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Probing Majorana bound states 
via counting statistics of a single 
electron transistor
Zeng-Zhao Li1,2, Chi-Hang Lam2 & J. Q. You1

We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting 
statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider 
the impacts on the counting statistics by both the local coupling between the detector and an 
adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. 
We show that the Fano factor and the skewness of the SET current are minimized for a symmetric 
SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the 
minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET 
configurations with a higher tunnel rate at the drain than at the source. This feature persists even 
when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that 
these MBS-induced shifts can be measured experimentally with available technologies and can serve 
as important signatures of the MBSs.

Majorana fermions are particles that are their own antiparticles. In high-energy physics, neutrino being 
an elementary particle was suggested as a Majorana fermion1. Experiments aiming to prove this pro-
posal are still on going. Besides the high-energy context where they arose, it is believed that Majorana 
fermions can also emerge as quasiparticles in condensed-matter systems2,3. The search for Majorana 
bound states (MBSs) in these systems has attracted much interest not only due to their exotic proper-
ties (e.g., non-Abelian statistics) but also because they are promising candidates for topological quan-
tum computation4,5. Several physical systems have been suggested to support MBSs, including fractional 
quantum Hall states6–8, chiral p-wave superconductors/superfluids8,9 surfaces of three-dimensional (3D) 
topological insulators in proximity to an s-wave superconductor10, superfluids in the 3He-B phase11,12, 
and helical edge modes of 2D topological insulators in proximity to both a ferromagnet and a super-
conductor13. More recently, it has been shown that a spin-orbit coupled semiconducting 2D thin film14 
or a 1D nanowire15–19 with Zeeman spin splitting, which is in proximity to an s-wave superconductor, 
can also host MBSs.

Providing experimental evidences for the realization of MBSs is of great importance. Techniques 
proposed to detect MBSs include the analysis of the tunneling spectroscopy20–23, the verification of the 
nature of nonlocality13,24 or the observation of the periodic Majorana-Josephson current25. In particular, 
the very recent observation of a zero-bias peak in the differential conductance through a semiconduc-
tor nanowire in contact with a superconducting electrode indicated the possible existence of a midgap 
Majorana state26. Such a zero-bias peak was also observed in subsequent experiments27–29. However, this 
zero-bias peak could be due to the Kondo resonance30 and also occur in the presence of either disorders31 
or a singlet-doublet quantum phase transition32, corresponding to ordinary Andreev bound states rather 
than MBSs. Moreover, a study of a more realistic model of a nanowire with MBSs further indicates a 
different origin for this observed zero-bias peak33. There are several recent works34–39 developed, for 
example, to distinguish between the Majorana and Kondo origins of the zero-bias conductance peak, but 

1Laboratory for Quantum Optics and Quantum Information, Beijing Computational Science Research Center, 
Beijing 100094, China. 2Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong 
Kong, China. Correspondence and requests for materials should be addressed to C.H.L. (email: C.H.Lam@polyu.
edu.hk) or J.Q.Y. (email: jqyou@csrc.ac.cn)

Received: 08 January 2015

Accepted: 22 May 2015

Published: 22 June 2015

OPEN

mailto:C.H.Lam@polyu.edu.hk
mailto:C.H.Lam@polyu.edu.hk
mailto:jqyou@csrc.ac.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 5:11416 | DOi: 10.1038/srep11416

a definite evidence for the zero-bias anomaly due to MBSs is still missing. Therefore, further investiga-
tions are needed to convincingly reveal the existence of MBSs.

