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Abstract

Primary biodiversity data constitute observations of particular species at given

points in time and space. Open-access electronic databases provide unprece-

dented access to these data, but their usefulness in characterizing species distri-

butions and patterns in biodiversity depend on how complete species

inventories are at a given survey location and how uniformly distributed survey

locations are along dimensions of time, space, and environment. Our aim was

to compare completeness and coverage among three open-access databases rep-

resenting ten taxonomic groups (amphibians, birds, freshwater bivalves, cray-

fish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the

contiguous United States. We compiled occurrence records from the Global

Biodiversity Information Facility (GBIF), the North American Breeding Bird

Survey (BBS), and federally administered fish surveys (FFS). We aggregated

occurrence records by 0.1° 9 0.1° grid cells and computed three completeness

metrics to classify each grid cell as well-surveyed or not. Next, we compared

frequency distributions of surveyed grid cells to background environmental

conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify cov-

erage through time, along two spatial gradients, and along eight environmental

gradients. The three databases contributed >13.6 million reliable occurrence

records distributed among >190,000 grid cells. The percent of well-surveyed

grid cells was substantially lower for GBIF (5.2%) than for systematic surveys

(BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records pro-

duced at least 250 well-surveyed grid cells for six of nine taxonomic groups.

Coverages of systematic surveys were less biased across spatial and environmen-

tal dimensions but were more biased in temporal coverage compared to GBIF

data. GBIF coverages also varied among taxonomic groups, consistent with

commonly recognized geographic, environmental, and institutional sampling

biases. This comprehensive assessment of biodiversity data across the contigu-

ous United States provides a prioritization scheme to fill in the gaps by con-

tributing existing occurrence records to the public domain and planning future

surveys.

Introduction

There is increasing recognition that ecological and evolu-

tionary processes operate in response to natural and

anthropogenic factors that are apparent at regional, conti-

nental, and even global scales. Research in the fields of

macroecology and landscape ecology has demonstrated that

broad-scale environmental variation and spatial processes

play important roles in generating and maintaining

biodiversity (Brown 1995; Turner et al. 2001). Multiple

contemporary threats to biodiversity are apparent at simi-

larly broad spatial scales, including habitat loss and fragmen-

tation stemming from the alteration of natural landscapes,

climate change, and intercontinental faunal and floral

exchanges (Rahel 2000; Bates et al. 2008; Newbold et al.

2015). In freshwaters, additional broad-scale threats to bio-

diversity include eutrophication and hydrologic alteration

(Bennett et al. 2001; Poff et al. 2007; Esselman et al. 2011).

Primary biodiversity data – observations of particular

species at given points in time and space – are essential
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to understanding how these broad-scale processes affect

the distribution of species and biodiversity across the

globe (Sober�on and Peterson 2004; Peterson et al. 2010).

A major challenge that remains, however, is inadequate

primary biodiversity data for many regions and taxo-

nomic groups throughout the world. Recent efforts to

overcome this Wallacean shortfall have sought to compile

species occurrence records using open-access database

platforms (Lomolino and Lawrence 2004; Whittaker et al.

2005). For example, the Global Biodiversity Information

Facility (GBIF) currently provides online open access to

over 521 million occurrence records representing more

than 1.4 million species (Edwards et al. 2000; Yesson

et al. 2006). These databases have allowed investigators to

test ecological and evolutionary hypotheses that explain

the natural generation and maintenance of biodiversity as

well as document contemporary and human-induced

changes in biodiversity (e.g., Rahel 2000; Kozak and Wiens

2006; Mitchell and Knouft 2009). Moreover, recent devel-

opments in GIS software, broad-scale environmental data

layers (e.g., Worldclim; Hijmans et al. 2005), and refine-

ment of statistical techniques (e.g., MaxEnt; Phillips et al.

2006) have led to the extensive use of these open-access

databases in species distribution modeling (SDM; Guisan

and Thuiller 2005; Broennimann et al. 2007; Dom�ınguez-

Dom�ınguez et al. 2006) and biodiversity mapping (Sousa-

Baena et al. 2013; Garc�ıa-Rosell�o et al. 2015).

Broad-scale databases describing species occurrences,

such as GBIF, are frequently composed of many smaller

(i.e., narrower spatial extent or fewer records) surveys of

multispecies assemblages or single-species occurrence

records (e.g., georeferenced museum vouchers) collected

for many different purposes and by many different scien-

tists, natural resource managers, and even recreational

naturalists. This data compilation scheme frequently

results in incomplete inventories of the species occupying

a survey location and inadequate survey coverage along

three important ecological dimensions: time, space, and

environment (Ladle and Hortal 2013). Survey complete-

ness is important for biodiversity studies that seek to sta-

tistically model and map patterns in species richness

(Lobo 2008; Chao and Jost 2012). Indeed, survey com-

pleteness is an overriding factor affecting observed rich-

ness for a given survey location (Hortal et al. 2007;

Sober�on et al. 2007). A variety of analytic approaches

have been developed to quantify the completeness of bio-

diversity surveys (reviewed by Colwell et al., 1994). Many

of these approaches use parametric or nonparametric

algorithms to estimate “expected” (i.e., actual) species

richness based on the frequency of individual species

occurrences within a survey location. The proportion of

observed richness versus expected richness is then com-

puted and used as a metric of survey completeness

(Hortal et al. 2006; Sober�on et al. 2007). An alternative

approach characterizes the final (i.e., right side) slope of

the species accumulation curve for a given survey loca-

tion. Slopes near zero suggest that richness has reached

an asymptote with the currently available number of

occurrence records and is indicative of high completeness

(Yang et al. 2013).

Regarding survey coverage, different ecological and evo-

lutionary questions require consistent data coverage along

one or more dimensions of time, space, and environment

(Rahel 2000; Broennimann et al. 2007; Pearman et al.

