE2L3 imputed to 1000 Genomes level. Recombination rate was calculated from HapMap
data.
(B) rs140490 is associated with increased expression in microarray data (expressed as log base 2, bars show median and interquartile
range) from EBV-transformed lymphoblastoid cell lines, as well as increased mRNA expression in CD19þ B cells and CD14þ monocytes
isolated from PBMCs.
(C) Semiquantitative analysis of UBE2L3 protein level from immunoblot densitometry compared to actin, stratified by rs140490
genotype in CD19þ B cells and CD4þ T cells isolated from PBMCs from healthy individuals, with representative immunoblots shown
from individuals for each rs140490 genotype.
UBE2L3 Exerts Rate-Limiting Control over LUBAC-

Mediated NF-kB Activation

The effect of overproduction of UBE2L3 with different

combinations of LUBAC components (HOIL-1, HOIP,

Sharpin) was examined in NF-kB luciferase reporter cell

line. Increased synthesis of UBE2L3 alone did not alter

NF-kB activation, nor did increased production of

UBE2L3 with HOIL-1, HOIP, or Sharpin as individual com-

ponents of LUBAC (Figure 2A). In contrast, increased syn-

thesis of UBE2L3 with any of the three known functional

LUBAC combinations led to a substantial upregulation in

NF-kB activity in unstimulated cells, compared to overpro-

duction of LUBAC without UBE2L3 (Figures 2A and 2B).

Dominant-negative variant p.Cys86Ser UBE2L3, which

substitutes the catalytic cysteine required for ubiquitin

binding, fully suppressed activation of NF-kB by LUBAC,

which suggests that UBE2L3 is essential for LUBAC func-
224 The American Journal of Human Genetics 96, 221–234, February
tion (Figure 2B) and that LUBAC depends on UBE2L3 to

activate NF-kB.

We compared UBE2L3 with other E2 enzymes to deter-

mine whether UBE2D1, UBE2D2, or UBE2D3 could regu-

late LUBAC-mediated activation of NF-kB, because these

have been shown to polymerize ubiquitin with LUBAC

in biochemical assays.16,19 UBE2L6 (UbcH8) was included

because it is the only other human E2 other than

UBE2L3 to possess a proline at position 87, suggesting

adaptation to function with RBR E3 ligases.14 Increased

production of HOIP with or without HOIL-1 or Sharpin

was compared in the presence of different E2 conjugating

enzymes (Figure 2C). In line with a specific role for

UBE2L3 in enabling linear ubiquitination, increased syn-

thesis of UBE2D1, UBE2D2, UBE2D3, or UBE2L6 did not

affect NF-kB activation in the context of LUBAC, whereas

substantial upregulation of NF-kB was seen with UBE2L3.
5, 2015
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and UBE2L3. UBE2L3 enhances NF-kB activation due to increased levels of HOIL-1 and HOIP. Error bars represent standard error of
the mean.
(B) Dominant-negative variant p.Cys86Ser UBE2L3 suppresses NF-kB activity due to LUBAC.
(C) UBE2L3 is the preferred E2 ubiquitin-conjugating enzyme for LUBAC in vivo. Luciferase assay time course over 48 hr in HEK293-NF-
kB reporter cells transiently transfected different E2 ubiquitin-conjugating enzymes in combination with EV, HOIP alone, HOIL-
1þHOIP, or SharpinþHOIP, comparing the basal NF-kB response after increased production of individual E2 enzymes with LUBAC.
(D and E) Comparison of NF-kB p65 translocationmeasured by Imagestream analysis in HEK293 cells transiently transfected with empty
vector (EV) or HOIL-1þV5-HOIPþUBE2L3. p65 nuclear translocation is quantified by Imagestream similarity feature correlating fluores-
cence co-localization of AlexaFluor488-p65 with nuclear DAPI. Similarity histograms show levels of p65 translocation in EV, compared
to unstimulated HEK293 cells transfected withHOIL-1þHOIPþUBE2L3. EV-transfected cells stimulatedwith TNF 10 ng/ml for 1 hr acted
as a positive control. AlexaFluor647 anti-V5-tag and PE anti-UBE2L3 were used to gate cells with high levels of HOIP(V5) and UBE2L3,
showing high p65 translocation in this group compared to cells with normal HOIP and UBE2L3 levels. Representative histograms are
shown from one of three separate experiments. (D) Representative Imagestream images of HEK293 cells with median similarity level
of p65 translocation as measured in (E) showing AlexaFluor488-p65 (green), DAPI nuclear dye (pseudocolored red), PE-UBE2L3 (yellow),
and AlexaFluor647-V5(HOIP) (purple). Merged images show p65/DAPI overlap in yellow.
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Figure 3. UBE2L3 and LUBAC Augment Late-Phase NF-kB Activation in Response to TNF
(A) Increased production of LUBAC in combination with UBE2L3 augments NF-kB activation after 10 hr of TNF stimulation. This
augmentation of the TNF response is abrogated by variant p.Cys86Ser UBE2L3 or variant p.Cys885Ser HOIP.
(B) Time course showing NF-kB activation after TNF stimulation in response to increased synthesis of LUBAC and UBE2L3. Maximal
dysregulation of NF-kB occurs in the late-phase response to TNF. Error bars represent standard error of the mean.
This suggests that in vivo LUBAC has specific E2 require-

