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Visceral adiposity is much more strongly associated with cardiometabolic disease in 
humans than subcutaneous adiposity. Browning, the appearance of brown-like adi-
pocytes in the white adipose tissue (WAT), has been shown to protect mice against 
metabolic dysfunction, suggesting the possibility of new therapeutic approaches to treat 
obesity and type 2 diabetes. In mice, subcutaneous WAT depots express higher levels of 
browning genes when compared with visceral WAT, further suggesting that differences in 
WAT browning could contribute to the differences in the pathogenicity of the two depots. 
However, the expression of browning genes in different WAT depots of human has not 
been characterized. Here, it is shown that the expression of browning genes is higher 
in visceral than in subcutaneous WAT in humans, a pattern that is opposite to what is 
observed in mice. These results suggest that caution should be applied in extrapolating 
the results of murine browning gene expression studies to human pathophysiology.
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Obesity is a major risk factor for cardiometabolic disease, and clinical studies have shown that differ-
ent human adipose tissue depots contribute differentially to cardiometabolic risk. The accumulation 
of intra-abdominal visceral fat is a major contributor to systemic metabolic dysfunction that is 
strongly associated with cardiovascular risk in humans (1–3). In marked contrast, subcutaneous 
adipose tissue is benign or even protective with regard to cardiometabolic risk in some studies 
(4–6). An increasing body of evidence suggests that visceral and subcutaneous white adipose tissue 
(WAT) depots exhibit different intrinsic properties, which make visceral WAT a more pathogenic 
depot compared to subcutaneous WAT (7, 8). Surprisingly, the phenomenon of WAT “browning,” 
an actively investigated topic in the field of metabolism, remains ill defined in the context of human 
visceral and subcutaneous adiposity.

In contrast to WAT, brown adipose tissue (BAT) is a highly vascularized and has a high content 
of mitochondria (9). These mitochondria express high levels of uncoupling protein 1 (UCP1), allow-
ing them to produce heat. In addition to this thermogenic function, BAT contributes significantly 
to systemic metabolism in rodent models because of its high energetic expenditure ratio (10–15). 
Recently, it has been appreciated that adult humans possess varying degrees of active BAT (16–19). 
Because BAT function will decrease with obesity and aging (17, 20), declining BAT function may 
link metabolic dysfunction and weight gain under these conditions.
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“Browning” is the process by which some adipocytes within 
WAT depots acquire properties of brown adipocytes, i.e., an 
increase in mitochondrial content and oxidative capacity (21, 22).  
The browning of WAT occurs in response to various stimuli, 
including exposure to cold temperatures (23), β3-selective adr-
energic agonists (24, 25), or exercise (26, 27). These adipocytes, 
termed “beige” or “brite” (brown in white), show an intermediate 
phenotype between white and brown adipocytes, exhibiting 
multilocular morphology, high levels of UCP1 expression, and 
some degree of thermogenic capacity. In addition, these cells have 
a distinct molecular signature, expressing markers, such as Tbx1, 
that are not present in white or brown adipocytes (28). Mouse 
studies have shown a correlation between WAT browning and 
decreased body weight gain and improved metabolic outcome 
when mice were challenged with obesogenic diets (21, 27, 29, 30). 
However, these systemic metabolic improvements could also be 
attributed to diminished BAT “whitening” and an increase in the 
BAT function under these conditions (9). Notably, studies have 
suggested the existence of major differences in the browning 
capacity of different WAT depots in mice (21, 30). In humans, 
browning has been observed in subcutaneous WAT of burned 
patients (31) and cancer cachexia (32); two conditions that are 
characterized by hypermetabolism, large increases in resting 
energy expenditure and whole-body catabolism and associated 
with increased morbidity and mortality. Thus, more information 
about the browning potential of human WAT depots and its 
metabolic implications is necessary to be able to extrapolate the 
effects observed in mice.