2008). Uneven representation of key environmental gradi-

ents by occurrence records can strongly influence the

accuracy of SDMs and the perceived importance of envi-

ronmental predictor variables used to build those SDMs

(Kadmon et al. 2004; Loiselle et al. 2008; Tessarolo et al.

2014). Similarly, uneven representation of spatial and

environmental gradients also affects the performance of

modeling efforts aimed at predicting and mapping pat-

terns in biodiversity (e.g., species richness) across unsur-

veyed regions (Dennis and Thomas 2000; Ladle and

Hortal 2013). Discrepancies in environmental data cover-

age between two regions (i.e., incomplete space-by-envir-

onment data coverage) can influence model

transferability, which can weaken inferences made about

geographic range limits and niche shifts of invasive spe-

cies or tests of local adaptation among geographically sep-

arated populations (Broennimann et al. 2007; Peterson

et al. 2007). Spatial data gaps through time (i.e., space-

by-time) can influence the ability to detect geographic

range shifts over time (Tingley and Beissinger 2009) or

biotic homogenization between regions (Rahel 2000).

Gaps in data along environmental gradients and through

time (i.e., environment-by-time) can limit the detection

of environmental niche evolution – a process that has

important implications for understanding natural species

richness patterns or predicting species adaptive potential

in the face of human-induced global change (Pearman

et al. 2008). As with completeness, a variety of analytic

approaches have been developed to quantify the coverage

of biodiversity surveys. These include direct measurement

of the frequency distributions of biodiversity surveys

along key environmental gradients (e.g., Kadmon et al.

2003; Loiselle et al. 2008) as well as summarizing environ-

mental variation among survey locations as a surrogate of

biodiversity (e.g., Hortal and Lobo 2005).

The aim of this study was to compare completeness

and coverage among three open-access databases repre-

senting ten taxonomically diverse groups of macro-organ-

isms in the contiguous United States (amphibians, birds,

freshwater bivalves, crayfish, freshwater fish, fungi, insects,

mammals, plants, and reptiles). First, by comparing com-

pleteness among a database composed of many smaller
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data compilation efforts (GBIF) with databases of system-

atic survey efforts (North American Breeding Bird Survey,

federally administered fish surveys), our goal was to assess

the utility of data compilation efforts with regard to

describing spatial variation in species richness. Second, we

characterized the coverage of biodiversity surveys derived

from these databases along two spatial gradients (latitude

and longitude); three natural environmental gradients (el-

evation, mean annual temperature, and mean annual pre-

cipitation); three anthropogenic environmental gradients

(urban land cover, agricultural land cover, and total dis-

turbed land cover); and two gradients of future climate

change (forecasted change in mean annual temperature

and mean annual precipitation between the late 1900s

and the 2080s). Characterizing coverage along these latter

two gradients of anthropogenic environmental change is

an important, yet overlooked, component of biodiversity

data planning. Lastly, by synthesizing completeness and

coverage among multiple databases, taxonomic groups,

and ecologically relevant gradients, our goal was to eluci-

date the causes of data gaps and offer an objective path

toward comprehensive biodiversity conservation in the

United States.

Materials and Methods

Compilation of occurrence records

We downloaded georeferenced occurrence records within

the contiguous United States from GBIF. This data repos-

itory is likely the most comprehensive source of open-

access species occurrence records and includes records

from other frequently used data repositories that are

specific to a geographic region (e.g., BISON), taxonomic

group (e.g., FishNet2, HerpNet, MANIS), or institution

(e.g., Kansas University Biological Survey) (Yesson et al.

2007). As such, numerous studies have made use of GBIF

data as presence-only records in SDMs (e.g., Giovanelli

et al. 2008) and biodiversity studies (e.g., Pineda and

Lobo 2009). For the present analysis, taxonomic keywords

were used to download records from GBIF for amphib-

ians (Class: Amphibia), birds (Class: Aves), freshwater

bivalves (Order: Unionoida), crayfish (Order: Decapoda),

fishes (Class: Actinopterygii), fungi (Kingdom: Fungi),

insects (Class: Insecta), mammals (Class: Mammalia),

plants (Kingdom: Plantae), and reptiles (Class: Reptilia).

Records were screened and those with (1) “no known

coordinate issues”; (2) a sampling year between 1800 and

2013; (3) a taxonomic rank of “species”; and (4) a record

type of “specimen” were retained for the analysis. In

addition to GBIF records, we obtained georeferenced

routes from the North American Breeding Bird Survey

(hereafter BBS; Pardieck et al. 2014). The BBS data have

been used previously in national and continental-scale

studies of avian ecology and conservation (e.g., Bahn and

McGill 2007; Peterson et al. 2007). We also obtained geo-

referenced federal fish surveys (hereafter FFS) from the

Environmental Protection Agency’s Regional Environmen-

tal Monitoring and Assessment Program and National

Rivers and Streams Assessment as well as the United

States Geological Survey’s National Water Quality Assess-

ment. These three sources of fish distributional data have

been collated previously and used as a comprehensive

presence–absence dataset in national-scale studies of

freshwater biogeography, ecology, and conservation (e.g.,

Herlihy et al. 2006; Mitchell and Knouft 2009; Mims and

Olden 2012). The BBS and FFS datasets provide an infor-

mative comparison with the GBIF datasets, as they repre-

sent systematic (and presumably less biased) sampling

efforts by one or several collaborating authorities.

