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Abstract: The range kernel of bilateral filter degrades image quality unintentionally in real environments
because the pixel intensity varies randomly due to the noise that is generated in image sensors.
Furthermore, the range kernel increases the complexity due to the comparisons with neighboring pixels
and the multiplications with the corresponding weights. In this paper, we propose a noise-aware range
kernel, which estimates noise using an intensity difference-based image noise model and dynamically
adjusts weights according to the estimated noise, in order to alleviate the quality degradation of
bilateral filters by noise. In addition, to significantly reduce the complexity, an approximation scheme
is introduced, which converts the proposed noise-aware range kernel into a binary kernel while using
the statistical hypothesis test method. Finally, blue a fully parallelized and pipelined very-large-scale
integration (VLSI) architecture of a noise-aware bilateral filter (NABF) that is based on the proposed
binary range kernel is presented, which was successfully implemented in field-programmable gate
array (FPGA). The experimental results show that the proposed NABF is more robust to noise than the
conventional bilateral filter under various noise conditions. Furthermore, the proposed VLSI design of
the NABF achieves 10.5 and 95.7 times higher throughput and uses 63.6–97.5% less internal memory
than state-of-the-art bilateral filter designs.

Keywords: image denoising; bilateral filter; range kernel; image noise model; very-large-scale
integration (VLSI); field-programmable gate array (FPGA)

1. Introduction

Image denoising methods have been rapidly evolved as a critical component of image
processing pipeline [1] and high-level vision tasks [2,3]. Recently introduced methods, such as
improved block-matching and three-dimensional (3D) filtering (BM3D) [4] and deep learning-based
algorithms [5,6], reduce a noise significantly under various environments. However, these methods
are infeasible for battery-powered mobile systems, in which the low-power operation is essential,
owing to high complexity requiring high-end central processing units (CPUs) or graphics processing
units (GPUs). Alternatively, the bilateral filter [7] has been started to adopt for mobile systems [8,9],
owing to relatively low complexity and edge-preserving characteristic. Furthermore, very-large-scale
integration (VLSI) designs for real-time and low-power bilateral filtering in mobile systems have been
recently presented [10–13].

However, the bilateral filter is problematic to use practically owing to image quality degradation
by noise. This is because the pixel intensity is changed randomly by the noise that is generated in
image sensors [14], but the range kernel cannot distinguish whether this variation is caused by noise or
not. Furthermore, a non-optimal parameter defined by a user can degrade the quality of filtered image.
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In addition, VLSI designs of the bilateral filter suffer from increased complexity due to the range
kernel. The range kernel is typically implemented using a look-up table (LUT) memory, which stores
pre-defined weights according to the difference in pixel intensity. Because differences in pixel intensity
are random, separate LUT memories are required for the parallel processing of pixels within a pixel
window, and this increases the resource use in proportion to the pixel window size.

In this paper, we propose a noise-aware bilateral filter (NABF) to resolve the aforementioned
image quality degradation problem, which replaces the conventional range kernel with an intensity
difference-based image noise model [15] to estimate the probability that an intensity difference is
caused by noise and adjusts the weight dynamically according to the estimated noise probability.
A user-defined parameter that affects the quality of the bilateral filter is also eliminated by this
replacement. In addition, the proposed range kernel is approximated into a binary kernel using the
statistical hypothesis test method to reduce the usage of the LUT memory and the logic considerably in
a VLSI design [16]. Finally, a fully parallelized and pipelined VLSI of the NABF based on the proposed
binary range kernel is designed, which was successfully implemented in a field-programmable gate
array (FPGA). The experimental results demonstrate that the proposed NABF and its approximated
one are more robust to noise than the conventional bilateral filter under various noise conditions.
Furthermore, the proposed VLSI design achieves 10.5 and 95.7 times higher throughput and uses
63.6–97.5% less internal memory when compared with recent VLSI designs of the bilateral filter.

The rest of this paper is organized, as follows. Related studies are presented in Section 2. Section 3
presents the NABF and its approximation method. Section 4 presents the VLSI architecture of the
NABF. Experimental results are shown in Section 5. Lastly, Section 6 concludes the paper.

