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Abstract

Explosively emerging SARS-CoV-2 variants challenge current nomenclature schemes based on genetic diversity and biological
significance. Genomic composition-based machine learning methods have recently performed well in identifying phenotype–
genotype relationships. We introduced a framework involving dinucleotide (DNT) composition representation (DCR) to parse the
general human adaptation of RNA viruses and applied a three-dimensional convolutional neural network (3D CNN) analysis to learn
the human adaptation of other existing coronaviruses (CoVs) and predict the adaptation of SARS-CoV-2 variants of concern (VOCs).
A markedly separable, linear DCR distribution was observed in two major genes—receptor-binding glycoprotein and RNA-dependent
RNA polymerase (RdRp)—of six families of single-stranded (ssRNA) viruses. Additionally, there was a general host-specific distribution
of both the spike proteins and RdRps of CoVs. The 3D CNN based on spike DCR predicted a dominant type II adaptation of most
Beta, Delta and Omicron VOCs, with high transmissibility and low pathogenicity. Type I adaptation with opposite transmissibility
and pathogenicity was predicted for SARS-CoV-2 Alpha VOCs (77%) and Kappa variants of interest (58%). The identified adaptive
determinants included D1118H and A570D mutations and local DNTs. Thus, the 3D CNN model based on DCR features predicts SARS-
CoV-2, a major type II human adaptation and is qualified to predict variant adaptation in real time, facilitating the risk-assessment
of emerging SARS-CoV-2 variants and COVID-19 control.

Keywords: dinucleotide composition representation, 3D convolutional neural networks, SARS-CoV-2, variants of concern, human
adaptation

Introduction
The sporadic zoonotic transfer of a pathogen may cause
human disease and even death but does not necessarily
cause sustained human-to-human transmissibility
(e.g. Ebola and Hanta viruses); only human-adapted
pathogens, such as human-transmissible coronaviruses
(CoVs) and influenza A viruses (IAVs), cause sustained
transmission in populations and pandemics [1, 2].
Human-infective, bat-originating CoVs [3], such as the
highly pathogenic severe acute respiratory syndrome
(SARS) and the Middle East respiratory syndrome (MERS)

CoVs, only resulted in regional, passing outbreaks [4],
indicating limited human adaptation. In contrast, HCoV-
229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1 are
globally transmissible, causing 15–30% of common cold
cases every year [5] thus, they are more human-adapted
(type II human adaptation). Taking the transmissibility
and pathogenicity of CoVs into account, we defined two
types of human adaptation: type I adaptation (SARS
and MERS), characterized by higher pathogenicity and
lower transmissibility in the population; and type II
adaptation (HCoV-229E, HCoV-NL63, HCoV-OC43 and
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HCoV-HKU1), characterized by lower pathogenicity but
higher transmissibility. Since 2019, SARS-CoV-2 [6] has
caused a global COVID-19 pandemic (https://covid19.
who.int) characterized by high human adaptation
[7–11]. Emerging SARS-CoV-2 variants have presented
more worrisome epidemic-promoting advantages
[7, 10–12], possibly due to faster optimization under
vaccination selection pressure [13, 14]. Thus, there is a
need to address fundamental questions related to CoV
adaptation and discriminate adaptive types of emerging
SARS-CoV-2 variants.

Two current nomenclature schemes facilitate the
recognition of epidemiological outbreak links based on
genetic diversity [15], and reliably indicate the biological
significance of specific variants, which are designated
as either variant of interest (VOI) or variant of concern
(VOC), based on the expert monitoring of significant
amino acid substitutions by the WHO (https://www.who.
int/en/activities/tracking-SARS-CoV-2-variants/). How-
ever, neither scheme can rapidly assess the risk of any
emerging SARS-CoV-2 variant. Research has indicated a
contribution of specialized virus–host receptor binding
and avidity to interspecies transmission, mainly related
to the CoV spike (S) glycoprotein [16]. Many VOC
mutations in SARS-CoV-2 S have been shown to promote
transmission, enhance receptor binding affinity [9] and
antagonize immune escape [11]. However, these ex post-
experimental methods are not qualified to assess the
adaptation of each SARS-CoV-2 variant in real time.