We defined an individual occurrence record as a data-

base row that represents an individual organism collected

from a known location (i.e., latitude and longitude) and

at a known time (i.e., calendar year). These occurrence

records were mapped in ArcMap (version 10.1; ESRI,

Inc.: Redlands, CA) and assigned to one of 83,545 grid

cells (0.1° by 0.1° rectangles) distributed across the con-

tiguous United States using the spatial join tool. These

dimensions correspond to cells that range in size from

80 km2 (11.1 km by 7.2 km) at the northernmost lati-

tudes to 112 km2 (11.1 km by 10.1 km) at the southern-

most latitudes. A trade-off exists between maximizing

survey resolution (i.e., small grid cells) while retaining an

adequate number of occurrence records within each grid

cell. Previous studies indicated that a 0.1° cell size pro-

vides sufficient resolution to be useful for biodiversity

research (Hortal et al. 2006; Sober�on et al. 2007) and a

preliminary exploration of larger and smaller sizes indi-

cated that this size retained adequate numbers of occur-

rence records per cell with datasets used in this study. We

defined an individual survey as all occurrence records

within a grid cell. Surveys were defined over three differ-

ent time periods: all records between 1800 and 2013

(hereafter “complete time period”); all records between

1990 and 2013 (hereafter “contemporary time period”);

and records falling within each of ten different 20-year

intervals plus a final 14-year interval (i.e., 1800–1819,
1820–1839, 1840–1859, 1860–1879, 1880–1899, 1900–
1919, 1920–1939, 1940–1959, 1960–1979, 1980–1999,
2000–2013).

Survey completeness

Three completeness metrics were computed and used

to classify each survey as “well-surveyed” or “not-

well-surveyed.” These metrics included (1) the number of
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records per grid cell, (2) the Chao2 completeness index,

and (3) the final (i.e., right side) slope of species accumu-

lation curve (Chao 1987; Yang et al. 2013). We explored

low (i.e., liberal), moderate, and high (i.e., conservative)

thresholds for each of these three completeness metrics

based on the range of thresholds used in previous studies

(Sober�on et al. 2007; Sousa-Baena et al. 2013; Yang et al.

2013). For the low threshold, well-surveyed cells were

defined as those with ≥10 occurrence records, a Chao2

completeness metric ≥0.6, and a final species accumula-

tion curve slope of ≤0.15. For the moderate threshold,

well-surveyed cells were defined as those with ≥25 occur-

rence records, a Chao2 completeness metric ≥0.7, and a

final species accumulation curve slope of ≤0.10. For the

high threshold, well-surveyed cells were defined as those

with ≥50 occurrence records, a Chao2 completeness met-

ric ≥0.8, and a final species accumulation curve slope of

≤0.05.

Survey coverage

We evaluated the coverage of well-surveyed and not-well-

surveyed grid cells along spatial, environmental, and tem-

poral gradients. Natural environmental variables were

acquired as raster grids (30 arc-second resolution) from

the WorldClim dataset and were spatially joined to the

survey grid cells in ArcMap. These variables included ele-

vation above sea level, contemporary mean annual tem-

perature (MAT), and contemporary mean annual

precipitation (MAP). Anthropogenic environmental vari-

ables were acquired as raster grids (30 m resolution) from

the 2001 National Land Cover Database (NLCD). Percent

coverage of each anthropogenic land cover class was sum-

marized within each survey grid cell. We defined urban

land cover as the sum of NLCD classes 21, 22, 23, and

24; agricultural land cover as the sum of NLCD classes 81

and 82; and total disturbed land cover as the sum of

urban and agricultural land cover. Lastly, forecasted

changes in mean annual temperature (ΔMAT) and mean

annual precipitation (ΔMAP) were acquired as raster

grids (30 arc-second resolution) from the Climate Wizard

tool (Girvetz et al. 2009). These projections represent dif-

ferences between contemporary (1961–1990) and future

(2080s) MATs and MAPs based on an ensemble average

of sixteen global circulation models assuming moderate

carbon emissions (i.e., A1B scenario). These climate

change variables were spatially joined to the survey grid

cells using ArcMap.

We evaluated coverage along the time gradient by

comparing the frequency of surveys among each of the

20-year time intervals to a uniform frequency distribu-

tion. We use a uniform distribution to represent the ideal

null expectation of equal sampling among each of the

20-year time intervals from 1800 to 2013. For spatial and

environmental gradients, however, the conditions of the

background environment are not uniformly distributed

within a given region (e.g., contiguous US). Thus, we

compared the frequency distribution of surveyed grid cells

to that of all 82,545 grid cells. Next, we performed Kol-

mogorov–Smirnov (K–S) goodness-of-fit tests for each

dataset-by-taxon-by-gradient combination and used the

test statistic (D-statistic) as an index of strong or weak

(low or high values, respectively) congruence between

each survey dataset and the background environment

(Kadmon et al. 2004; Loiselle et al. 2008). D-statistics

were computed for all surveyed grid cells and well-sur-

veyed grid cells which we defined using the moderate

completeness threshold described above. To evaluate

comprehensive coverage of each survey dataset, D-statis-

tics were summed for all spatial and environmental gradi-

ents. We plotted overlapping histograms of each survey

dataset and the background environment to provide

visual reference and detail as to the position along each

gradient where congruence was strong or weak. Analyses

for spatial and environmental gradients were limited to

contemporary records (i.e., 1990–2013) because the 2001

NLCD land cover is not representative of historical land

cover. All statistical analyses were carried out using the

vegan (Oksanen et al. 2007) and fossil (Vavrek 2011)

libraries in the R programming environment (R Core

Team, 2014).