2. Related Works

2.1. Optimal Parameter Selection of Bilateral Filter

Because ground truth images do not exist in the real environment, statistical approaches,
such as Stein’s unbiased risk estimator (SURE), Poisson unbiased risk estimator (PURE), and Chi-Square
unbiased risk estimator (CURE), are adopted for optimal parameter selection of the bilateral
filter [17–19]. SURE, PURE, and CURE use Gaussian noise, Poisson, and Chi-Square noise distribution,
respectively. Furthermore, the output of bilateral filter is adopted as an estimate of the noiseless
ground truth image, and unbiased estimated risk is modeled. Finally, the values of the parameters
are selected by minimization of the estimated risk. Despite this, usefulness cannot be adopted for
real-time mobile systems owing to high complexity. For example, the CURE requires dozens of
minutes of execution time in a PC [20]. Recently, a training method that is based on neural network
is presented [21]. Image texture features from training images and their optimal parameter are used
for inputs of training model, and peak signal-to-noise ratio (PSNR) is adopted as a loss function.
Furthermore, the two-dimensional (2D) wavelet transform and gray-level co-occurrence matrix are
adopted to extract image texture features. Finally, a forward path of trained neural network is used
as predictive model of optimal parameter for bilateral filtering. However, this method also requires a
high-end CPU or GPU, owing to high complexity caused by neural network and feature extraction.

2.2. VLSI Design of Bilateral Filter

A VLSI design based on the integral histogram-based bilateral filter [22] is presented in order
to process a large size of window in real-time [10]. However, their design requires many internal
memories to store the histogram. Moreover, external memory access, which causes large power
consumption and delay in mobile systems, is needed. In [11,12], the equation of bilateral filter is
implemented to parallelized VLSI designs without modification. In particular, Gabiger-Rose et al.
introduced a resource-efficient approach that divides pixels within the window into multiple groups
and assigns each group to the separate pipeline [12]. Although this approach reduces the usage of
resources, the processing speed is degraded and the large lookup memory to store weights is required.
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In [13], a VLSI that is based on a fast bilateral filtering method using an approximation [23] is designed
to support arbitrary size of the window without the increase of resources. However, the speed is low
owing to its iterative nature.

3. Proposed Approach

In order o preserve the details of images, the range kernel ( fr) of a bilateral filter controls the
degree of smoothing by the spatial kernel ( fs) using the intensity difference between two pixels:

IBF(x) =
1

Wp
∑xi∈Ω I(xi) · fs · fr ,

where fs = exp(− |xi−x|2
2σ2

s
), fr = exp(− |I(xi)−I(x)|2

2σ2
r

).

(1)

Here, I(x) and IBF(x) are the pixel intensity in position x, and its filtered intensity, respectively,
and Ω is a pixel window. In addition, xi ∈ Ω are neighboring pixels of x within a pixel window; fs

and fr are the spatial and range kernel, respectively; σs and σr are standard deviations of fs and fr,
respectively, and Wp is a normalization term. However, I(x) and I(xi) can be changed randomly by
the noise generated in image sensors [14], e.g., shot noise, but the range kernel ( fr) cannot recognize
whether this change is caused by noise or not. A noise-aware bilateral filter is proposed to resolve
this issue.

3.1. Noise-Aware Bilateral Filter (NABF)

An image noise model is adapted for estimating the noise at each pixel. In particular, the image
noise model [15] that is based on the intensity difference between two pixels is adopted among various
image noise models to determine whether the intensity difference, which is the input of the range
kernel, is caused by noise or not:

p(k; µ) = exp−2µ · Bk · 2µ. (2)

Here, k is the intensity difference between two pixels; p(k) and µ are the noise probability function
and its parameter, respectively; and, Bk(·) is the modified Bessel function of the first kind as:

Bk(x) =
∞

∑
m=0

(−1)m

m!Γ(M + k + 1)

( x
2

)2m+k
. (3)

The probability that an intensity difference is caused by noise is modeled, as shown in Figure 1a.
This noise probability function is dependent on µ, as shown in Figure 1b. Furthermore, µ varies
proportionally with the pixel intensity:

µ = f (I) = c0 · I + c1, (4)

where I is a pixel intensity, and c0 and c1 are constants due to a camera setting such as a camera
gain. By capturing the colorchecker board, there is the linear relationship between intensity and
noise parameters for each homogeneous color patch [15]. From the line, the values of c0 and c1 can
be determined by the fitting process. For details that are related to equations and their derivation, refer
to the literatures [15].
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The range kernel of (1) with the above difference-based image noise model is replaced, as expressed
in (5), and the degree of smoothing by the spatial kernel is controlled according to the noise probability
of intensity difference:

f NABF
r = exp−2µ · B|I(xi)−I(x)| · 2µ,

where µ = c0 · I(x) + c1.
(5)

Here, f NABF
r is the noise-aware range kernel, and I(x) and I(xi) are the intensities of a target

pixel and a neighboring pixel, respectively. When the noise probability of intensity difference is
small, the proposed range kernel judges that the difference is caused by a real scene change, and the
neighboring pixel is excluded from the smoothing by assigning a smaller weight.