Sequence compositions of nucleic acids and proteins
are significantly associated with genome evolution and
adaptation across all kingdoms of life [17]. Machine/deep
learning methods have worked well in predicting viral
hosts based on the amino acid [18] or dinucleotide
(DNT) [19] composition in the sequence alignment of
large datasets [20]. Moreover, language representation
methods have learned the language of viral evolution
and escape based on represented amino acids [21] or
statistically represented proteins [22]. Here, we aimed to
design a novel method of dinucleotide composition rep-
resentation (DCR) to learn the general human adaptation
of CoVs and build an adaptation predictor for SARS-CoV-
2 variants. DCR was first assessed as a classification
trait based on the two major viral proteins—receptor-
binding glycoprotein (Gp; also named as S for CoVs)
and RNA-dependent RNA polymerase (RdRp)—of six
single-stranded (ssRNA) orders/families. We evaluated
the possible general adaptation of both Gp and RdRp
and the representativeness of DCR as a general genomic
nucleotide composition trait for DNTs, codons, codon
pairs and amino acids (AA). Finally, we built a three-
dimensional convolutional neural network (3D-CNN)
predictor based on DCR to predict the human adaptation
of SARS-CoV-2 variants. Our study provides a novel,
simplified and reliable genome representation as well as
a framework to discern the general human adaptation of
SARS-CoV-2, CoVs in general and other emerging viruses.

Results
Pipeline of DCR and 3D-CNN prediction
As shown in the architecture diagram (Figure 1), six
ssRNA virus families, Bunyaviridae, Orthomyxoviridae,
Filoviridae, Flaviviridae, Togaviridae and Coronaviridae,
were included in the analysis of the general separability
and linearity of the nucleotide d-traits of DNT, DCR, AA,
codons and codon pairs in the viral genome (Figure 1A).
Gp and RdRp were targeted to decompose these traits.
Coronaviridae sequences, excluding SARS-CoV-2, were
randomly split into training and validation datasets
to build an adaptation classifier to predict the human
adaptation of the test dataset of SARS-CoV-2 variants.
The DCR algorithm was a fine-grained version of
compositional DNT embedding [19], representing the
local nucleotide context in a sequence (Figure 1B). Six
channels of DCR were set to represent six types of DNT
pairs (Figure 1C). The unsupervised projection methods
of t-distributed stochastic neighbour embedding (t-
SNE) [23] and principal component analysis (PCA) [24]
were utilized to learn the multigrained separability and
linearity of randomly sampled CoVs and other RNA
viruses (Figure 1D). A 3D-CNN framework for three-
category adaptation classification—inadaptation, type
I human adaptation and type II human adaptation—
was built with three layers of convolution + ReLU, two
average pooling layers + one maximum pooling layer,
two fully connected layers and a final softmax layer,
to predict the human adaptation of each SARS-CoV-2
variant (Figure 1E). Temporal and special shifts of SARS-
CoV-2 adaptation were further analysed (Figure 1F); DCR
features that are important for the human adaptation of
SARS-CoV-2 were assessed by orthogonality in the DCR
vector (Figure 1G). Synthetic Minority Over-sampling
Technique resampling was implemented to rectify the
amount of imbalance among different host-originated
samples (Additional file 1: Supplementary Tables S1 and
S2, Additional file 2: Supplementary Figure S1 available
online at http://bib.oxfordjournals.org/).

General separability and linearity of the DCR
of ssRNA viruses
To assess the host adaptation of coronaviruses as well
as the possibility of predicting human adaptation based
on DCR, we first analysed the general separability and
linearity of DNT, DCR and other compositional traits in
the six families of ssRNA viruses. The two-dimensional t-
SNE or PCA projection of these features of 200 randomly
sampled Gp and RdRp sequences (Supplementary Table
S2 available online at http://bib.oxfordjournals.org/)
indicated clear interfamily separation of Gp among the
six virus families in the two reduced t-SNE components
of the compositional DNT (Figure 2A) or DCR (Figure 2A)
of Gp. Such interviridae separation was generally
observed in the reduced t-SNE components of other
compositional traits and in the reduced-PCA components
of the compositional DNTs, DCRs, codons, codon pairs
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Figure 1. Workflow of nucleotide composition representation and adaptation prediction. The workflow was designed from the top to bottom as follows:
data clearing (A), demonstration of the DCR algorithm (B) and data dimension settings (C) unsupervised learning of the separability, linearity and general
adaptation of ssRNA viruses (D), design of the 3D-CNN model (E), adaptation prediction (F) and assessment of DCR features for the human adaptation
of SARS-CoV-2 (G).