Results

Survey completeness

Our compilation of open-access biodiversity data within

the contiguous United States yielded in excess of 6.7 mil-

lion GBIF records collected between 1800 and 2013,

4.8 million BBS records collected between 1963 and 2013,

and 2.1 million FFS records collected between 1990 and

2008. These records were distributed among 183,165

GBIF grid cells (i.e., surveys), 3660 BBS grid cells, and

3,372 FFS grid cells. Since 1990, in excess of 1.9 million

GBIF records, 3.0 million BBS records, and 2.1 million

FFS records have been accumulated. These contemporary

records were distributed among 75,836 GBIF surveys,

3523 BBS surveys, and 3372 FFS surveys (Fig. 1). For the

complete time period, plant surveys from GBIF were most

prevalent, followed by GBIF mammals, GBIF insects, and

GBIF birds. The least prevalent surveys were GBIF cray-

fish, FFS fish, and BBS birds (Table 1, Fig. 2). Surveys

from standardized datasets (i.e., BBS and FFS) were sub-

stantially more complete than those from GBIF. Specifi-

cally, 4.7% and 3.7% of GBIF-surveyed grid cells for the

complete and contemporary time periods, respectively,
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were classified as well-surveyed based on the moderate or

high completeness thresholds. By contrast, 82.6% and

82.3% of BBS- and FFS-surveyed grid cells for the com-

plete and contemporary time periods, respectively, were

classified as well-surveyed (Table 1, Fig. 2).

GBIF surveys represented the longest period of record

(dating back to 1800), followed by the BBS surveys

(1967) and FFS surveys (1990) (Fig. 3). GBIF surveys,

particularly those classified as well-surveyed, were most

prevalent since approximately 1920. Nevertheless, a sub-

stantial number of well-surveyed grid cells were available

from the nineteenth century for birds (116 grid cells),

mammals (22 grid cells), and plants (9 grid cells). The

average number of species inventoried per grid cell (i.e.,

survey richness) was highest for birds, plants, and fungi

and lowest for crayfish, amphibians, and mammals. For

most taxa, well-surveyed grid cells contained more species

(upper left diagonal in Fig. 4A) than did all (i.e., both

Figure 1. Distribution of all surveyed grid cells

and well-surveyed grid cells throughout the

contiguous United States during the

contemporary time period (1990–2013) derived

from three open-access biodiversity databases

representing ten taxonomic groups. Note that

the square symbols are enlarged (i.e., larger

than actual grid cell area) to facilitate

visualization of well-surveyed regions.
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well-surveyed and not-well-surveyed) surveyed grid cells.

Two exceptions were BBS birds and FFS fish, both of

which contained similar numbers of species for well-sur-

veyed grid cells and all grid cells (1:1 line in Fig. 4A).

Survey coverage

Coverage indices (i.e., K-S D-statistics) ranged from 0.03

to 0.84 (mean = 0.26) across the across the 264 K–S tests

for all (i.e., both well-surveyed and not-well-surveyed)

grid cells surveyed since 1990. For well-surveyed grid

cells, D-statistics were higher on average (0.31) and ran-

ged from 0.06 to 0.82 across the 132 K–S tests. This vari-

ability in coverage indices suggests that coverage varied

substantially among data sources, gradients, and taxo-

nomic groups (Table 2). With regard to temporal cover-

age, GBIF records were more uniformly distributed

(mean D = 0.50 and 0.52 for all surveyed grid cells and

well-surveyed grid cells, respectively) compared to the

BBS (D = 0.73 and 0.73) and FFS records (D = 0.81 and

0.82). Lower temporal bias in GBIF surveys compared to

standardized surveys was likely a consequence of the

longer time span from which GBIF records have been

compiled (Fig. 3).

Cumulative coverage indices (i.e., D-statistics summed

for the eleven spatial, environmental, and temporal gradi-

ents) suggested that the BBS bird and GBIF insect surveys

had the best coverage, whereas GBIF surveys of bivalves

and fish had the worst coverage (Fig. 4B). For most taxa,

well-surveyed grid cells exhibited worse cumulative cover-

age (upper left diagonal in Fig. 4B) than did all (i.e., both

well-surveyed and not-well-surveyed) surveyed grid cells.

Exceptions included BBS birds, which contained well-

surveyed grid cells that exhibited similar coverage to all

surveyed grid cells, and to a lesser degree FFS fish (1:1

line in Fig. 4B).

Averaged coverage indices (i.e., D-statistics) across all

eleven temporal, spatial, and environmental gradients

indicate that GBIF surveys of birds, insects, and mammals

had the best coverage, whereas GBIF surveys of bivalves,

crayfish, and fish were the most biased (Fig. 5A). For spa-

tial gradients, the BBS bird surveys had the best coverage,

followed by the GBIF insect surveys and the FFS fish sur-

veys. By contrast, the GBIF bivalve, GBIF fish, and GBIF

Table 1. Numbers of 0.1° 9 0.1° grid cells surveyed across the contiguous United States. Well-surveyed grid cells were defined using low (i.e.,

liberal), moderate, and high (i.e., conservative) thresholds of survey completeness metrics.

Time period Taxon Database Records All surveyed grid cells (%)

Well-surveyed grid cells (%)

Low Moderate High

Complete Amphibian GBIF 337,077 15,597 (19) 1713 (11) 1034 (6.6) 366 (2.3)

Bird GBIF 781,836 24,533 (29.9) 1914 (7.8) 923 (3.8) 246 (1)

Bird BBS 4,813,437 3660 (4.5) 3548 (96.9) 3414 (93.3) 2918 (79.7)

Bivalve GBIF 28,072 3860 (4.7) 160 (4.1) 61 (1.6) 16 (0.4)

Crayfish GBIF 718 316 (0.4) 0 (0) 0 (0) 0 (0)

Fish GBIF 609,975 17,404 (21.2) 3588 (20.6) 2121 (12.2) 686 (3.9)

Fish FFS 2,144,750 3372 (4.1) 2747 (81.5) 2425 (71.9) 1798 (53.3)

Fungus GBIF 163,803 7554 (9.2) 722 (9.6) 437 (5.8) 169 (2.2)

Insect GBIF 1,341,595 24,874 (30.3) 2572 (10.3) 1092 (4.4) 225 (0.9)

Mammal GBIF 716,183 26,240 (32) 3656 (13.9) 2089 (8) 659 (2.5)