All of the noise probabilities according to |I(xi)− I(x)| and µ are obtained by calibration [15] and
they are stored in LUTs in advance. Because the proposed range kernel refers to the noise probability
simply from the LUTs using |I(xi)− I(x)| during operation without extra computations, the speed is
not degraded in comparison with the conventional bilateral filter.

(a) Difference-based image noise model (b) Dependency on pixel intensity and camera setting

Figure 1. Intensity difference-based image noise model [15]. Here, I and k denote a pixel intensity
and the difference in intensity between two random pixels, respectively; and, p(k) and µ are the noise
probability function and its parameter, respectively.

3.2. Binary Noise-Aware Bilateral Filter (B-NABF)

The quality degradation due to noise can be mitigated substantially by the proposed NABF.
However, the NABF increases the LUT usage considerably owing to storing noise probability
values corresponding to all intensity differences, µs, and camera gains. A binary NABF (B-NABF)
which approximates (5) using the statistical hypothesis test is introduced to significantly reduce the
computational complexity of the bilateral filter as well as the LUT usage[16]:

f B−NABF
r =

{
1 if ‖I(xi)− I(x)‖ ≤ KC(x),

0 otherwise,

where KC(x) = arg max A(k) s.t. A(k) ≤ 1− α, A(k) = F(k; µ)− F(−k; µ).

(6)

Here, f B−NABF
r is the binary noise-aware range kernel. I(x) and I(xi) are the intensity of a target

pixel and that of a neighboring pixel, respectively; KC(x) is the critical value corresponding
to the I(x); F is the cumulative distribution function of the f NABF

r ; and α is the significance level,
which is commonly set from 0.01 to 0.1 [16].
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The KC(x) value is determined to be a k, which is the cumulative value of f NABF
r between

two symmetric ks (A[k]) that is closest to 1−α. A weight is assigned to 1 or 0 by comparing the
intensity difference with KC(x), as shown in Figure 2. Consequently, the use of LUT is reduced
because the B-NABF only requires KCs instead of noise probability values at all intensity differences.
Furthermore, the computational complexity is reduced owing to a binarization of weights.

To further reduce the LUT usage, only the KCs of partial camera gains are stored in the LUTs
instead of storing the KC values corresponding to all camera gains, and an interpolated KC for a new
camera gain is generated, as follows:

Ki
C = R

(
Ki↓

C × (Gi↑ − Gi) + Ki↑
C × (Gi − Gi↓)

Gi↑ − Gi↓

)
, (7)

where R(·) is a round operation;Ki
C and Gi are the critical value and camera gain of an index i,

respectively; and, Gi↓ and Gi↑ are the closest lower and upper gains with i, respectively.

Figure 2. Binary noise-aware range kernel. Here, A[k] is the cumulative value of probability between
two symmetric ks; KC denotes the critical value for a binary range kernel; and, WNABF and WB−NABF

are weights by a noise-aware range kernel and a binary noise-aware range kernel, respectively.

4. VLSI Design

A VLSI is designed to accelerate the proposed binary noise-aware bilateral filter. To process
a 5×5-sized pixel window per clock, the hardware design is fully parallelized and pipelined. It mainly
consists of the main controller, a binary range kernel unit to compute (6), a spatial kernel unit to perform
fs of (1), a KC memory to store critical values, and a KC interpolation unit to calculate (7), as shown
in Figure 3. The operation of each unit is described in detail, as follows.
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Figure 3. Proposed VLSI architecture of noise-aware bilateral filter. Here, R denotes registers;
ADD and SUB denote adders and subtractors, respectively; MULT and DIV are multipliers and the
divider, respectively; M and MUX are multiplexers; and ABS and COMP are the logic to conduct
absolute operation and comparison, respectively.