We will focus on the detection of MBSs which exist in pairs at the two ends of a nanowire. Most 
previous studies based on a variety of setups considered a detector coupled locally to an adjacent MBS 
at one end of the nanowire only13,21,40–42, as the coupling to the other MBS farther away is neglected. For 
example, a quantum dot coupled to a MBS was studied in Ref. 40. The current and the shot noise through 
the quantum dot were calculated. A characteristic feature in the frequency dependence of the shot noise 
was proposed as a signature for the MBS. The coupling of a quantum dot to two MBSs at both ends of a 
nanowire has also been studied21, but only the conductance was reported. In this work, we study both the 
local and nonlocal coupling of a single electron transistor (SET) (consisting of a quantum dot and two 
electrodes) to two MBSs at both ends of a nanowire. We calculate the full counting statistics (FCS)43,44 
of electron transport through the SET. FCS yields all zero-frequency current correlations at once and 
provides detailed insights into the nature of charge transfer beyond what is available from conductance 
measurements alone45,46. Importantly, it has also become an experimentally accessible technique in recent 
years47–49. Using the FCS, we calculate the current, Fano factor and skewness as functions of a tunnel rate 
ratio of the SET. The calculations are performed for various couplings of the SET island with the MBSs. 
The results are also compared with those for coupling to a fermionic state instead. We will show in the 
following that in the absence of the MBSs or when coupled to fermionic states, the Fano factor and the 
skewness are minimized for a symmetric SET. However, in the presence of the MBSs, the minimum 
points shift appreciably to occur for an asymmetric SET with a higher tunnel rate at the drain than at 
the source. We propose that these MBS-induced shifts of the minimum points of the Fano factor and the 
skewness can be used as signatures for the identification of the MBSs.

Results
The hybrid system consists of two MBSs and a SET as schematically shown in Fig. 1. With a conventional 
s-wave superconductor and a modest magnetic field, the MBSs as electron-hole quasiparticle excita-
tions have been suggested to exist at the two ends of a semiconductor nanowire with strong spin-orbit 
coupling14,18,19. The SET consists of a metallic island coupled via tunneling barriers to two electrodes. 
The energy levels and the tunneling barriers can be tuned by the gate voltages. By assuming a Zeeman 
splitting much larger than the MBS-SET coupling strength, the source-drain bias voltage across the SET, 
and the tunneling rates with the source and drain electrodes, the SET island can be modeled by a single 
resonant level occupied by a spin-polarized electron.

The interaction between the MBSs and the SET island can be derived from a second quantization 
Hamiltonian as (see Methods)

H d d 1t L Rλγ μγ= ( − )( + ), ( )†

where the coupling coefficients λ and μ are assumed to be real and independent of k for simplicity. 
This Hamiltonian involves both the local coupling λ to an adjacent MBS at one end of the nanow-
ire and the nonlocal coupling μ to the MBS at the other end of the nanowire (see Fig. 1). Due to its 
smaller magnitude, the nonlocal coupling was neglected in most previous studies13,21–24,40,41 with an 
exception of Ref. 21. We note that this nonlocal coupling can give rise to further detector-position-de-
pendent measurement results which may also be used for the identification of the MBSs. The nonlocal 
coupling is therefore also considered here.

The coupling between two separated MBSs at the two ends of the nanowire can be described by15

H i
2 2M L Rε γ γ= , ( )γ

where eM
lε ∼ ζ− /  is the coupling energy with l being the wire length and ζ  the superconducting coher-

ent length. The pair of MBSs can constitute a regular fermion with operators
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In this regular-fermion representation, the Hamiltonian H d d H HI tsys ε= + + γ
†  of the hybrid 

MBS-SET system becomes

H d d f f i d d f i d d f1
2 4I Msys ε ε λ μ λ μ= +



 −



 − ( + )( − ) + ( − )( − ) ,

( )
† † † † †

where εI is the resonant-level energy of the SET island and d†(d) is the corresponding creation (anni-
hilation) operator. Note that this energy can be tuned by the gate voltage Vg to be zero (i.e., εI =  0) to 
ensure resonant tunnelings between the SET island and the zero-energy MBSs. The basis states of the 
system of interest are given by |ndnf〉, with nd and nf being 0 and 1, i.e., a ≡|00〉 ,b ≡|01〉 ,c ≡|10〉 ,d ≡|11〉 .  
To compare the transport behaviors of the SET in the presence of the MBSs with those of a regular  
fermionic bound state in the nanowire, we also consider the following system Hamiltonian
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H d d f f i df i d f1
2 5I Msys ε λ μ λ μ= +



 −



 − ( + ) + ( − ) ,

( )
† † † †

which describes the SET when coupled to a regular fermionic state.
The Hamiltonian for the source and the drain electrodes of the SET is described by

H c c c c
6k

sk sk sk dk dk dkleads ∑ ω ω= ( + ),
( )

† †

where csk (cdk) is the annihilation operator for electrons in the source (drain) electrode. The tunneling 
Hamiltonian between the SET island and the two electrodes is

H c d c d H c
7k

sk sk dk dkT ∑ Ω Ω=




( + ϒ ) + . .