ments for NF-kB activation, with UBE2L3 exerting a

much greater influence on LUBAC compared with the

other E2 enzymes tested.

We sought to confirm that UBE2L3 in combination with

LUBAC altered NF-kB p65 nuclear translocation. p65 trans-

location in HEK293 cells was quantified by imaging flow

cytometry, using the similarity function to correlate co-

localization of p65 with DAPI nuclear dye. In HEK293 cells

transfected with HOIL-1, His-V5-HOIP, and UBE2L3, cells

gated for high co-production of V5-tagged HOIP and

UBE2L3 showed a substantial shift in the percentage of

cells showing p65 nuclear translocation (39.9%), whereas

no significant shift in p65 translocation (10.7%) was

observed in cells with normal HOIP and UBE2L3 levels

within the same sample (Figures 2D and 2E). This confirms

that only those cells that produced high levels of both

UBE2L3 and HOIP as the catalytic active component of

LUBAC demonstrated a quantitative shift in p65 transloca-

tion in unstimulated cells.

UBE2L3 in Combination with LUBAC Augments

Late-Phase NF-kB Response to TNF

Although it is well documented that overproduction of

LUBAC increases basal NF-kB activation, no studies have

demonstrated that increased levels of LUBAC augment

NF-kB activity after TNF stimulation. After stimulation by

TNF at multiple doses, increased LUBAC and UBE2L3 syn-

thesis resulted in much stronger NF-kB activation than

LUBAC alone (Figure 3A). Furthermore, dominant-nega-

tive variant p.Cys86Ser UBE2L3 or p.Cys885Ser HOIP

suppressed the increase in NF-kB activation seen in the

context of LUBAC and UBE2L3. The amplification in

NF-kB activation by LUBAC and UBE2L3 was noted to

be greater at the late-phase component of the biphasic

NF-kB activation response. Detailed time course analysis

of TNF stimulation was performed, which showed that

UBE2L3 and LUBAC maximally affected NF-kB activation

at 9–10 hr (Figure 3B). It has been suggested that LUBAC
226 The American Journal of Human Genetics 96, 221–234, February
is directly involved in activation of the IKK complex