4.1. Main Controller

The main controller comprises a state controller for handling the operational sequence of all units
which are pipelined pixel by pixel, as shown in Figure 4, and a host interface module to communicate
with the host central processing unit (CPU). First, the state controller activates the line memory
in the binary range kernel unit for the line buffering of an image. The pixel intensity (I) of each line
is sent to the two dimensional (2D) binary range kernel element (BE) array module sequentially to
produce the 2D pixel window. When two lines of the line memory are full and three Is of the third line
are stored, the state controller starts the operation of the 2D BE array module in order to compute (6).
Subsequently, the spatial kernel unit is enabled after one clock. The KC interpolation unit is activated
before three clock cycles of the start of the 2D BE array module to provide Ki

C on time. As a result,
the final output of the B-NABF is generated per clock.

The data, such as KCs, α, and the spatial kernel weight ( fs in (1)), are sent by the host CPU.
The host interface module stores them in registers, and the data are sent to each unit.
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Figure 4. Control and timing diagram for pipelined operation. Here, I denotes the pixel intensity of
an input image; x and y denote horizontal and vertical position in an image, respectively; KIU, BRU,
and SKU are KC interpolation unit, binary range kernel unit, and spatial kernel unit, respectively;
KC, O00∼O44, and OB−NABF are outputs of KIU, BRU, and SKU, respectively.

4.2. Binary Range Kernel Unit

The binary range kernel unit computes (6) in parallel for all pixels within the window. To scale the
size of the pixel window easily, a unit module, called the binary range kernel element (BE), is designed
for computing (6) in one pixel, and the BE is duplicated and it is connected to process the pixel window
in parallel, as shown in Figure 3. A subtractor calculates I(xi)− I(x) in the BE, and the absolute value
is computed using the sign of its most significant bit (MSB) and a two′s complement. Furthermore,
a comparator is employed to compare |I(xi)− I(x)| with Ki

C, and a multiplexer is connected to select
the input intensity or 0 as an output (Oxi) according to the compared result. The compared result,
which is 1 or 0, is sent to the spatial kernel unit as a valid signal (Vxi) with Oxi.

The line memory is designed using first-in first-out (FIFO) memories connected serially and a
shift register in the BE in order to provide the intensities of the neighboring pixels to each BE in parallel.
The output ports of each FIFO memory are connected to the input port of the BEs in the first column
in the 2D BE array module, and intensities are shifted to the right BE while using the shift register
connected horizontally, as shown in Figure 3. The output of the shift register in BE21 is used as the
center pixel of the window (I(x)) and it is connected with all of the BEs.

In addition, the output of the third FIFO memory (I20) is sent to the KC interpolation unit in
advance to generate the Ki

C corresponding to I(x) and synchronize it with |I(xi)− I(x)|.

4.3. KC Memory & KC Interpolation Unit

A memory with data width of eight bits and a depth of 256 is used for the KC memory, because the
intensity and its difference are between 0 and 255. Four memories are used to store KCs of four camera
gains. Furthermore, a logic in the host interface module is added to update the KC memory by the host
CPU at the initialization.

The KC interpolation unit accesses the KC memory using I20, which is sent from the binary
range kernel unit, as an address, and the four KCs corresponding to each camera gain are obtained.
Here, Ki↓

C and Ki↑
C are selected among the four KCs by a multiplexer and its selection signal (KC_Sel),

which is computed in advance while using a current camera gain in the host CPU. Subsequently, (7) is
computed using two parallel multipliers and an adder. The precomputed Gi↑−Gi

Gi↑−Gi↓
and Gi−Gi↓

Gi↑−Gi↓
of (7) are

sent from the host CPU. Finally, to generate Ki
C, the output of the adder is summed with its MSB of the

fractional part for a round operation.
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4.4. Spatial Kernel Unit

The 24 neighboring pixels in the window are classified into six groups according to the distance
from the center pixel. The spatial kernel element (SKE) module adds up the four Oxis of each same
group, and the fs of the group is computed by multiplying the sum with the spatial kernel weight
that corresponded to the group. Furthermore, to obtain the normalization term (Wp) of each group,
the four Vxi values, which denote the valid pixel after conducting the binary range kernel, are summed
up. According to the sum of Vxis, Wp is selected among the multiples of Ws, which are generated using
the shift logic and the adder, as shown in Figure 3. Then the fs values and Wp values computed by the
six parallel SKE modules are added up, respectively, by the adder tree. Finally, a divider divides the
sum of fss by the sum of Wps, in order to generate the final output (OB−NABF).