and AA of Gp (Additional file 2: Supplementary Figure
S2 available online at http://bib.oxfordjournals.org/)
and RdRp (Additional file 2: Supplementary Figure
S3 available online at http://bib.oxfordjournals.org/).
Further evaluation of data linearity was performed to
reflect its continuity and differentiability, and support
the machine/deep learning classification of these
samples [25]. The linearity feature was designed as
the ratio of the data range of PCA1 to the data range
of PCA2 based on the orthogonal distribution between
PCA1 and PCA2. A higher relative linear distribution
(linearity value of PCA1/PCA2 > 1) was obtained for DNTs,
codons and DCRs of the six families of viruses for both
RdRp (Figure 2C) and Gp (Figure 2D). In particular, DCR
linearity was highest for Gp and the second highest for
RdRp among the CoVs, indicating an obvious intraviridae
linear distribution. A regression plot reconfirmed the

linearity of DNTs (Figure 2E) and DCRs (Figure 2F) for Gp
between affined PCA2 and affined PCA1, with a PCA1-
PCA2 R2 value as high as 0.51 for the DCR of CoV Gp S.
Similar linear regression was observed to varying degrees
for DNTs, DCRs, codons, codon pairs and AA of both
RdRp (Additional file 2: Supplementary Figure S4A–E
available online at http://bib.oxfordjournals.org/) and Gp
(Additional file 2: Supplementary Figure S4F–J available
online at http://bib.oxfordjournals.org/). More detailed
analysis showed a larger distribution interval within CoV
S sequences with the labels of seven types of human-
infective CoVs and other CoV-infected hosts for the five
traits of RdRp (Additional file 2: Supplementary Figure
S5A–E available online at http://bib.oxfordjournals.
org/) and S (Additional file 2: Supplementary Figure
S5F–J available online at http://bib.oxfordjournals.org/).
Linearity was also observed in these traits in both genes,
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particularly for the DCR or codon pairs of S for most
CoVs (Additional file 2: Supplementary Figure S5F and I
available online at http://bib.oxfordjournals.org/). Taken
together, the results indicated a general separability
and linearity of the DCR, other compositional traits of
coronaviruses and other RNA virus families.

General host adaptation of the DCR
of coronavirus proteins
Host-specific or host adaptation-related compositional
features in the genome have been observed for various
types of RNA viruses at both the nucleic acid [19] and
protein levels [18, 21]. We assumed that a genomic com-
positional adaptation feature would be generally pro-
jected in all coding regions or genes of a virus if it
existed. Surprisingly, the PCA1 values of DNTs, DCRs
(Figure 3A and B), codons and codon pairs (Additional file
2: Supplementary Figure S6A and B available online at
http://bib.oxfordjournals.org/) of S and RdRp were sim-
ilarly distributed in a two-dimensional view, with clear
separation of coronaviruses and different labels of hosts
or lineages for sampled human coronaviruses, but this
was not observed for the AA trait (Figure 3C). A general,
strong and positive Spearman correlation was observed
in the PCA-reduced component of DNTs (Figure 3A) and
DCRs (Figure 3B) between CoV S and RdRp among five
randomly sampled coronaviruses (Figure 3D), but this
was not found for AA (Figure 3C). A similar correlation
was observed for the traits of codons and codon pairs
(Figure 3D). Additionally, the representativeness of the
DCR for the other four traits was evaluated; using the
R2 score for the linear regression of other traits against
DCR, it was shown that DNTs, codons, codon pairs and
AA were highly dependent on DCRs for both S and RdRp
(Figure 3E and F). Thus, we selected DCR as the most
representative compositional feature for parsing host
adaptation in the coronavirus genome.