through linear ubiquitination of NEMO, leading to down-

regulation of IkBa and release of NF-kB during the initial

activation phase of the NF-kB response.17,19,20 However,

our data show that after TNF stimulation, overproduction

of LUBAC and UBE2L3 has a more potent effect on late-

phase NF-kB activation. Furthermore, dominant-negative

variant p.Cys885Ser HOIP and dominant-negative

p.Cys86Ser UBE2L3 did not completely suppress NF-kB

activation, but reduced NF-kB activation to the level of

response observed in control cells stimulated with TNF,

in line with our previous observations on the effects of

LUBAC deficiency.18,19

Inhibition of UBE2L3 Impairs NF-kB Activation

To assess whether UBE2L3 is required for LUBAC-depen-

dent NF-kB activation, we suppressed UBE2L3 via siRNA

andobserved that this indeedantagonizedNF-kBactivation

(Figures 4A and 4B). Inhibition of UBE2L3 or HOIP led to

basally increased IkBa levels in HEK293 cells. After TNF

stimulation, inhibition of UBE2L3 or HOIP impaired phos-

phorylation and degradation of IkBa (Figure 4C). UBE2L3

inhibition exerted no effect on JNK or ERK phosphoryla-

tion. UBE2L3 blockade also inhibited TNF-induced gene

transcription of NFKBIA (IkBa), CCL2, TNFAIP3 (A20), and

VCAM1measured by real-time PCR (Figure 4D), consistent

withprevious studies onLUBAC inhibition.18,19Overall the

results in Figures 2, 3, and 4 demonstrate that UBE2L3 is

critical for LUBAC function and is the preferred E2 for

LUBAC in vivo. The amount of UBE2L3 exerts rate-limiting

control over LUBAC-mediated NF-kB activation, and

together UBE2L3 and LUBAC play an important role in

late-phase NF-kB activation in response to TNF.

UBE2L3 Genotype Influences Ex Vivo NF-kB

Translocation

We postulated that it might be possible to detect the func-

tional consequences on NF-kB from the genotypic effect

of the UBE2L3 risk haplotype at the cellular level in
5, 2015
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Figure 4. Inhibition of UBE2L3 Regulates NF-kB Signaling and Target Gene Transcription
(A) Luciferase assay in HEK293-NF-kB reporter cell line showing that siRNA inhibition of HOIL-1, HOIP, Sharpin, and UBE2L3 inhibits
NF-kB activation in response to TNF. Error bars represent standard error of the mean.
(B) Immunoblot showing siRNA knockdown of HOIL-1, HOIP, Sharpin, and UBE2L3.
(C) Inhibition of UBE2L3 or HOIP in HEK293 cells leads to basal increase in IkBa levels and impaired phosphorylation of IkBa in
response to TNF, and subsequent IkBa degradation is reduced. UBE2L3 does not impair JNK or ERK phosphorylation.
(D) Inhibition of UBE2L3 or HOIP reduces transcription of NF-kB target genes measured by real-time qPCR. HEK293 cells transfected
with control, UBE2L3, or HOIP siRNA were stimulated with 10 ng/ml TNF.
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Figure 5. UBE2L3 Genotype Affects Basal and Stimulated NF-kB Translocation in Primary Human B Cells and Monocytes
Translocation of NF-kB p65 was quantified by similarity score on Imagestream analysis of CD19þ B cells and CD14þ monocytes isolated
from PBMCs from healthy individuals, stratified by genotype at rs140490.
(A) Representative similarity histograms measuring co-localization of p65 and nuclear dye DRAQ5 for B cells after 30 min of stimulation
with CD40L and formonocytes after 30min of TNF stimulation for each rs140490 genotype. Translocated cells were defined as similarity
score > 1.5.
(B) Imagestream images for each rs140490 genotype showing CD40L-stimulated B cells and TNF-stimulated monocytes of median sim-
ilarity levels of p65 translocation from histograms in (A) showing p65 (Alexa488), DRAQ5 nuclear dye, and merged images.
(C) Graphs show percent of NF-kB p65 nuclear translocated cells in unstimulated CD19þ B cells and CD14þ monocytes from genotyped
individuals.
(D) Graphs show 60 min time course of p65 translocation in response to stimulation of B cells with 0.1 mg/ml CD40L and monocytes
with 10 ng/ml TNF, stratified by rs140490 genotype.
Error bars represent standard error of the mean.
genotyped ex vivo cells. Using blood samples from healthy

individuals stratified by UBE2L3 genotype, we stimulated

CD19þ B cells and CD14þ monocytes with CD40L or

TNF, respectively, for up to 60 min. NF-kB p65 nuclear

translocation was quantified by imaging flow cytometry,

using the similarity feature (Figure 5A, representative im-

ages of B cells and monocytes in Figure 5B), demonstrating

that nuclear translocation of p65 was strongest in the T/T

genotype at rs140490 for both CD40L-stimulated B cells

and TNF-stimulated monocytes. UBE2L3/rs140490 geno-

type was correlated with control over basal NF-kB activa-

tion in healthy human individuals for both B cells (p ¼
0.0026, r2 ¼ 0.21) and monocytes (p ¼ 0.022, r2 ¼ 0.13)

(Figure 5C), tending to a linear effect according to geno-

type, consistent with the effect of rs140490 on UBE2L3

expression for these cell types. Similarly, time course anal-

ysis showed that rs140490 genotype affected the sensi-
228 The American Journal of Human Genetics 96, 221–234, February
tivity of NF-kB to CD40 stimulation in B cells (genotype

effect p ¼ 0.00014; two-way ANOVA with repeated mea-

sures) and TNF stimulation in monocytes (genotype effect

p ¼ 0.0252) (Figure 5D).