, ( )

† † †

where Ω sk(dk) is the coupling strength between the SET island and the source (drain) electrode. The 
counting operator ϒ  (ϒ †) decreases (increases) the number of electrons that have tunneled into the drain 

island

s-wave superconductorλ

μ

Drain

Source

Lγ RγSET

Figure 1. The coupled MBS-SET system. Schematic diagram of the hybrid quantum system consisting of 
two MBSs and a SET. The MBSs locate at the two ends of a nanowire with large Zeeman splitting and strong 
spin-orbit coupling, which is in proximity to an s-wave superconductor. The SET island is coupled to the 
source and drain electrodes via tunneling barriers and capacitively biased by an external gate voltage Vg. 
The energy level of the SET island is tuned to be zero, i.e., in resonance with the MBSs. Also, the SET island 
couples to the adjacent MBS with a coupling strength λ and the MBS at the other end of the nanowire with 
a coupling strength μ.
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electrode in order to keep track of the tunnelings of successive electrons. Thus, the total Hamiltonian of 
the system is given by Htot =  Hsys +  Hleads +  HT.

Counting statistics. To study the FCS, it is essential to know the probability P(n,t) of n electrons 
having been transported from the SET island to the drain electrode during a period of time interval t. It 
is related to the cumulant generating function G(χ, t) defined by46

e P n t e
8

G t

n

in∑= ( , ) .
( )

χ χ− ( , )

We will consider the time interval t much longer than the time for an electron to tunnel through the 
SET island (i.e., the zero-frequency limit), so that transient properties are insignificant. The derivatives 
of G(χ, t) with respect to the counting field χ at χ =  0 yield the cumulant of order m as

C i G t
9m

m

0
( ) χ= − − ∂ ( , ) .

( )χ
χ→

These cumulants carry complete information of the FCS on the SET island. For instance, the average 
current and the shot noise can be expressed as I =  eC1/t and S =  2e2C2/t. Thus, the Fano factor F is 
given by F =  S/2eI =  C2/C1, which is used to characterize the bunching and anti-bunching phenome-
na in the transport process. The third-order cumulant C3 gives rise to the skewness K =  C3/C1 of the 
distribution of transported electrons.

On the other hand, the probability distribution function of the transported electrons can be  
expressed as

P n t t t t t 10aa
n

bb
n

cc
n

dd
nρ ρ ρ ρ( , ) = ( ) + ( ) + ( ) + ( ), ( )( ) ( ) ( ) ( )

where tij
nρ ( )( )  (i,j ∈  {a, b, c, d}) denote the reduced density matrix elements of the SET island at a given 

number n of electrons being transported from the SET island to the drain electrode at time t. We will 
calculate these reduced density matrix elements using a master equation (see Methods) which assume a 
large bias voltage across the SET. In fact, this large-bias case was considered in many previous studies50–52 
as it is easy to implement in experiments. Moreover, this makes the problem simpler and more transpar-
ent because the broadening effect of the SET level can be neglected (see, e.g., Refs. 53 and 54). Using the 
discrete Fourier transform of the density matrix elements given by

t t e
11ij

n
ij

n in∑ρ χ ρ( , ) = ( ) ,
( )

χ( )

we can convert the master equation into

� M �
d
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Here Γ S(D) is the tunneling rate of the electrons through the barrier between the SET island and the 
source (drain) electrode and it is given by

π ΩΓ = , ( )( ) ( ) ( )g2 18S D s D sk dk
2

where gi (i =  S, or D) denotes the density of states at the source or drain electrode and is assumed to be 
constant over the relevant energy range.