DCR-based 3D-CNN prediction of the human
adaptation of SARS-CoV-2 VOCs
Based on the separability and linearity in the DCR of
S for CoVs and the representativeness of the DCR of
genomic compositional traits, we built a CNN classifier
to identify human adaptation within the S genes (three
adaptation labels, 1, 2 and 0, indicating type I, type
II adaptation and inadaptive, respectively) of SARS-
CoV-2 variants based on 3D DCRs (Figure 1C). CoVs
with type I adaptation (SARS and MERS), CoVs with
type II adaptation (HCoV-229E, HCoV-NL63, HCoV-
OC43 and HCoV-HKU1) and inadaptive CoVs (Suiformes
CoVs) were randomly sampled to learn the model
parameters. To visualize the learning curves, 15, 40
or 50 training epochs were performed. Higher error
rates were indicated by lower values of the confusion
matrix (Figure 4A) and the receiver operating charac-
teristic (ROC)–area under the curve (AUC)-ROC ratio
(Figure 4B) after 15 epochs, along with a sustained
high-training loss value (Figure 4C). The pair plotting
of PCA1 and PCA2 reduced via the PCA method from

768 fully connected layers only indicated a separation
between the S samples with type II adaptation and
those with type I adaptation/inadaptation (Figure 4D).
Learning with 40 epochs improved model performance,
with a lower error rate for the confusion matrix and
ROC/AUC-ROC curve (Figure 4E and F), and a significant
decline in training loss (Figure 4G), but without clear
separation between inadaptation and type I adap-
tation (Figure 4H). A balanced training result of the
separation among three adaptation types (Figure 4I–K)
indicated separation among three types of reduced
data and the theoretical temporality of inadaptation,
type I adaptation and type II adaptation (Figure 4L).
Therefore, the trained CNN classifier obtained after
50 epochs was utilized to predict the adaptation of
SARS-CoV-2.

Human adaptation was predicted with the 3D-CNN
model based on DCRs. All 1 457 628 SARS-CoV-2 S
sequences were predicted to show human adaptation
of either type I (39.04%) or type II (60.96%). A total of
1 376 088 of the S dataset sequences with complete
collection-date information were analysed for temporal
and special adaptation shifts. After the observation of
a number of sporadic S sequences per month up to
November 2020 worldwide, a steep rise in sequences
with type I adaptation appeared as of December 2020,
peaking at 145 851 in March 2021, predominantly in
Europe and North America (Figure 5A). The number of
sequences with type II adaptation rose to 32 392 in March
2020, which were widely observed in North America,
Europe, Asia and Oceania. This number remained
fairly steady until September 2020 (approximately 30
000 sequences per month), followed by a steep rising
period between October 2020 and March 2021, mainly
in North America and Europe (Figure 5B). Moreover,
sequences with type I adaptation with ratios ranging
from 0.15 to 0.44 were labelled VOCs/VOIs from January
to May 2020. Starting from October 2020, approximately
10–50% of these sequences were labelled VOCs/VOIs
until June 2021. Beginning in December 2020, this set
of sequences was increasingly labelled as VOCs/VOIs
(Figure 5C). A total of 67% of VOC/VOI sequences—
mainly Alpha and Kappa—were predicted to show type
I adaptation, while 91% of VOIs and 95% of variants
other than VOIs and VOCs were predicted to show
type II adaptation, indicating consistency in the SARS-
CoV-2 risk assessment of the VOC label and type I
adaptation (Figure 5D). The differences between the
other proposed dynamic nomenclature and our model
were also analysed. Our results showed that 77% of
alpha and 58% of kappa sequences were predicted to
show type I adaptation; 88–100% of beta, delta and other
sequences were predicted to show type II adaptation
(Figure 5E). Additionally, the difference in the probability
of predicting type I and II adaptation (�-probability,
absolute value of probability I minus probability II) was
much lower for the S samples showing type I adaptation
than for the type II samples (Figure 5F). The sampled
months of February 2020, December 2020 and June
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Figure 2. Projection of nucleotide compositional traits with t-SNE and PCA. Plot of two components reduced by t-SNE from 48 DNT features (A) or 1536
DCR features (B) for six ssRNA virus families, DCR and codon pairs of RdRp (C) or Gp (D) for the six virus families. The plot represents PCA1/PCA2 ratio
of the absolute difference value for truncated data between the 20% and 80% quantiles. PCA1 and PCA2 were affined in space with the data point of
least PCA1 value as the coordinate origin and were then calculated for simple linear regression for RdRp (E) and Gp (F), respectively.

2021 showed a significant temporal increase in the �-
probability for the type II samples, compared to the
�-probability for the type I samples (Figure 5F). Taken
together, the DCR-based 3D-CNN results predicted a
dominant type I human adaptation of SARS-CoV-2 Alpha
VOCs, and a dominant type II human adaptation of Beta,
Delta and other SARS-CoV-2 variants.