UBE2L3 Is Highly Abundant in Plasmablasts and

Plasma Cells and UBE2L3 Genotype Influences

Plasmablast Proliferation in SLE

Given the importance of NF-kB activation for multiple

stages of B cell development and survival, we hypothesized

thatUBE2L3protein levelsmight be differentially regulated

across different B cell subsets.WemeasuredUBE2L3protein

levels by intracellular flow cytometry in B cell subsets in

blood samples from healthy individuals and SLE-affected

individuals (Figures 6A–6C) and observed that UBE2L3

was 3- to 4-fold more abundant in circulating CD19mid

CD20�CD27hiCD38hiIgD� plasmablasts (p < 0.0001) and
5, 2015
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Figure 6. UBE2L3 Is Highly Abundant in Peripheral Blood Plasmablasts and Plasma Cells
PBMCs isolated from healthy individuals and SLE-affected individuals were subject to ten-color flow cytometry to analyze UBE2L3 levels
in B cell subsets.
(A) Gating strategy for B cell subsets.
(B) Histograms of B cell subsets from a representative SLE-affected individual demonstrating clear shift in UBE2L3 protein levels
in CD19midCD20�CD27hiCD38hiIgD� plasmablast and CD20�CD27hiCD38hiIgD�CD138hi plasma cell populations (isotype control
light gray).
(C) UBE2L3 abundance was highly increased in plasmablasts and plasma cells compared to other B cell subsets in both SLE-affected
individuals and controls.
(D and E) UBE2L3 levels were significantly higher in (D) Ki-67þ proliferating B cells and (E) CD95þ activated B cells in SLE-affected
individuals. Histograms: isotype control, light gray; blue, Ki-67� or CD95�; red, Ki-67þ or CD95þ.
Error bars represent standard error of the mean.
CD20�CD27hiCD38hiIgD�CD138hi plasma cells (p <

0.0001) compared to transitional, naive, and memory B

cells. UBE2L3 levels were significantly higher in plasma

cells in SLE-affected individuals compared to controls (p ¼
0.012) (Figure 6C). UBE2L3 protein levels were strongly
The Americ
elevated in Ki-67þ proliferating B cells (p < 0.0001)

(Figure 6D) and also increased in CD95þ (Fas/APO-1) acti-

vated B cells (p < 0.0001) (Figure 6E), consistent with a

role for UBE2L3-regulated NF-kB activation in both B cell

proliferation and activation.
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Figure 7. UBE2L3 Genotype Influences Peripheral Blood Plasmablast Proliferation in SLE
(A) The UBE2L3 risk allele (rs140490 genotype) was associated with a significant expansion of peripheral blood plasmablasts and plasma
cells (expressed as percent of live B cells) from SLE-affected individuals (n¼ 29), whereas this expansion was not seen in healthy controls
(n ¼ 25). Error bars represent standard error of the mean.
(B) Representative flow cytometry plots showing percentages of plasmablasts and plasma cells (expressed as percent of live B cells) from
SLE-affected individuals for each homozygous genotype.
Although rs140490 genotype did not affect naive, transi-

tional, or memory cell population numbers in SLE-affected

individuals, the UBE2L3 risk allele was specifically associ-

ated with increased plasmablast and plasma cell number

(both p < 0.001, one-way ANOVA) in SLE-affected individ-

uals, but did not influence plasmablast or plasma cell

numbers in healthy individuals (Figures 7A and 7B).