Plant GBIF 2,433,827 41,401 (50.5) 1372 (3.3) 570 (1.4) 129 (0.3)

Reptile GBIF 347,481 21,386 (26.1) 1559 (7.3) 798 (3.7) 248 (1.2)

Contemporary Amphibian GBIF 44,650 4989 (6.1) 192 (3.8) 99 (2) 23 (0.5)

Bird GBIF 94,429 7381 (9) 202 (2.7) 84 (1.1) 19 (0.3)

Bird BBS 3,054,288 3523 (4.3) 3397 (96.4) 3262 (92.6) 2800 (79.5)

Bivalve GBIF 18,309 2407 (2.9) 123 (5.1) 53 (2.2) 11 (0.5)

Crayfish GBIF 610 245 (0.3) 0 (0) 0 (0) 0 (0)

Fish GBIF 231,249 8613 (10.5) 1692 (19.6) 971 (11.3) 242 (2.8)

Fish FFS 2,144,750 3372 (4.1) 2747 (81.5) 2425 (71.9) 1798 (53.3)

Fungus GBIF 95,118 4507 (5.5) 274 (6.1) 251 (5.6) 62 (1.4)

Insect GBIF 556,019 9013 (11) 1074 (11.9) 555 (6.2) 155 (1.7)

Mammal GBIF 128,937 7507 (9.2) 637 (8.5) 369 (4.9) 105 (1.4)

Plant GBIF 752,788 23,768 (29) 1042 (4.4) 540 (2.3) 174 (0.7)

Reptile GBIF 54,677 7406 (9) 187 (2.5) 81 (1.1) 19 (0.3)

Low threshold: ≥10 records and Chao2 completeness index ≥0.6 and final SAC slope ≤0.15.

Moderate threshold: ≥25 records and Chao2 completeness index ≥0.7 and final SAC slope ≤0.10.

High threshold: ≥50 records and Chao2 completeness index ≥0.8 and final SAC slope ≤0.05.

Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Ecology and Evolution published by John Wiley & Sons Ltd. 4659

M. J. Troia & R. A. McManamay Biodiversity Data GAPS in the United States



crayfish surveys had the worst spatial coverage (Fig. 5B).

For environmental gradients, the BBS bird survey had the

best coverage, followed by the GBIF insect and fungi sur-

veys. By contrast, the GBIF surveys of bivalves, crayfish,

and fish had the worst coverage (Fig. 5C). For forecasted

gradients of climate change, the BBS bird surveys had the

best coverage, followed by the GBIF insect surveys. By

contrast, the GBIF surveys of bivalves, plants, and reptiles

had the worst coverage along gradients of future climate

change (Fig. 5D).

Averaged coverage indices (i.e., D-statistics) across all

ten GBIF datasets indicate gradients of agricultural land

cover, disturbed land cover, and urban land cover had

the best coverage, whereas the temporal, longitudinal, and

forecasted change in mean annual temperature gradients

had the worst coverage (Fig. 6A). For standardized data-

sets (i.e., BBS and FFS), gradients of latitude, forecasted

change in mean annual temperature, and contemporary

mean annual temperature had the best coverage, whereas

the temporal, longitudinal, and contemporary MAP gradi-

ents had the worst coverage (Fig. 6C). Terrestrial taxa

(i.e., amphibians, birds, fungi, insects, mammals, plants,

and reptiles) generally had better coverage than aquatic

taxa (i.e., bivalves, crayfish, and fish) (Fig. 6B and D). For

terrestrial taxa, gradients of contemporary mean annual

temperature, contemporary mean annual precipitation,

and urban land cover had the best coverage, whereas the

temporal, longitudinal, and future MAT gradients had the

worst coverage (Fig. 6B). For aquatic taxa, gradients of

agricultural land cover, future MAP, and disturbed land

cover had the worst coverage, whereas the temporal, con-

temporary MAP, and longitudinal gradients had the worst

coverage (Fig. 6D).

Although D-statistics summarized survey coverage

along the entirety of a given gradient, the specific loca-

tions along that gradient that were over- or under-repre-

sented were not characterized by these D-statistics. A

detailed description of every histogram here would be

exhaustive, so we provide the raw histograms for all 264

dataset-by-taxon-by-gradient combinations as Supporting

Information (Figs. S2.1–S2.10).

Discussion

Open-access biodiversity databases are essential to biodi-

versity research and conservation (Sober�on and Peterson,

2004; Peterson et al. 2010); however, the efficacy of these

databases depends on the completeness of species inven-

tories and the coverage of surveys across dimensions of

space, environment, and time (Kadmon et al. 2003; Hor-

tal et al. 2008; Ladle and Hortal 2013). Many assessments

have been completed for regions of the world including

Central America, South America, the Iberian Peninsula,

and western Africa (Hortal et al. 2007, 2008; Sober�on

et al. 2007; Sousa-Baena et al. 2013; Idohou et al. 2015)

as well as the entire globe (Meyer et al. 2015). Still, no

study to our knowledge has evaluated completeness and/

or coverage of open-access biodiversity data for the Uni-

ted States. Our compilation of the Global Biodiversity

Information Facility (GBIF), the North American Breed-

ing Bird Survey (BBS), and federally administered fresh-

water fish surveys (FFS) yielded in excess of 13.6 million

occurrence records distributed among more than 190,000

survey grid cells within the contiguous United States. By

evaluating multiple datasets and taxonomic groups,

simultaneously, our findings provide novel insights into

the Wallacean shortfall (Lomolino and Lawrence 2004;

Hortal et al. 2015). This comparative approach to biodi-

versity informatics provides a relative understanding of

data needs for ten of the most abundant and diverse

macro-organism groups in the contiguous United States.