Important genomic features of SARS-CoV-2 VOCs
The AA mutations of each SARS-CoV-2 variant have been
listed by GISAID (https://www.gisaid.org/). We aimed to
analyse the differences in the DNT of each nucleotide
site in the S sequence between VOCs and other VOC and
VOI variants. A dot product was generated for each DNT
vector between the two groups of variants (Additional

https://www.gisaid.org/
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Figure 3. General adaptation and representativeness of DCR for nucleotide compositional traits of CoVs. (A–C) Simple linear regression between the PCA1
component reduced from the features of RdRp and S for the trait of DNT (A), DCR (B) or AA (C) for randomly sampled CoVs. (D) Spearman correlation
of the PCA1 values of RdRp and Spike for all five compositional traits for five sampled CoVs. (E and F) Representativeness was calculated as regression
dependence on each of the five traits based on the remaining four traits of CoV RdRp (E) and Spike (F).

file 1: Supplementary Tables S3 and S4). A list of 23
significantly different nucleotide sites was obtained with
a normalized dot product value less than 0.1 (Figure 6A)
or among all sites (Additional file 1: Supplementary Table
S5 available online at http://bib.oxfordjournals.org/). The
numbers for each type of DNTs in both groups were
plotted and marked DNT bias was indicated for each
site (Figure 6B). Biased DNTs encoding AAs mutations
revealed the dominant mutations D1118H, A570D, P681H,
S982A, T716I and N501Y (Figure 6C). Thus, the 3D-CNN
based on DCRs could discriminate the differential DNTs,
codons or AAs of sequences with both types of adapta-
tion labels.

Adaptation prediction of SARS-CoV-2 omicron
VOCs
The most recent VOC of SARS-CoV-2 B.1.1.529 (Omi-
cron) was first reported to the WHO by South Africa
on 24 November 2021 (https://www.who.int/news/
item/26-11-2021-classification-of-omicron-(b.1.1.529)-
sars-cov-2-variant-of-concern) [26]. Little is known
about the transmissibility and pathogenicity of Omi-
cron, which contains many mutations. We performed
adaptation prediction of Omicron VOCs to assess their
potential transmissibility. A total of 148 of 157 total

Omicron S sequences of high quality reported up to 6
December 2021, without any ambiguous nucleotides,
were predicted to show type II adaptation (94.27%;
Figure 7A; Additional file 1: Supplementary Table S6
available online at http://bib.oxfordjournals.org/). The
Omicron VOC with type II adaptation was first col-
lected (high-quality sequence) on 9 November 2021, in
South Africa (HCoV-19/South Africa/NICD-N21437/2021,
EPI_ISL_6913991) and has since been found worldwide
(Figure 7B). The margin score of type II over type I
was only 0.0072, although the score difference was
statistically significant (Figure 7C).

Discussion
Numerous artificial intelligence frameworks have been
developed in different areas of biological inquiry to
predict phenotypes from genomic traits. However, the
causal relationship between genotype and phenotype
has not been seriously considered as a key point for
predictor building. Thus, it is vital to find interpretable
traits in the genome for phenotype prediction. Several
models have been utilized to predict SARS-CoV-2 variants
based on viral protein sequences, with a particular
focus on key mutant AAs related to receptor binding
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Figure 4. Performance of a CNN predictor based on DCR for human adaptation prediction. Confusion matrices (A), ROC (B), temporal training loss for
training steps (C) and the pair plot of PCA1 and PCA2 of the full connection layer after the last convolution and pooling of CoV samples (D) for 15, 40
(E–H) or 50 (I–L) training epochs. The training loss was plotted as the loss value set of all steps and its moving average value.

[27–29]. However, these types of models easily fall
into the trap of overfitting and are not suitable for
predictions of future possible CoVs other than SARS-
CoV-2. The present study aimed to build a more robust
model based on general genome features at the viral
RNA level. Adaptive determinants have recently been
widely identified at the nucleic acid level (genomic
DNA,RNA or mRNA) among pathogens such as parasites