5. Experimental Results

5.1. Image Quality by Denoising

The quality of images are evaluated, which were filtered by the proposed NABF and B-NABF,
via PC simulation before designing a dedicated VLSI. Five highly-textured test datasets are created,
which were captured by a PointGrey Flea3 camera, as shown in Figure 5. Furthermore, a scene is
captured 1,000 times and averaged the images in order to produce ground truth images. Six camera
gain settings are used to verify the effect of noise variation. In addition, σs, σr, and α were varied to
evaluate the quality variation according to the parameter setting.

(a) Set 1 (b) Set 2 (c) Set 3

(d) Set 4 (e) Set 5

Figure 5. Dataset for the evaluation. As shown From (a) to (e), we captured highly-textured and
various color-distributed scenes for evaluating the proposed method. Yellow-dashed rectangles are the
regions to be enlarged for the qualitative comparison presented in Figure 6.

Table 1 shows the average peak signal-to-noise ratios (PSNRs) of the conventional bilateral
filter (BF), the proposed NABF, and B-NABF. The 15(I) of camera gain settings used the KCs,
which were interpolated using (7) based on measured KCs in 10 and 18. The NABF improves the
PSNR when compared with the input image under all noise conditions and parameter changes.
However, the conventional BF decreases the PSNR when the noise level is low. Furthermore, the PSNR
degradation by B-NABF and by using interpolated KCs is negligible when compared with that by
NABF and when measured KCs were used, despite the approximation. In addition, the conventional
BF is quite sensitive to variation of σs and σr. Whereas, the PSNR by NABF is stable despite variations
of σs and α. For instance, the PSNR differences of the NABF and the conventional BF according to the
parameter setting are 0.2 dB and 6.4 dB, respectively, when the camera gain is 0 dB.
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Table 1. Average peak signal-to-noise ratio (PSNR) under Various Noise Conditions.

Parameter Input Conventional BF NABF B-NABF

σs

N/A †

1.0 1.0 2.0 1.0 2.0 1.0 1.0

σr 0.04 0.08 0.08 N/A N/A

α N/A N/A 0.1 0.05

Gain
[dB]

0 45.1 42.3 38.9 35.9 45.7 45.5 45.5 45.3

5 43.7 42.0 38.2 35.4 44.4 44.2 44.2 44.1

10 42.1 41.7 38.0 35.3 43.1 42.8 42.8 42.7

15 39.3 40.0 37.4 35.0 40.5 40.2 40.2 40.1

15(I) ‡ N/A 40.4 40.2 40.1 40.1

18 36.7 37.7 36.0 34.1 37.8 37.5 37.6 37.5
† N/A = Not Applicable, ‡ The 15(I) of camera gain settings used KC values, which were interpolated

using (7) based on measured KCs in 10 and 18.

Table 2 shows the averaged values of PSNR of all camera gains for each test set. With scene
variation, the NABF and B-NABF are also more robust to parameter variation than the conventional
BF, and the PSNR is improved.

Table 2. Average PSNR with Scene Variation.

Parameter Input Conventional BF NABF B-NABF

σs
N/A †

1.0 1.0 2.0 1.0 2.0 1.0 1.0

σr 0.04 0.08 0.08 N/A N/A

α N/A N/A 0.1 0.05

Test
Set

#1 42.4 41.9 38.5 35.7 43.5 43.2 43.2 43.1

#2 38.9 38.9 36.9 34.7 39.6 39.4 39.5 39.5

#3 42.5 41.7 37.9 35.3 43.7 43.4 43.4 43.4

#4 40.6 39.7 36.7 34.5 41.2 41.0 40.9 40.8

#5 42.5 41.5 38.5 35.6 43.4 43.1 43.0 42.9

† N/A = Not Applicable.

Figure 6 presents the qualitative results of the BF, the proposed NABF, and B-NABF with the
ground truth images. The NABF shows clearer edges and textures similar to those of the ground
truth images, while the conventional BF produces less distinct results. Furthermore, the results of the
B-NABF are almost the same as them of the NABF.
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(a) (b) (c) (d) (e)

Figure 6. Qualitative comparison: (a) input images, the results of (b) the conventional bilateral filter,
(c) the proposed NABF, (d) B-NABF, and (e) the ground truth

5.2. Implementation Result and Comparison

Based on an architecture proposed in Section 4, a VLSI of B-NABF is designed while using Verilog
hardware description language. It is verified that the register-transfer level (RTL) simulation results
of the designed VLSI coincide with simulation results from the C model of B-NABF which is used in
Section 5.1. Finally, the verified VLSI design was implemented in a Xilinx Virtex 7 FPGA (XC7VX330T).