The formal solution to the dynamical equation of  (χ, t) can be readily obtained as 
� �Mt e 0tχ χ( , ) = ( , )χ( ) . The cumulant generating function then reads G(χ, t) =   − lnTrρ(χ, t). At long 
time t (i.e., zero-frequency limit), the cumulant generating function is simplified to55

G t t 19minχ χ( , ) = − Λ ( ) , ( )

where Λ min(χ) is the minimal eigenvalue of  χ( ) and satisfies Λ min|χ → 0 →  0 due to the probability 
normalization ∑ ( , ) =P n t 1n .

Signatures of the MBSs. (1). Current. Below we consider the zero-temperature case for the SET 
system since related experiments are usually performed at extremely low temperatures (see, e.g., Refs. 54 
and 56). Figure. 2(a) shows the current flowing from the SET island to the drain electrode as a function 
of Γ D/Γ S for εM =  0 and various values of λ and μ. In particular, the case of λ =  μ =  0 represents the 
absence of the MBSs. Our calculation shows that it also equivalently represents the case of coupling to 
a fermion in the nanowire. This is expected because a regular fermion state does not affect the counting 
statistics of a nearby SET in the zero-frequency limit (or stationary behaviors) considered. It is clear from 
Fig. 2(a) that for a symmetric SET in which the tunneling rates between the SET island and the two elec-
trodes are the same, i.e., Γ D =  Γ S, the current does not vary with λ and μ (see also the analytical result 
below). However, when Γ D ≠ Γ S, the current in the presence of the MBSs deviates appreciably from that 
in the absence of the MBSs, especially in the region Γ D >  Γ S. Moreover, Fig. 2(b) shows that the current 
also changes, albeit slightly, when varying the coupling energy εM of the two MBSs . From Fig. 2(a,b), 
although coupling to the MBSs does change the current quantitatively, a distinct qualitative feature is 
lacking. Thus, it is insufficient to use only the current to show the existence of the MBSs.

Much of the above numerical results can also be obtained from analytic expressions in some special 
cases. For εM =  0, we obtain from equation (19) an analytical result for the current:
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ξ
=
Γ ( + Γ Γ )
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where Γ tot =  Γ S +  Γ D and 2 2ξ λ μ= + . Although this symmetric property of the two couplings λ and 
μ has been noticed before21, we emphasize that we apply full counting statistics (including the Fano 
factor and the skewness as shown below) to reveal signatures of the MBSs, which goes beyond the con-
ductance results reported in Ref. 21. When the MBSs are absent, i.e., ξ →  0, equation (20) recovers the 
well-known result

I
e

21
S D

tot
=
Γ Γ
Γ

.
( )

Alternatively, with the MBSs coupled and Γ S =  Γ D =  Γ , the current is reduced to I =  eΓ /2, independent 
of the values of λ and μ.

When the MBSs are absent, the current through the SET island at zero temperature can also be cal-
culated using53

I
e

dED E
22

S D

tot D

S

∫=
Γ Γ
Γ

( ),
( )μ

μ

where μS(D) is the chemical potential of the source (drain) electrode, and D(E) is the density of states 
(DOS) of the SET island. When including the electrode-induced level broadening of the SET island, the 
broadened DOS can be described by a Lorentzian function53 centered around E =  εI:

Figure 2. Current under the effect of the MBSs. Current I through the SET island to the drain electrode 
versus the tunneling-rate ratio Γ D/Γ S for εI =  0. In (a), εM =  0 as λ and μ are varied. In (b), λ =  Γ S, and 
μ =  0.5Γ S as εM is varied.
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Therefore, the current can be calculated as
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If the bias eV ≡ μS −  μD applied on the SET is large so that the SET level εI is deeply inside the bias 
window, i.e., eV ∼  2|εI −  μS(D)| ≫  Γ tot, the factor μ μ( , )F S D  is simply reduced to