[30], bacteria [31] and viruses [18, 19, 32, 33]. The
dynamic homeostasis of genomic RNA sequences shapes
the transcription, translation and decay of mRNA
[34], particularly for RNA viruses. These determinants
regulate the replication of pathogens in hosts via the
machinery related to codon usage bias [29–32], the
dinucleotide composition [19, 35], tRNA abundance
[31, 33], mRNA decay [36], the translation elongation
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Figure 5. Prediction of the adaptation of SARS-CoV-2 by CNN based on DCR. (A–C) Monthly numbers from January 2020 to June 2021 of SARS-CoV-2
variants of type I (A) or type II (B) human adaptation in each continent, or the ratio of VOCs/VOIs to total variants of type I or type II adaptation (C).
(D) Confusion matrix of VOCs, VOIs and other variants under WHO nomenclature scheme and the variants with type I and type II human adaptation,
predicted by the DCR-based 3D-CNN. (E) Numbers of VOC/VOI variants with type I or type II human adaptation, the ratio of type II to total variants was
annotated, respectively on each column. (F) Temporary net probability (difference for the two probability value) for the two types of variant.

speed [37] and translation efficiency [38]. Thus, the RNA
sequence-based nucleotide composition is biologically
meaningful and is closely related to the causal inference
of virus phenotype. Family-, genus-, species- and even
variant-specific determinants of the host adaptation
of SARS-CoV-2 [9, 11] have been explored. Sporadic
studies have described significant features of the CpG
dinucleotides [39, 40] or codon usages [41] of SARS-CoV-2.
Natural language processing methods have recently been
shown to perform well in genomic sequence embedding
[42, 43], particularly in the identification of contextual
meaning in viral genomes. DNA viruses are another
group of viruses posing a potential threat to human
population. It is not clear if adaptation also occurs
in DNA virus genomes. However, the markedly lower
diversity among DNA virus genes poses a challenge in
the modulation of their adaptation space.

In response to questions about CoV adaptation, the
present study focused on the identification of a general
genomic trait of DCR at the viral RNA level in two major
genes, Gp and RdRp, of ssRNA viruses. General separabil-
ity and linearity of DCR and other compositional traits
were shown among the six virus families. Interviridae
separation and intraviridae clustering of Gp or RdRp
samples were observed. The continuity and differentia-
bility of these traits supported the potential of these for
machine/deep learning classification [25]. A high linear
distribution of each of these traits was also found for
both genes among the six virus families, particularly
in DCR. Moreover, we confirmed the assumed general

adaptation of DCR and other compositional traits, with
a strong Gp–RdRp correlation in DCR and a high repre-
sentativeness value of DCR against any of the other four
types of compositional traits. Thus, DCR played its role
in genomic sequence embedding well, representing local
contextual semantics to project genes in a nucleotide
compositional space with the same vector length, with
a higher sequence length comparability.

The current WHO nomenclature scheme, which is
based on the use of significant AA substitutions to
facilitate the risk assessment of SARS-CoV-2 variants,
is hysteretic due to the monitoring period. As of June
2021, 43.11% of SARS-CoV-2 samples in GISAID were not
labelled, although D614G, N501Y and other mutations
were widely distributed among these variants. Based
on biologically interpretable meaning, the DCR-based
3D-CNN predictor was promising for the prediction of
CoV adaptation. The SARS-CoV-2-excluded training data,
after intra-DCR-type convolution without inter-DCR-
type convolution, clearly classified CoVs as showing
inadaptation, type I or type II human adaptation, as
validated by randomly sampled validation data. Sur-
prisingly, 60.96% of SARS-CoV-2 variants recorded since
December 2019 were predicted to show type II human
adaptation, although SARS-CoV-2 is phylogenetically
most closely related to SARS CoVs [6, 44], which are
defined as showing type I human adaptation. According
to the WHO nomenclature scheme, SARS-CoV-2 VOCs
pose a greater pandemic risk. Interestingly, the DCR-
based 3D-CNN predictor recognized 67% of VOCs/VOIs
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Figure 6. DNT, Codons and AAs important for type I human adaptation
of SARS-CoV-2 VOCs. (A) Normalized dot product value of the first 25 AA
sites markedly different between type I SARS-CoV-2 VOCs and variants
other than VOCs/VOIs of type II human adaptation. (B) Logo plot of the
25 sorted DNTs markedly different between the two groups of SARS-CoV-
2 variants (above and below x axis, respectively; {TT: d, TC: e, TA: f, TG:
h, T-: -, CT: i, CC: k, CA: l, CG: m, C-: -, AT: n, AC: p, AA: q, AG: r, A-: -, GT:
s, GC: v, GA: w, GG: y, G-: -, −T: -, -C: -, −A: -, −G: -, —: -}). (C) Mutation of
AAs and codons in the abovementioned 25 corresponding sites for type I
human adaptation.