5.2.1. System Configuration for Measurement

A PC is connected with a FPGA board using a peripheral component interconnect express (PCIe)
to verify the proposed VLSI design and measure its performance, as shown in Figure 7. A test image
from the PC is stored in an external memory of a FPGA board, and the VLSI design is enabled by the
register setting from the PC. After bilateral filtering is finished, an interrupt signal is generated by
the main controller of VLSI and then sent to the PC. The interrupt service routine reads the filtered
image from the external memory and displays it. The PSNR is calculated by comparing the filtered
image with the ground truth image. To execute these processes automatically, a software programs
for visualization and analysis is implemented, as shown in Figure 7b. Moreover, the throughput
is measured using a clock counter, which is placed in the proposed design. The total number of
clocks is probed using Xilinx integrated logic analyzer (ILA), and it is displayed in the Vivado logic
analyzer via joint test action group (JTAG) interface. The logic and memory usage are reported after
post-implementation in the Vivado design suite tool.
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(a) Block diagram

(b) System verification

Figure 7. System configuration for the experiment.

5.2.2. Comparison with Recent VLSI Designs of Bilateral Filter

As in Table 3, VLSI designs [12,13] are considered that do not use an external memory in this study,
because designs [10] that use an external memory are inappropriate for mobile systems due to the large
power consumption. One earlier design [12] handles a large image in realtime owing to parallelized
and pipelined implementation of (1). Pixels in a pixel window are grouped according to the distance
from the center, and the pixels in each group are processed subsequently in a separate computing
pipeline in order to reduce the usage of the logic and internal memory. However, the throughput
is reduced due to the sharing of computing pipeline. Another design [13] implements an iterative
algorithm of the bilateral filter, which was presented in [23], in order to handle an arbitrary pixel
window size. However, the throughput is reduced despite a small image size due to the iterative
nature of this algorithm. Moreover, a large amount of the internal memory is used for the storage of
intermediate data between iterations.

In contrast, the throughput of the proposed VLSI design is 10.5 and 95.7 times higher than
those of [12,13], respectively, owing to the proposed binary noise-aware bilateral filtering scheme.
Furthermore, 63.6% and 97.5% less internal memory are used in comparison to [12,13], respectively.
The logic usage is also significantly reduced. In terms of the image quality after filtering, as described
in Section 5.1, the proposed noise-aware bilateral filter provides more stable and better quality under
various noise conditions in comparison to the conventional bilateral filter adopted in [12,13].
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Table 3. Comparisons with State-of-the-Art VLSI Designs of Bilateral Filter.

[12] [13] Proposed

Device
Xilinx-5 FPGA Xilinx-7 FPGA Xilinx-7 FPGA

(XC5VLX50) (XC7Z020) (XC7VX330T)

Image Resolution 1024×1024 256×256 1920×1080

Max. Freq. (MHz) 320 63 330

Throughput (Mpixels/s) 31.5 3.45 330

Logic Usage
(ea)

Slice‡ 1060 † 476 a

LUT † 2647 1425

FF † 686 552

DSP 29 10 8

Memory Usage (KByte) 49.5 706.5 18

† It is not reported, ‡ It consists of multiple LUTs and FFs, a Synthesis result in XC7VLX50 (Xilinx-5
FPGA) for a fair comparison with [12].

5.2.3. Integration of Implemented VLSI Design and Image Sensor

A rapid prototyping system (http://huins.com/en/m11.php?m=rd&no=86) is used, which is
based on Xilinx-6 XC6VLX760 FPGA, to integrate implemented VLSI design and CMOS image sensor
(CIS). Omnivision OV5642 CIS is connected with the VLSI design in XC6VLX760 FPGA, and filtered
output image is displayed in a monitor via high definition multimedia interface (HDMI), as shown in
Figure 8.

In addition, a VLSI design of the conventional bilateral filter is implemented for comparing with a
result of the proposed VLSI design qualitatively. As a result, an image that is filtered by the proposed
VLSI design shows clearer edges and textures when compared with an image from a VLSI design of
the conventional BF, as shown in Figure 9.