UBE2L3 genotype showed a non-significant trend to corre-

lation with SLE Disease Activity Index (SLEDAI) recorded

at the time blood was drawn for flow cytometric analysis

(Figure S2A) (p ¼ 0.063, one-way ANOVA). UBE2L3 geno-

type was not correlated with blood markers of lupus activ-

ity including ESR, low serum complement C3 and C4

levels, or anti-dsDNA antibody or anti-nuclear antibody

titer (Figures S2B–S2F). This suggests that the relationship

between UBE2L3 genotype and increased plasmablast

and plasma cell numbers is not confounded by increased

SLE disease activity. Taken as a whole, these results support

the concept that by regulating basal and chronic low-level

activation of NF-kB, the abundance of UBE2L3 might play

a major regulatory role in abnormal B cell differentiation

and proliferation in autoimmune diseases.
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Discussion

This study set out to understand the reasons behind the

concomitant association between UBE2L3 and multiple

autoimmune diseases. Haplotype analysis shows that the

UBE2L3 locus has an unusually simple structure, with

two haplotypes covering the majority of genetic variation

and extending across the full length of the gene. Thus a

single haplotype block is associated with SLE in our own

data and the same risk haplotype is associated with multi-

ple other autoimmune diseases (Figure S1). A recent GWAS

of chronic hepatitis B in Han Chinese individuals found an

association with UBE2L3.28 However, the UBE2L3 haplo-

type associated with increased risk of chronic hepatitis B

infection is consistently protective against autoimmune

diseases (Figure S1), suggestive of a balanced polymor-

phism. The UBE2L3 risk haplotype is associated with

increased expression of UBE2L3 in B cells and monocytes,

which we have confirmed at the protein level in primary

human B cells, but this appears to be cell specific, because

rs140490 genotype had negligible effect on UBE2L3 pro-

tein levels in CD4þ T cells. Our data show that the SNP
5, 2015



most strongly associated with SLE is rs140490 in the pro-

moter region of UBE2L3 270 bp upstream of the 50 start
site. Given the location of rs140490, consistent with regu-

lation of expression, it is biologically plausible that this

might be the causal SNP. However, others have identified

rs7444 in the 30 UTR as the possible causal variant, and

rs7444 is strongly correlated with rs140490.4

A major finding of this study is proof of the rate-limiting

specificity of UBE2L3 in LUBAC-mediated NF-kB activa-

tion. UBE2L3 inhibition led to an upregulation in basal

IkBa, impaired phosphorylation of IkBa, and delayed

and reduced degradation of IkBa, similar to the pattern

observed with HOIP inhibition. A recent study has inde-

pendently shown that UBE2L3 inhibition reduced linear

ubiquitination of NEMO and provides evidence confirm-

ing our observations that inhibition of UBE2L3 affects

IkBa processing.29 In our study, the striking magnitude of

the amplification of NF-kB activation in response to over-

production of UBE2L3 with LUBAC is in contrast to the

data presented by Fu et al.,29 which showed that increased

production of UBE2L3 alone exerted a modest effect on

basal NF-kB activity. Our data contradict that of Fu et al.

and show that increased UBE2L3 synthesis alone has no ef-

fect on NF-kB activity unless LUBAC components are also

overproduced. This might be because HOIP in its native

form exists in an autoinhibited state until complexed

with HOIL-1 and Sharpin after TNF stimulation.30,31 We

have also shown that dominant-negative p.Cys86Ser

UBE2L3 fully suppressed NF-kB activation by LUBAC, con-

firming that UBE2L3 is critical for LUBAC function. By

detailed analysis of the time course of NF-kB activation,

we found that UBE2L3 in conjunction with LUBAC had

a more potent effect in dysregulating the late phase of

TNF-induced NF-kB activation, peaking at 9–10 hr, and

that this effect could be suppressed by variant p.Cys885Ser

HOIP, confirming that the effect of UBE2L3 on NF-kB is

mediated through its interaction with HOIP. Although

this is consistent with the current mechanism for LUBAC

acting upstream of IkBa degradation, it raises the possibil-

ity that UBE2L3 and LUBAC affect late-phase negative-

feedback inhibitors of NF-kB.32

Because UBE2L3 showed such a potent effect on NF-kB,

we hypothesized that this could be detectable in response

to UBE2L3 genotype. We chose the p65 translocation assay

as ameasurable quantitative assay in close proximity to the

direct molecular action of UBE2L3 and to reduce the possi-

bility that genetic variation in proteins downstream of

NF-kB would affect our ability to detect the functional con-

sequences of rs140490. We observed that the risk allele at

rs140490 was associated with increased p65 NF-kB translo-

cation both at baseline in B cells and to a lesser extent in

monocytes, but also in response to CD40L stimulation in

B cells and TNF activation of monocytes. There are no

known regulators of UBE2L3, but three deubiquitinating

enzymes (DUBs) have been implicated in regulating linear

ubiquitination, namely OTULIN,33 CYLD,34 and A20.35,36

A20 is encoded by TNFAIP3, which is associated with mul-
The Americ
tiple autoimmune diseases,37 similar to UBE2L3. DUBs can

directly regulate E2 enzymes,38 which raises the question

as to whether OTULIN, CYLD, or A20 interact with

UBE2L3.