The brown adipose determination factor Prdm16 has been 
reported to play a central role in the browning capacity of WAT. 
Prdm16 is differentially expressed in various mouse WAT depots, 
and this differential expression has been suggested to mediate 
differences in their browning capacity. Specifically, the higher 
expression of Prdm16 and other BAT-selective genes has been 
shown to correlate with the higher browning susceptibility of sub-
cutaneous (inguinal) WAT compared to the visceral (epididymal) 
WAT in lean wild-type mice (21). Consistently, subcutaneous 
WAT in adipose tissue-specific Prdm16-deficient mice adopts 
visceral WAT-like qualities and exhibits decreased browning 
capacity, and this correlates with greater weight gain and insulin 
resistance (30). These mouse studies suggest that differences in 
browning susceptibility could contribute to the intrinsic dif-
ferences between WAT depots that determine their differential 
impacts on cardiometabolic risk (33, 34). However, previous 
studies have almost exclusively focused on the murine system, 
and the expression of Prdm16 and other browning-related genes 
in human WAT depots has not been explored.

In this study, we compared the expression of browning genes 
in subcutaneous and visceral WAT collected from obese human 
individuals and chronically obese mice to gain insight into the 
susceptibility of different WAT depots to browning in a context of 
chronic obesity. Consistent with previously published data in lean 
mice (21), subcutaneous (inguinal) WAT in obese mice displayed 
higher transcript levels of the browning markers UCP1, Cidea, 
and Pdrm16, and the beige adipocyte markers Tbx1 and P2rx5, 
compared with their expression levels in visceral (epididymal) 

WAT (Figure  1A). Correspondingly, the mitochondrial genes 
Cox8b, Ppargc1a, Atp5a, and Ndufa1 are more highly expressed 
in inguinal compared to epididymal WAT. These mouse data are 
consistent with the prevailing notion that subcutaneous WAT is 
more susceptible to browning than visceral WAT.

In contrast, the analysis of human WAT specimens sug-
gests a markedly different scenario (Figure  1B). Compared 
with subcutaneous WAT, visceral (omental) WAT exhibits 
higher transcript levels of UCP1 and all of the browning genes 
examined in this study (CIDEA, PRDM16, TBX1, and P2RX5). 
Consistently, human visceral WAT displayed higher levels of the 
mitochondrial gene transcripts COX8B, PPARGC1A, ATP5A, 
and NDUFA1. Overall, these data suggest that human visceral 
fat is more likely to exhibit a higher browning capacity than 
subcutaneous fat.

When interpreting the opposite browning gene expression 
patterns in WAT depots from human and mouse, it must be 
considered from the data presented herein, as most studies com-
paring data on adipose tissue from mice and humans, that the 
“visceral” designation actually involves a comparison of different 
intra-abdominal WAT depots. In this regard, the human omental 
fat depot is essentially non-existent in mice. Furthermore, the 
mouse epididymal or perigonadal fat depot does not drain into 
the portal circulation and therefore is technically not a true 
visceral depot. Despite these anatomical differences, mouse 
subcutaneous-epididymal characteristics frequently track with 
human subcutaneous-omental characteristics. For example, 
the expression of the anti-inflammatory adipokine adiponectin 
(ADIPOQ/Adipoq) is decreased in visceral depots relative to 
subcutaneous fat in both human and mice, and the transcript 
levels of the visceral WAT marker Wilms tumor 1 (WT1/Wt1) 
(30) are increased in both mouse epididymal fat and human 
omental fat (Figures  1C,D). Furthermore, the expression of 
various pro-inflammatory molecules is similarly elevated in both 
human and mouse visceral WAT depots compared to subcutane-
ous WAT (35–38).

The issue of thermoneutrality should be considered when 
analyzing the browning process in mice and humans. Humans 
have replaced the endogenous thermoregulatory mechanisms 
with the donning of clothing and macro-environmental 
manipulations (39). However, mice are commonly housed 
at temperatures below their thermoneutral range, leading to 
mild cold stress that can affect many biological processes (40, 
41). For example, cold acclimatization is associated with large 
increases in UCP1 gene expression in beige adipose tissue in 
mice housed at 21°C (common conditions), but this increase is 
not observed in mice housed at 30°C (thermoneutrality) (42). 
Accordingly, mice housed at 21°C (including the mice used in 
this study) exhibit a perpetual activation of brown and beige 
adipose tissues.