Figure 9 presents test results, which are filtered by the conventional bilateral filter and the
proposed B-NABF, respectively, with the original image. A noise of the original image is reduced by
a VLSI design of the proposed B-NABF. Furthermore, an image of the proposed VLSI design shows
clearer edges and textures when compared with an image from a VLSI design of the conventional
bilateral filter.

Figure 8. System configuration for integrating the implemented VLSI design of the proposed filter
with CMOS image sensor.

http://huins.com/en/m11.php?m=rd&no=86
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(a) Original image without filtering

(b) Conventional bilateral filter

(c) Proposed B-NABF

Figure 9. Filtered images by VLSI designs of the conventional bilateral filter and the proposed B-NABF.

6. Conclusions

We have proposed a noise-aware bilateral filter (NABF) to overcome the disadvantage of the
conventional bilateral filter in which image quality is degraded by randomly generated noise in image
sensors. The NABF estimates the noise using an intensity difference-based image noise model and
dynamically adjusts the weight of the range kernel according to the estimated noise. In addition,
a light weighting scheme is introduced, which approximates the range kernel of the NABF into a
binary kernel while using the statistical hypothesis test method, for resource-limited mobile systems.
Finally, a fully parallelized and pipelined VLSI architecture of NABF based on the proposed binary
range kernel is presented, which was successfully implemented in a FPGA. Our experimental results
demonstrated that the proposed NABF is more robust to noise than the conventional bilateral filter
under various noise conditions. Furthermore, the proposed VLSI design of the NABF achieves 10.5
and 95.7 times higher throughput and uses 63.6%–97.5% less internal memory than recent designs of
the bilateral filter.

Author Contributions: Conceptualization, S.-J.J. and Y.H.; software, Y.H.; hardware, S.-J.J.; writing—original
draft preparation, S.-J.J. and Y.H.; writing—review and editing, Y.H.; visualization, S.-J.J.; project administration,
Y.H.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-01351, Development of ultra
low-power mobile deep learning semiconductor with compression/decompression of activation/kernel data) and
by the research grant of the Chungbuk National University in 2019.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2020, 20, 4722 14 of 15

References

1. Goyal, B.; Dogra, A.; Agrawal, S.; Sohi, B.; Sharma, A. Image denoising review: From classical to
state-of-the-art approaches. Inf. Fusion 2020, 55, 220–244. [CrossRef]

2. Liu, D.; Wen, B.; Jiao, J.; Liu, X.; Wang, Z.; Huang, T.S. Connecting Image Denoising and High-Level Vision
Tasks via Deep Learning. IEEE Trans. Image Process. 2020, 29, 3695–3706. [CrossRef] [PubMed]

3. Milyaev, S.; Laptev, I. Towards reliable object detection in noisy images. Pattern Recognit. Image Anal.
2017, 27, 713–722. [CrossRef]

4. Hasan, M.; El-Sakka, M. Improved BM3D image denoising using SSIM-optimized Wiener filter. EURASIP J.
Image Video Process. 2018, 2018, 25 . [CrossRef] [PubMed]

5. Song, Y.; Zhu, Y.; Du, X. Dynamic Residual Dense Network for Image Denoising. Sensors 2019, 19, 3809.
[CrossRef] [PubMed]

6. Lefkimmiatis, S. Universal denoising networks: A aovel CNN architecture for image denoising.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 3204–3213.

7. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the IEEE
International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846.

8. Choi, S.H.; Cho, J.; Tai, Y.M.; Lee, S.W. A parallel camera image signal processor for SIMD architecture.
EURASIP J. Image Video Process. 2016, 2016, 29. [CrossRef]

9. Petreto, A.; Romera, T.; Lemaitre, F.; Masliah, I.; Gaillard, B.; Bouyer, M.; Meunier, Q.L.; Lacassagne, L.
A new real-time embedded video denoising algorithm. In Proceedings of the Conference on Design and
Architectures for Signal and Image Processing, Montreal, QC, Canada, 16–18 October 2019; pp. 47–52.

10. Tseng, Y.; Hsu, P.; Chang, T. A 124 Mpixels/s VLSI design for histogram-based joint bilateral filtering.
IEEE Trans. Image Process. 2011, 20, 3231–3241. [CrossRef] [PubMed]

11. Dutta, H.; Hannig, F.; Teich, J.; Heigl, B.; Hornegger, H. A design methodology for hardware acceleration
of adaptive filter algorithms in image processing. In Proceedings of the IEEE International Conference on
Application-specific Systems, Architectures and Processors, Steamboat Springs, CO, USA, 11–13 September
2006; pp. 331–340.