μ μ( , ) = . ( )F 1 26S D

Equation (24) then recovers53 equation (21).
(2). Fano factor. It is known that the current from the SET island to the drain electrode is related to 

the first-order cumulant of the generating function G(χ, t) by I =  eC1/t. The corresponding shot noise 
is related to the second-order cumulant of G(χ, t) as S =  2e2C2/t. Thus, the Fano factor F =  S/2eI can be 
written as F =  C2/C1. In Fig. 3(a), we show the Fano factor as a function of Γ D/Γ S for εM =  0 and various 
values of λ and μ. The black dotted curve in this figure represents the result not only for the case without 
the MBSs but also for the identical result for the fermion case similar to that in Fig. 1(a). It is clear that 
the Fano factor in the absence of the MBSs reaches its minimum (i.e., Fmin =  1/2) for a symmetric SET 

Figure 3. Fano factor under the effect of the MBSs. Fano factor F versus the tunneling-rate ratio Γ D/Γ S. 
The parameters in (a) are the same as those in Fig. 2(a), and the parameters in (b) are the same as those in 
Fig. 2(b).
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with Γ D/Γ S =  1, as indicated by point B on the black dotted curve in Fig. 3(a). This minimum point of 
the Fano factor shifts appreciably in the presence of the MBSs, e.g., Fmin ≈  0.49 at Γ D/Γ S ≈  3.58 when 
λ =  Γ S and μ =  0. Interestingly, this shift is robust against varying either the nonlocal coupling μ to the 
more distant MBS or the coupling energy εM between the two MBSs [see Fig. 3(a,b)].

For εM =  0, an analytical result for the Fano factor can also be obtained as

F
8 8 2 5

8 27
S D S D S D

2 2 2 2
tot
2 2 2

2
tot
2 2

ξ ξ

ξ
=

( + Γ − Γ + Γ Γ ) + Γ (Γ + Γ )

( + Γ )
.

( )

Without the MBSs, i.e., ξ →  0, we recover the experimentally verified result47 F =  (1 +  a2)/2 <  1, where 
a =  (Γ S −  Γ D)/Γ tot is the asymmetry of the SET. In the presence of the MBSs and when Γ S =  Γ D =  Γ , the 
Fano factor follows F =  (Γ 2 +  4ξ2)/(2Γ 2 +  4ξ2). It depends non-trivially on the couplings between the SET 
island and the MBSs, which does not occur for the current (see Fig. 2). In Fig. 4(a), we show the depend-
ence of the minimum point from equation (27) on the SET-MBS coupling. We observe that the mini-
mum point (Γ D/Γ S)min of the Fano factor increases with ξ/Γ S. This MBS-induced shift of the minimum 
point of the Fano factor can be used as one of the signatures of the MBSs. Such a shift does not occur 
when coupled to a fermion state instead [see the black dotted curve in Fig. 3(a)]. We emphasize that we 
have considered a nanowire with both MBSs coupled to the quantum dot21,42. This generalizes results on 
the Fano factor from Ref. 40 which considered coupling to only one MBS, which may not be applicable 
when the distances between the detector (e.g., SET) and two MBSs are comparable. In addition, instead 
of considering the Fano factors (or currents) at both the source and drain electrodes as in Ref. 40, we find 
it sufficient to characterize the MBSs by studying the statistics only at the drain electrode. This is in fact 
more directly related to typical experimental measurements. In particular, our results on the Fano factor 
(and also on the skewness as demonstrated below) can reduce back to the experimentally verified ones 
when the MBSs are decoupled as explained above. Moreover, tuning the gate voltages to control Γ D/Γ S 
for identifying the MBSs in our proposal is a new alternative to the frequency tuning suggested in Ref. 
40. Note that the shot noise of a quantum dot coupled to a MBS was explored in a more recent work39 
to distinguish the Majorana origin of the zero-bias anomaly from that due to Kondo effect. However, 

Figure 4. The minimum points of Fano factor and skewness under the effect of the MBSs. The minimum 
points (Γ D/Γ S)min of (a) Fano factor and (b) skewness as a function of 2 2ξ λ μ= + .
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their results of the shot-noise power spectra as well as the tunneling conductance were obtained under 
a smaller bias voltage (i.e., eV≪ Γ tot). These are quite different from our results of Fano factor (or shot 
noise) and current which correspond to the case of a large bias voltage (i.e., eV≫ Γ tot). In addition, we 
further explore the skewness below, which goes beyond the differential conductance (or current)34–39 and 
shot noise39 to reveal the signatures of MBSs.