Open-access biodiversity datasets differ in the type and

origin of occurrence records they contain. For example,

GBIF contains occurrence records that are often repre-

sented by individually vouchered museum specimens

(Edwards et al. 2000; Yesson et al. 2007), whereas the

BBS is a standardized whole-assemblage surveying effort

aimed at inventorying all breeding bird species along each

survey route (Pardieck et al. 2014). The FFS is intermedi-

ate in that it contains standardized whole-assemblage sur-

veys, but there is variation in completeness stemming

from the surveys being carried out with different survey

Figure 2. Percent of all grid cells in the contiguous United States

(N = 83,545) that contain surveys derived from three open-access

biodiversity databases representing the complete time period (1800–

2013) and contemporary time period (1990–2013).
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methods of different government entities (Gilliom et al.

1995). Not surprisingly, the standardized surveys (BBS

and FFS) produced a substantially higher proportion of

well-surveyed grid cells than GBIF-derived surveys of

birds and fishes, owing to the larger number of individual

records (and accumulated species) per grid cell (Hortal

et al. 2007). Despite providing a low proportion of well-

surveyed grid cells, GBIF still provided a sufficient num-

ber of well-surveyed grid cells for most taxa because the

database contains so many more independent occurrence

records than the BBS and FFS. Across all ten GBIF taxa,

the average number of well-surveyed grid cells was 912

for the complete time period and 300 for the contempo-

rary time period. Previous studies suggest that site-

by-species matrices of this size are sufficient to produce

accurate SDMs using presence–absence techniques or

accurately model and map patterns in species richness

(Lobo and Mart�ın-Piera 2002; Wisz et al. 2008). Thus,

our evaluation of survey completeness demonstrates that

the quantity and quality of data contained in all three

datasets are suitable for biodiversity and SDM studies for

most of the ten taxonomic groups.

Survey resolution is an important consideration that

directly affected the completeness of species inventories

(Hortal et al. 2006; Sober�on et al. 2007). The size of grid

cells we chose for the present study – approximately

100 km2 – is on the lower end of the size spectrum for

studies of this type (e.g., Hortal et al. 2008; Yang et al.,

2013; Sousa-Baena et al. 2013). As such, most grid cells

did not contain adequate densities of GBIF records to be

Figure 3. Frequency of all surveyed grid cells

and well-surveyed grid cells in each of eleven

20-year intervals between 1800 and 2013

(most recent interval is 14 years; 2000–2013)

for three open-access biodiversity databases

representing ten taxonomic groups. Note

different y-axis scales within and among

panels.
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classified as well-surveyed. Nevertheless, those that did

contain adequate densities of GBIF records offer richness

and species occupancy information at a spatial resolution

useful for biodiversity conservation and research (Rahbek

2005). One disadvantage of aggregating occurrence

records by ~100 km2 grid cells is that finer-grained spatial

resolution of the systematic surveys is lost. This is because

BBS routes and FFS stream reaches represent species

inventories of areas that are smaller than the ~100 km2

grid cells. Given that most grid cells contained only a sin-

gle BBS route or FFS reach, there was no advantage to

aggregating occurrence records from these datasets by

grid cells because information from multiple BBS routes

or FFS reaches was not accumulated in a way that

increases grid cell completeness. We conclude that aggre-

gating occurrence records by grid cells is an effective tech-

nique for studies that use GBIF by itself or for studies

that compile records from multiple databases, but not for

studies using only the BBS or FFS databases.

The time period over which occurrence records were

accumulated is another key factor that affected the com-

pleteness of species inventories. Our analysis revealed

many more well-surveyed grid cells for the 214-year com-

plete time period compared to the 24-year contemporary

time period. Although the time period over which occur-

rence records are aggregated will depend on the question

being addressed (e.g., Rahel 2000; Pearman et al. 2008;

Tingley and Beissinger 2009), these findings demonstrate

that surveys derived from GBIF data are of sufficient

quality and quantity for studies addressing contemporary

or historical biodiversity of most taxonomic groups. It is

also encouraging that GBIF records aggregated into 20-

year intervals yielded reasonably large numbers of well-

surveyed grid cells for several taxonomic groups going

back to the late nineteenth century. Future efforts that

identify historical time periods of high collection density

could be used to optimize aggregation intervals, as

opposed to the arbitrary 20-year intervals used in the pre-

sent evaluation, and likely increase the number of histori-

cally well-surveyed grid cells (Hortal et al. 2008).

Many recent efforts have sought to characterize the

Wallacean shortfall for individual taxonomic groups, par-

ticularly plants (e.g., Sousa-Baena et al. 2013; Yang et al.,

2014) and insects (e.g., Hortal et al. 2008; Beck et al.

2013). Whereas these single-taxon studies are highly

informative to conservation and research efforts within a

given taxonomic group, comprehensive biodiversity con-

servation requires knowledge about data limitations of

many taxonomic groups relative to one another (Funk

et al. 2005; Meyer et al. 2015). Based on our simultane-

ous evaluation of ten taxonomic groups, it is apparent

that the severity of the Wallacean shortfall varies substan-

tially among taxonomic groups, an issue that has been

described previously as the Linnean shortfall (Whittaker

et al. 2005; Brito 2010). One notable trend is the lack of

GBIF occurrence records for freshwater invertebrates,

particularly crayfish and freshwater bivalves. Indeed,

occurrence records for crayfish are so scare that no well-

surveyed grid cells were identified, even based on the low

Figure 4. Relationship between (A) number of species per grid cell

and (B) cumulative coverage of well-surveyed grid cells versus all

surveyed grid cells derived from three open-access biodiversity

databases representing ten taxonomic groups. In (B), low values

represent unbiased coverage and high values represent biased

coverage relative to the background environment. Note that richness

and cumulative coverage could not be plotted along the y-axis for

crayfish because no well-surveyed grid cells were identified.
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(i.e., least conservative) completeness thresholds. This is

surprising given the imperilment of these taxa and the

volume of research directed their way in recent years

(Thorp and Covich 2009; Haag 2012; Ross 2013). Fungi

were also poorly represented in GBIF relative to the other

taxa, probably due to their cryptic life history and the rel-

ative paucity of research directed at documenting their

distributions (Mueller et al. 2007). Overall, this quantita-

tive evaluation thus provides an objective ranking (see

Fig. 1) of primary biodiversity data needs for ten of the

most abundant and diverse macro-organism groups in

the United States.