12. Gabiger-Rose, A.; Kube, M.; Weigel, R.; Rose, R. An FPGA-based fully synchronized design of a bilateral
filter for real-time image denoising. IEEE Trans. Ind. Electron. 2014, 61, 4093–4104. [CrossRef]

13. Dabhade, S.D.; Rathna, G.N.; Chaudhury, K.N. A Reconfigurable and Scalable FPGA Architecture for
Bilateral Filtering. IEEE Trans. Ind. Electron. 2018, 65, 1459–1469. [CrossRef]

14. Tsin, Y.; Ramesh, V.; Kanade, T. Statistical calibration of CCD imaging process. In Proceedings of the IEEE
International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 480–487.

15. Hwang, Y.; Kim, J.; Kweon, I.S. Difference-based image noise modeling using skellam Distribution.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1329–1341. [CrossRef] [PubMed]

16. Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests,
P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350.
[CrossRef] [PubMed]

17. Peng, H.; Rao, R. Bilateral kernel parameter optimization by risk minimization. In Proceedings of the IEEE
International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 3293–3296.

18. Kishan, H.; Seelamantula, C.S. Optimal parameter selection for bilateral filters using Poisson Unbiased Risk
Estimate. In Proceedings of the IEEE International Conference on Image Processing, Orlando, FL, USA,
30 September–3 October 2012; pp. 121–124.

19. Chen, Y.; Shu, Y. Optimization of bilateral filter parameters via chi-square unbiased risk estimate. IEEE Signal
Process. Lett. 2014, 21, 97–100. [CrossRef]

20. Luisier, F.; Wolfe, P.J. Chi-square unbiased risk estimate for denoising magnitude MR images. In Proceedings
of the IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011;
pp. 1561–1564,

21. Chang, H.H.; Lin, Y.J.; Zhuang, A. An automatic parameter decision system of bilateral filtering with
GPU-Based acceleration for brain MR images. J. Digit. Imaging 2018, 32, 148–161. [CrossRef]

http://dx.doi.org/10.1016/j.inffus.2019.09.003
http://dx.doi.org/10.1109/TIP.2020.2964518
http://www.ncbi.nlm.nih.gov/pubmed/31944972
http://dx.doi.org/10.1134/S1054661817040149
http://dx.doi.org/10.1186/s13640-018-0264-z
http://www.ncbi.nlm.nih.gov/pubmed/31258615
http://dx.doi.org/10.3390/s19173809
http://www.ncbi.nlm.nih.gov/pubmed/31484432
http://dx.doi.org/10.1186/s13640-016-0137-2
http://dx.doi.org/10.1109/TIP.2011.2159226
http://www.ncbi.nlm.nih.gov/pubmed/21659030
http://dx.doi.org/10.1109/TIE.2013.2284133
http://dx.doi.org/10.1109/TIE.2017.2726960
http://dx.doi.org/10.1109/TPAMI.2011.224
http://www.ncbi.nlm.nih.gov/pubmed/22144520
http://dx.doi.org/10.1007/s10654-016-0149-3
http://www.ncbi.nlm.nih.gov/pubmed/27209009
http://dx.doi.org/10.1109/LSP.2013.2293592
http://dx.doi.org/10.1007/s10278-018-0110-y


Sensors 2020, 20, 4722 15 of 15

22. Porikli, F. Constant time O(1) bilateral filtering. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Anchorage, Alaska, 23–28 June 2008; pp. 1–8.

23. Chaudhury, K.N.; Dabhade, S.D. Fast and provably accurate bilateral filtering. IEEE Trans. Image Process.
2016, 25, 2519–2528. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2016.2548363
http://www.ncbi.nlm.nih.gov/pubmed/27093722
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Optimal Parameter Selection of Bilateral Filter
	VLSI Design of Bilateral Filter

	Proposed Approach
	Noise-Aware Bilateral Filter (NABF)
	Binary Noise-Aware Bilateral Filter (B-NABF)

	VLSI Design
	Main Controller
	Binary Range Kernel Unit
	KC Memory & KC Interpolation Unit
	Spatial Kernel Unit

	Experimental Results
	Image Quality by Denoising
	Implementation Result and Comparison
	System Configuration for Measurement
	Comparison with Recent VLSI Designs of Bilateral Filter
	Integration of Implemented VLSI Design and Image Sensor


	Conclusions
	References