(3). Skewness. The skewness of the distribution of transferred electrons is defined as K =  C3/C1, which 
involves the third-order cumulant C3. Figure. 5(a) shows the skewness for εM =  0 and various values of 
λ and μ. It is clear that the skewness in the absence of the MBSs takes its minimum value (i.e., K =  1/4) 
at Γ D/Γ S =  1, as indicated by point C on the dotted curve. This dotted curve also represents the results 
for the fermion case due to the same reason as that for the result of the current or Fano factor as 
explained above. Also, the minimum point of the skewness shifts appreciably in the presence of MBSs, 
e.g., Kmin ≈  0.08 at Γ D/Γ S ≈  2.16 when λ =  Γ S and μ =  0. Moreover, similar to the Fano factor, this shift 
of the minimum point is also robust against varying μ and εM [see Fig. 5(a,b)].

If εM =  0, the skewness can be obtained analytically as

ξ ξ ξ ξ

ξ
=

( ) + ( ) + ( ) + Γ + Γ

( + Γ )
,

( )

A B C D
K

16 2 8 2 12 2 8

8 28

8 6 4 2
tot
2

tot
4

2
tot
2 4

where

= Γ + Γ (Γ − Γ ),A 4 3 4D S Dtot
2

= Γ − Γ Γ Γ − (Γ − Γ ) ,B [7 ]D S S Dtot
4 2

tot
2

= Γ − Γ Γ Γ + Γ Γ + Γ ( Γ − Γ ) ,C 4 3 {3 [[3 2 5 7 ]]}D S D S S Dtot
4

tot
2

tot
2

Figure 5. Skewness under the effect of the MBSs. Skewness K versus the tunneling-rate ratio Γ D/Γ S. The 
parameters in (a) are the same as in Fig. 2(a), and the parameters in (b) are the same as in Fig. 2(b).
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= (Γ − Γ ) + Γ Γ (Γ − Γ Γ ).D 2 2S D S D S D
4

tot
2

As expected, when ξ →  0 (i.e., the case with no MBSs), the skewness reduces to that of a SET: 
= /Γ = ( + )/DK a1 3 4tot

4 4 , which was verified experimentally in Ref. 47. In the presence of the 
MBSs, the skewness takes its minimum value Kmin at the minimum point (Γ D/Γ S)min which can be 
accurately identified from equation (28) and is shown in Fig. 4(b). Similar to the Fano factor, this 
MBS-induced shift of the minimum point of the skewness can be used as another signature of the 
MBSs.

Discussion
Note that the coupling strengths λ and μ of the SET island to the two MBSs at the ends of the nanowire 
depend on the position of the detector [see equation (34)]. Varying the position of the detector, one can 
reveal the influence of each MBS on the counting statistics (e.g., the Fano factor and the skewness) of 
the detector.

In our work, we use the Born-Markov master equation because it is applicable when both the cou-
plings between the system and the electrodes are weak and each electrode has a wide flat energy spec-
trum. These conditions are valid in our system. Moreover, in studying the counting statistics of the SET 
island, we need to calculate the n-resolved reduced density matrix elements of the SET island [see equa-
tion (10)]. They are conveniently obtained using the master equation approach.

In summary, we have proposed an experimentally accessible approach to probe the MBSs via the 
counting statistics of a charge detector in the form of a SET. We study the effects of both the local cou-
pling (to an adjacent MBS at one end of the nanowire) and the nonlocal coupling (to a MBS at the other 
end of the nanowire) on the counting statistics of the SET island. We find that in the presence of the 
MBSs, the minimum point of both the Fano factor and the skewness shifts appreciably from a symmetric 
SET configuration to an asymmetric one. This feature persists even when varying the nonlocal coupling 
to the farther MBS or the pairing energy between the two MBSs. These MBS-induced shifts can be used 
as signatures of the MBSs. Moreover, because our approach is based on the FCS, it can be readily gener-
alized to higher-order cumulants to study if they can also be used to probe the MBSs.