We used PLINK EPISTASIS to investigate UBE2L3 and

TNFAIP3 for SNP 3 SNP genetic interaction, analyzing

SNPs that reached genome-wide significance for associa-

tion with SLE. This analysis identified evidence of statisti-

cal interaction between rs140490 and two SNPs flanking

TNFAIP3, namely rs80126770 (ORinteraction 1.28, p ¼
0.039) and rs6932056 (ORinteraction 1.26, p ¼ 0.047). Both

rs80126770 and rs6932056 tag the SLE-associated TNFAIP3

risk haplotype with a functional TT>A polymorphic dinu-

cleotide as described by Adrianto et al.39 Because of the

strong LD across UBE2L3, other SNPs tagging the UBE2L3

risk haplotype (including rs5754217 and rs7444) gave

near-identical results for interaction with TNFAIP3.

This study shows the importance of UBE2L3 genotype

for both CD40-mediated B cell activation and TNF-medi-

ated monocyte activation in primary human cells. Because

aberrant autoreactive B cell survival is a key component of

SLE pathogenesis, we postulated that UBE2L3 genotype

could influence B cell differentiation. Our data show that

UBE2L3 protein levels are substantially elevated in plasma-

blasts, plasma cells, and Ki-67þ proliferating B cells

(Figure 6). The UBE2L3 risk haplotype correlated with

increased plasmablast and plasma cell numbers in SLE-

affected individuals (Figure 7), but not in healthy control

subjects, which suggests that UBE2L3 plays an important

role in plasmablast/plasma cell development in SLE. Dysre-

gulated B cell development with increased numbers of

circulating plasmablasts and CD138þ plasma cells is a

well-recognized feature of SLE.40 Our data showing the ef-

fect of UBE2L3 genotype on NF-kB activation in B cells and

plasmablast and plasma cell numbers in SLE suggest that

UBE2L3 has an important functional role in B cell prolifer-

ation and terminal B cell differentiation, consistent with

the critical importance of NF-kB activation for B cell

lymphoid development41–43 and plasma cell survival.44

In summary, our study shows that LUBAC-mediated

activation of NF-kB is exquisitely sensitive to the expres-

sion level of UBE2L3, consistent with our finding that

UBE2L3 is the preferred E2 for LUBAC in vivo. The molec-

ular basis of the association of UBE2L3 with numerous

autoimmune diseases is mediated through the direct and

measurable effect of the UBE2L3 autoimmune risk haplo-

type on NF-kB both basally and in response to TNF and

CD40L stimulation in primary human monocytes and B

cells, respectively (Figure 5). In turn, UBE2L3 risk alleles

are strongly correlated with increased plasmablast and

plasma cell numbers in SLE-affected individuals. The

GWAS era has uncovered hundreds of disease-associated

genetic variants, and yet very few studies have been able

to identify functional consequences of complex trait ge-

netic variants in ex vivo cells.

Because the tagging SNP rs140490 affectsNF-kB responses

in vivo and influences terminal B cell differentiation in SLE,
an Journal of Human Genetics 96, 221–234, February 5, 2015 231



we would predict that rs140490 could have potentially

important clinical implications for prognosis in SLE, as

well as response to biologic therapies such as anti-CD20 B

cell depletion or anti-BLyS treatment. Because UBE2L3 is

highly abundant inplasmablasts andplasma cells, our study

provides primary evidence thatUBE2L3 couldpotentially be

a therapeutic target in SLE and possibly for other autoim-

mune diseases (Table S1) or plasma cell diseases such asmul-

tiplemyeloma. A final important point can be inferred from

the genetics of UBE2L3: the low-expressing UBE2L3 geno-

type is not associated with ill health, which suggests that

UBE2L3 inhibitors are likely to exhibit a safe window of

tolerability.
Supplemental Data

Supplemental Data include two figures and two tables and can be

found with this article online at http://dx.doi.org/10.1016/j.ajhg.
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