Another notable trend that became apparent from eval-

uating coverage of multiple taxonomic groups is the “tax-

onomist surveying bias”; that is, the tendency for

collectors (both professional and recreational) to survey

locations where the taxon of interest is most abundant or

diverse (Sastre and Lobo 2009). For example, our analysis

shows that the frequency of reptile surveys is highest in

the desert southwest where reptiles are abundant, diverse,

and frequently collected and studied. By contrast, reptile

records are infrequent at higher latitudes and eastern lon-

gitudes, where reptiles still occur but are less abundant

and diverse (Kiester 1971) and, presumably, collected and

studied less frequently (Sastre and Lobo 2009). Similarly,

freshwater fishes and bivalves are highly diverse and fre-

quently studied in the southeastern United States and

consequently have been collected frequently and vou-

chered in museums of this region (e.g., Tulane Museum

of Natural History; Warren et al. 2000; Haag 2012). This

pattern of geographic bias in survey coverage for freshwa-

ter fishes mirrors the findings of a recent assessment of

global fish biodiversity data (Pelayo-Villamil et al. 2015).

Institutional participation in data compilation projects

such as GBIF also influences coverage. This is apparent in

the high density of surveys for particular taxonomic

groups in some states but not in others. For example, the

Kansas Biological Survey has made extensive collections

Table 2. Coverage indices along temporal, spatial, and environmental gradients for surveys derived from three open-access databases represent-

ing ten taxonomic groups. Index values are D-statistics from Kolmogorov–Smirnov goodness-of-fit tests and indicate strong or weak (low or high

D-statistics, respectively) congruence between survey datasets and the background environment. Index values are shown for all surveyed grid cells

and well-surveyed grid cells (based moderate or high thresholds). For the purpose of relative comparison, the mean D-statistic across all 264 tests

is 0.26.

Grid cells Taxon Database

Temporal
Spatial*

Natural

environment* Anthropogenic land cover*

Climate

change*

20-year

intervals Lat. Lon. Elev. MAT MAP Urban Agriculture Disturbed ΔMAP ΔMAT

All

surveyed

Amphibians GBIF 0.50 0.27 0.14 0.11 0.28 0.20 0.13 0.12 0.08 0.20 0.28

Birds GBIF 0.34 0.06 0.18 0.05 0.11 0.03 0.15 0.07 0.07 0.13 0.18

Birds BBS 0.73 0.05 0.17 0.12 0.06 0.16 0.13 0.08 0.11 0.07 0.10

Bivalves GBIF 0.61 0.45 0.62 0.53 0.47 0.60 0.33 0.27 0.31 0.20 0.48

Crayfish GBIF 0.63 0.25 0.52 0.59 0.28 0.50 0.41 0.23 0.33 0.27 0.21

Fish GBIF 0.58 0.27 0.32 0.30 0.33 0.38 0.26 0.19 0.24 0.08 0.25

Fish FFS 0.81 0.10 0.29 0.22 0.11 0.31 0.24 0.18 0.21 0.23 0.09

Fungi GBIF 0.54 0.07 0.16 0.05 0.09 0.17 0.06 0.18 0.15 0.09 0.18

Insects GBIF 0.47 0.17 0.08 0.11 0.15 0.07 0.12 0.06 0.04 0.11 0.07

Mammals GBIF 0.48 0.07 0.16 0.11 0.04 0.09 0.07 0.18 0.12 0.17 0.09

Plants GBIF 0.42 0.09 0.22 0.12 0.05 0.07 0.03 0.17 0.14 0.15 0.12

Reptiles GBIF 0.49 0.36 0.14 0.07 0.36 0.06 0.06 0.12 0.09 0.32 0.15

Well-

surveyed

Amphibians GBIF 0.49 0.29 0.33 0.21 0.28 0.34 0.28 0.32 0.20 0.21 0.44

Birds GBIF 0.34 0.19 0.26 0.22 0.16 0.16 0.37 0.20 0.12 0.24 0.29

Birds BBS 0.73 0.06 0.18 0.13 0.06 0.18 0.14 0.09 0.12 0.08 0.09

Bivalves GBIF 0.75 0.66 0.73 0.66 0.68 0.84 0.40 0.32 0.34 0.30 0.62

Crayfish GBIF n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Fish GBIF 0.67 0.48 0.49 0.36 0.50 0.54 0.31 0.28 0.31 0.16 0.36

Fish FFS 0.82 0.11 0.35 0.28 0.15 0.35 0.29 0.23 0.27 0.25 0.10

Fungi GBIF 0.70 0.22 0.43 0.31 0.14 0.17 0.17 0.43 0.39 0.25 0.21

Insects GBIF 0.51 0.13 0.29 0.10 0.12 0.10 0.10 0.21 0.13 0.16 0.19

Mammals GBIF 0.44 0.17 0.30 0.25 0.10 0.10 0.11 0.33 0.30 0.31 0.11

Plants GBIF 0.49 0.26 0.74 0.21 0.15 0.22 0.08 0.40 0.30 0.56 0.56

Reptiles GBIF 0.44 0.39 0.32 0.22 0.32 0.14 0.12 0.32 0.26 0.49 0.29

*Computed for contemporary time period (1990–2013).
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of amphibians throughout the state of Kansas and has

made these records electronically accessible via GBIF. This

pattern is also evident for GBIF crayfish in Oklahoma

and GBIF fish in North Carolina. Accessibility of sam-

pling locations via road corridors and population centers

is also a common driver of bias in survey coverage (Den-

nis and Hardy 1999; Kadmon et al. 2004). This source of

coverage bias was not evident for any of the ten taxa,

probably because the coarse survey resolution precluded

our ability to detect biases in coverage along these finer

resolution environmental characteristics.