Methods
Derivation of the tunneling Hamiltonian. For the two MBSs at the ends of a 1D p-wave supercon-
ductor, which can form at the interface between a semiconductor nanowire with strong spin-orbit cou-
pling and an s-wave superconductor14,18, the Majorana operator can be defined as18,41

dx f x x f x x
29i i i∫∑γ ψ ψ= 

 ( ) ( ) + ( ) ( ) , ( )σ
σ σ σ σ

⁎ †

where fiσ(x), i =  L or R, is the Majorana wave function and ψσ(x) is the superconductor electron field 
operator with spin σ ( =  ↑ , ↓ ).

From equation (29), it follows that the Majorana operator satisfies i iγ γ=† . The anticommutation 
relation for the Majorana operators can be obtained as

dxdy f x f y x y{ } { }i j i j∫ ∫γ γ ψ ψ, = 

( ) ( ) ( ), ( )↑ ↑ ↑ ↑

⁎ †

f x f y x y{ }i j ψ ψ+ ( ) ( ) ( ), ( )↑ ↑ ↑ ↑
⁎ †

{ }f x f y x yi j ψ ψ+ ( ) ( ) ( ), ( )↓ ↓ ↓ ↓
⁎ †

{ }f x f y x yi j ψ ψ+ ( ) ( ) ( ), ( ) 
↓ ↓ ↓ ↓

⁎ †

dx f x f x f x f xi j i j∫= 

( ) ( ) + ( ) ( )↑ ↑ ↑ ↑

⁎ ⁎

f x f x f x f xi j i j+ ( ) ( ) + ( ) ( ) 
↓ ↓ ↓ ↓

⁎ ⁎
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f i j
f i j

2 i
0 i 30

=





= ,
≠ , ( )

because of the anticommutation relations for the fermionic field operators

x y x y{ } 31ψ ψ δ δ( ), ( ) = ( − ), ( )α β αβ
†

x y{ } 0 32ψ ψ( ), ( ) = , ( )α β

and the relations of the completeness and orthogonality of the Majorana wave functions

dx f x f x
33i j ij∫ ∑ δ( ) ( ) = .
( )σ

σ σ
⁎

Obviously, it follows from equation (30) that { } 1i i i
2 1

2
γ γ γ= , = .

In the Nambu representation of the superconductor electron field operator, ( )ψ ψ ψ ψΨ = , , ,↑ ↓ ↓ ↑
† † . 

Projecting these field operators onto the manifold of Majorana states, we have x i iγΨ( ) = ∑  
f x f x f x f xi i i i


( ), ( ), ( ), ( ) 

↑ ↓ ↓ ↑
⁎ ⁎ . The electron tunnelings between the MBSs and the SET island are then 

described by the Hamiltonian

H dx t x d x t x x d V d V d
34

t
i

i i i∫∑ ∑ψ ψ γ=




 ( ) ( ) + ( ) ( )





 = ( − ) ,

( )σ
σ σ σ σ

σ
σ σ σ σ

⁎ † † ⁎ †

where V dxt x f xi i∫= ( ) ( ),σ σ
⁎ ⁎  dσ is the annihilation operator of the electron with spin σ in the SET 

island, and t x( ) is the position-dependent coupling strength between the MBSs and the SET island. Note 
that one can always find suitable linear combinations of d↑

† and d↓
† to form spinless fermions d† coupled 

to the MBSs. Then, the tunneling Hamiltonian becomes

H g d g d
35t

i
i i i( )∑ γ= − ,

( )
⁎ †

where operators d† and d are defined as

d
V d V d

g
d

V d V d

g 36
i i

i

i i

i

=
+

, =
+

.
( )

↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓†
⁎ † ⁎ †

⁎

If g gL L λ= =⁎  and g gR R μ= = ,⁎  we have

H d d 37t L Rλγ μγ= ( − )( + ). ( )†

This is just the Hamiltonian in equation (1), which describes the electron tunnelings between the 
MBSs and the SET island. Note that it includes both the local coupling λ to the adjacent MBS at one 
end of the nanowire and the nonlocal coupling μ to the MBS at the other end of the nanowire. Equa-
tion (35) reduces to the tunneling Hamiltonian widely used in previous studies (e.g. Refs. 40 and 41) 
by choosing μ =  0.