Conflicting findings of mouse and human studies in the setting 
of browning have been reported by other groups. WAT browning 
has not been observed in response to exercise in humans (43), in 
contrast to mice (26, 27). In addition, a study of combined diet 
and exercise weigh loss intervention in women did not result in 
a higher beige adipocyte induction, but in a decrease in UCP1 
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tABle 1 | clinical characteristics of human population studied (n = 32).

clinical parameters

Age (years) 42 ± 2
Female sex (%) 75
BMI (kg/m2) 43 ± 1
Weight (kg) 122 ± 5
Waist circumference (cm) 132 ± 3
Waist to hip ratio 0.97 ± 0.02
Diabetes (%) 37
Fasting glucose (mg/dl) 130 ± 13
Plasma insulin (mIU/ml) 18 ± 3
HOMA 5.5 ± 0.9
Triglycerides (mg/dl) 118 ± 13
Hypercholesterolemia (%) 22
Total cholesterol (mg/dl) 170 ± 7
LDL cholesterol (mg/dl) 105 ± 5
HDL cholesterol (mg/dl) 41 ± 1
hsCRP (mg/dl) 9.4 ± 1.3
Hypertension (%) 56
Systolic blood pressure (mm Hg) 126 ± 2
Diastolic blood pressure (mm Hg) 73 ± 1
Coronary heart disease (%) 6

Data expressed as mean ± SEM.

FiGure 1 | continued  
mrNA levels in subcutaneous and visceral white adipose tissue (WAt) depots of obese mice and humans. (A) Browning and mitochondrial genes in 
iWAT (inguinal, subcutaneous) and eWAT (epididymal, visceral) depots of mice, average Ct values: Ucp1: 27.1; Cidea: 27.9; Prdm16: 28.6; Tbx1: 35.0; P2rx5: 28.4; 
Cox8b: 22.5; Ppargc1a: 27.2; Atp5a: 19.7; Ndufa1: 21.3 and (B) scWAT (subcutaneous, abdominal region) and oWAT (omental, visceral) depots of humans, 
average Ct values: UCP1: 28.8; CIDEA: 18.3; PRDM16: 26.5; TBX1: 23.1; P2RX5: 23.6; COX8B: 20.1; PPARGC1a: 21.8; ATP5a: 15.9; NDUFA1: 18.3.  
(c) Visceral marker Wt1 and adipokine adiponectin in iWAT and eWAT depots of mice, average Ct values: Wt1: 30.5; Adipoq: 18.2 and (D) scWAT and oWAT 
depots of humans, average Ct values: WT1: 24.0; ADIPOQ: 13.6. Samples were collected from: C57BL6/J mice (n = 9) fed a high fat and high sucrose diet for 
30 weeks and housed at 21°C (average body weight: 53.5 g, 40.6% weight increase compared to lean controls); and obese humans (n = 21–32) at the time of 
bariatric surgery, clinical characteristics detailed in table 1. RNA was isolated using RNeasy Lipid Tissue Mini Kit (Qiagen), and synthesis of cDNA was performed 
with high capacity cDNA Reverse Transcription Kit (Applied Biosystems). Quantitative real-time PCR reactions were performed in a ViiA7 System (Applied 
Biosystems) using TaqMan gene expression assays (Applied Biosystems) for the human samples and SYBR Green-based assays for the murine samples (primer 
sequences obtained from http://mouseprimerdepot.nci.nih.gov).
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expression and a remodeling of scWAT toward a more-white  
phenotype instead of a more-brown phenotype (44). These studies  
suggest that human adipose tissue does not respond to browning 
stimuli identified in mouse models.

Overall, our findings suggest that mouse epididymal fat mim-
ics some of the pathogenic properties of human visceral fat, but 

it is not a valid surrogate for human visceral fat in the context 
of browning. Since most of the studies comparing subcutaneous 
and visceral depots in mice and humans use these WAT depots, 
we urge caution when extrapolating results from mice to humans. 
In the case of WAT browning, differences in gene expression pat-
terns between fat depots cannot be extrapolated from mouse to 
humans. Our data also suggest that it is unlikely that the increased 
cardiometabolic risk associated with visceral adiposity in humans 
is due to the reduced browning capacity of visceral adipose tissue.
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