Survey coverage varied among spatial, environmental,

and temporal gradients. Not surprisingly, GBIF surveys

exhibited higher spatial and environmental bias compared

to the BBS and FFS, which represent systematic sampling

efforts that are planned to be spatially and

environmentally stratified (Gilliom et al. 1995; Pardieck

et al. 2014). On the other hand, an advantage of museum

record compilations such as GBIF is that the temporal

distribution of records is typically longer and more uni-

form than systematic sampling efforts. Indeed, the first

GBIF records were collected in the early 1800s, whereas

the Breeding Bird Survey began in the 1960s and the FFS

surveys span only the 1990s and 2000s. Another trend

was consistently poorer coverage for aquatic taxa com-

pared to terrestrial taxa. This may be a consequence of

where aquatic habitats are most prevalent. For example,

aquatic taxa surveys were overrepresented in wetter areas

(i.e., higher mean annual precipitation; Fig. S2.5) of the

eastern United States (Fig. S2.2). Nevertheless, unique

and functionally diverse aquatic taxa persist in the arid

southwest and other poorly covered regions (Pool and

Figure 5. Coverage indices for each of twelve taxonomic survey datasets (eleven gradients pooled) averaged across (A) all eleven gradients, (B)

two spatial gradients, (C) five contemporary environmental gradients (MAT, MAP, urban, agriculture, total disturbance), and (D) two climate

change gradients (ΔMAT, ΔMAP). Index values are D-statistics from Kolmogorov–Smirnov goodness-of-fit, indicating strong or weak (low or high

D-statistics, respectively) congruence between survey datasets and the background environment. Vertical gray and red lines represent the mean of

all twelve survey datasets for all surveyed grid cells and well-surveyed grid cells, respectively.
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Olden 2012). Future efforts to fill in these aquatic biodi-

versity data gaps should therefore be a priority. Apart

from these general trends, each taxon–gradient combina-

tion exhibited unique biases (Figs. S2.1–S2.10) that

should be considered by collectors on a taxon-specific

basis when planning new data compilation and surveying

efforts. Recent studies have highlighted that environmen-

tal biases vary in their effect on the performance of pre-

dictive models in other regions (Kadmon et al. 2003;

Loiselle et al. 2008; Tessarolo et al. 2014). To what degree

the environmental biases documented in the current

study would affect predictive models remains unknown

and should be a future objective of biodiversity informat-

ics in the United States.

Effective biodiversity conservation starts with research-

ers and conservationists having access to biodiversity sur-

veys of sufficient completeness and coverage (Reichman

et al. 2011). Evaluations like the one we present provide

a quantitative and comprehensive prioritization scheme

to facilitate efficient improvements to existing databases,

such as GBIF. Another essential goal of such prioritiza-

tion schemes should be to produce future data coverages

that enable the study of long-term biodiversity responses

to anthropogenic environmental change (e.g., Jiguet et al.

2010). Such an approach should involve the identifica-

tion of areas that presently are undersurveyed and are

expected to undergo anthropogenic environmental

change over the next 50–100 years. Such foresight in

Figure 6. Coverage indices for each of eleven temporal, spatial, or environmental gradients (twelve taxonomic survey datasets pooled) averaged

across (A) GBIF, (B) standardized (i.e., BBS and FFS), (C) terrestrial, and (D) aquatic datasets. Index values are D-statistics from Kolmogorov–

Smirnov goodness-of-fit, indicating strong or weak (low or high D-statistics, respectively) congruence between survey datasets and the

background environment. Vertical gray and red lines represent the mean of all eleven datasets for all surveyed grid cells and well-surveyed grid

cells, respectively.
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data collection by this generation of scientists can pro-

vide complete and unbiased “before” data for BACI-

designed natural experiments conducted by scientists 50–
100 years into the future after environmental change has

occurred. Indeed, our evaluation suggests that climate

change gradients are among the most poorly covered

environmental gradients. Lastly, descriptive evaluations of

completeness and coverage like the one we present

should be viewed as an iterative process. Investigators

will need to periodically reevaluate completeness and

coverage as new occurrence records are added to open-

access databases. Such periodic reevaluations will need to

incorporate additional coverage information, as new

environmental data layers become available or as existing

environmental data layers change as a consequence of

climate and land cover change.
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Figure S1. Spatial and environmental variables summar-

ized at the resolution of 0.1� by 0.1� grid cells

(N = 83,545) used in coverage analysis.

Figure S2.1. Distribution of occurrence records along a

latitudinal spatial gradient.

Figure S2.2. Distribution of occurrence records along a

longitudinal spatial gradient.

Figure S2.3. Distribution of occurrence records along a

gradient of elevation.

Figure S2.4. Distribution of occurrence records along a

gradient of mean annual temperature.

Figure S2.5. Distribution of occurrence records along a

gradient of mean annual precipitation.

Figure S2.6. Distribution of occurrence records along a

gradient of urban land cover.
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Figure S2.7. Distribution of occurrence records along a

gradient of agricultural land cover.

Figure S2.8. Distribution of occurrence records along a

gradient of disturbed (urban + agricultural) land cover.

Figure S2.9. Distribution of occurrence records along a

gradient of change (future – present) in mean annual

temperature.

Figure S2.10. Distribution of occurrence records along a

gradient of change (future – present) in mean annual pre-

cipitation.
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