Quantum dynamics of the SET. Applying the Born-Markov approximation and tracing over the 
degrees of freedom of the electrodes coupled to the SET island, the master equation of the hybrid 
MBS-SET system in the Schrödinger picture can be obtained as

 i H d d[ ] [ ] 38S D rsysρ ρ ρ ρ= − 
 ,  + Γ + Γ ϒ , ( )

† †

where ρ(t) is the reduced density operator of the MBS-SET system, and the superoperator , acting on 
any single operator, is defined as  A A A A A A A[ ] 1

2
1
2

ρ ρ ρ ρ= − − .† † †

From equation (38) and the relations

n n n n 39n n1 1ρ ρ ρ ρϒ ϒ = , ϒ ϒ = , ( )( − ) ( + )† †

n n n n 40n nρ ρ ρ ρϒ ϒ = , ϒϒ = , ( )( ) ( )† †
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where n is the number of electrons that have tunneled to the drain electrode, we obtain the equation of 
motion for each n-resolved reduced density matrix element:

iaa
n

ad
n

da
n

ad
n

da
n

S aa
n

D cc
n 1

ρ λ ρ ρ μ ρ ρ ρ

ρ

= ( − ) − ( + ) − Γ

+ Γ ,

( ) ( ) ( ) ( ) ( ) ( )

( − )



ibb
n

bc
n

cb
n

bc
n

cb
n

S bb
n

D dd
n 1

ρ λ ρ ρ μ ρ ρ ρ

ρ

= ( − ) + ( + ) − Γ

+ Γ ,

( ) ( ) ( ) ( ) ( ) ( )

( − )



icc
n

bc
n

cb
n

bc
n

cb
n

S aa
n

D cc
n

ρ λ ρ ρ μ ρ ρ ρ

ρ

= − ( − ) − ( + ) + Γ

− Γ ,

( ) ( ) ( ) ( ) ( ) ( )

( )



idd
n

ad
n

da
n

ad
n

da
n

S bb
n

D dd
n

ρ λ ρ ρ μ ρ ρ ρ

ρ

= − ( − ) + ( + ) + Γ

− Γ ,

( ) ( ) ( ) ( ) ( ) ( )

( )



i i iab
n

M ab
n

db
n

ac
n

S ab
n

D cd
n 1

ρ ε ρ λ μ ρ λ μ ρ ρ

ρ

= − ( + ) + ( + ) − Γ

+ Γ ,

( ) ( ) ( ) ( ) ( )

( − )



i i i

2 41

ac
n

I ac
n

dc
n

ab
n

S D
ac

n

ρ ε ρ λ μ ρ λ μ ρ

ρ

= − ( + ) + ( − )

−
Γ + Γ

, ( )

( ) ( ) ( ) ( )

( )



i i i

2

ad
n

I M ad
n

aa
n

dd
n

S D
ad

n

ρ ε ε ρ λ μ ρ λ μ ρ

ρ

= ( + ) + ( + ) − ( + )

−
Γ + Γ

,

( ) ( ) ( ) ( )

( )



i i i

2

bc
n

M I bc
n

cc
n

bb
n

S D
bc

n

ρ ε ε ρ λ μ ρ λ μ ρ

ρ

= − ( − ) − ( − ) + ( − )

−
Γ + Γ

,

( ) ( ) ( ) ( )

( )



i i i

2

bd
n

I bd
n

cd
n

ba
n

S D
bd

n

ρ ε ρ λ μ ρ λ μ ρ

ρ

= − ( − ) + ( + )

−
Γ + Γ

,

( ) ( ) ( ) ( )

( )



i i icd
n

M cd
n

bd
n

ca
n

S ab
n

D cd
n

ρ ε ρ λ μ ρ λ μ ρ ρ

ρ

= − ( + ) + ( + ) + Γ

− Γ .

( ) ( ) ( ) ( ) ( )

( )



With the n-resolved matrix elements obtained, the reduced density matrix elements are given by 

{ }i j i j a b c dij n ij
nρ ρ ρ= = ∑ , , ∈ , , ,( ) .
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