(mainly Alpha and Kappa) as showing type I adaptation
but recognized 91% VOIs and 95% of variants other than
VOCs and VOIs as showing type II adaptation. According
to our predictions, it is reasonable to deduce that SARS-
CoV-2 VOCs present relatively higher pathogenicity,
while most SARS-CoV-2 variants, SARS-CoV-2 VOIs
and other variants exhibit typical ‘common cold’-like
CoV adaptation. Considering the obvious timeliness
advantage, DCR-based 3D-CNN shows strong potential
to assess the risk of any emerging variant with novel
mutations in real time, without a monitoring period.
Most variants with type I adaptation were found from
January to April 2021 in Europe and America, whereas the
variants with type II adaptation were distributed over a
wider temporal and spatial range. Additionally, there was
only a marginal probability advantage of these variants
exhibiting type I human adaptation, while a markedly
higher probability advantage was observed for type II
adaptation. Taken together, the data indicate that the
SARS-CoV-2 variant population is mainly characterized

by higher transmissibility and lower pathogenicity
than other ‘common cold’-type CoVs. This model also
predicted the most recent Omicron VOC to show type II
adaptation, indicating potentially high transmissibility
and low pathogenicity of this new VOC member.

In addition, since compositional DCR or DNT traits
could not identify the specific determinant mutations
contributing to type I or II adaptation, it was reasonable
to perform a comparative analysis of different features
of the two groups of variants. Dot products for each pair
of DNT vectors at each nucleotide site identified the
significantly different mutations D1118H, A570D, P681H,
S982A, T716I and N501Y, implying their contribution to
SARS-CoV-2 VOCs and other variants with type I adapta-
tion. Such performance in discriminating key mutations
and classifying SARS-CoV-2 variants based on the general
CoV-adaptive DCR-based predictor is encouraging, as it
implies the potential to assess the risk of emerging CoVs
by predicting adaptation.

Conclusions
In summary, our study provides a strategy for parsing
the general genomic traits of RNA viruses and accord-
ingly building a deep-learning predictor to assess the risk
of emerging viruses. The DCR-based 3D-CNN predictor
provides real-time predictions of emerging SARS-CoV-2
variants, facilitating the risk assessment of SARS-CoV-2
variants and the control of the current COVID-19 pan-
demic.

Methods
Data preprocessing and genomic compositional
trait parsing of ssRNA viruses
Full sequences of six families/orders of RNA viruses were
parsed from GenBank files with the script DCR_scripts.
Data_parsing (https://github.com/Jamalijama/Dinucleo
tide-Composition-Representation-DCR-) or randomly
sampled from past influenza viruses (Orthomyxoviridae)
[19, 45]. Detailed information on all six families of viruses
involved in this study was provided under the environ-
mental variable Surpporting_data_Full_DCR_6Viridae
under the data of DCR_scripts. CoV coding sequences
were labelled with host information of Primates, Chi-
roptera, Carnivora, Artiodactyla or the Suiformes sub-
order for viruses originating from humans, bats, cani-
nes/felines, bovines and other Artiodactyla [46–48]
or swine, respectively. Sequence length filtering was
performed with down and up thresholds of 27 000 and
32 000 bp, respectively. After sequence length filtering,
sequences were counted for compositional DCR, DNT,
AAs, codons and codon pairs for each sequence sample
with the script DCR_scripts.DCR_counting_sampling.
For each compositional trait, every type of feature was
calculated as a frequency relative to the total. DNT and
DCR were counted depending on each nucleotide in a
codon. Each of the 16 types of DNTs [19] for nucleotide

https://github.com/Jamalijama/Dinucleotide-Composition-Representation-DCR-
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Figure 7. Human adaptation of SARS-CoV-2 Omicron VOCs. (A) Numbers and ratio of SARS-CoV-2 Omicron VOCs with type I and type II adaptation. (B)
World distribution of Omicron VOCs with type II adaptation. (C) Prediction score for type I and type II adaptation (score for the label of inadaptive not
shown) of Omicron VOCs with type II adaptation.

(nt) 1, 2 or 3 of a codon was counted as follows:

Freq
(
DNTij

) =
∑(

DNTj
)

∑16
i=1 DNTj

, i = 1 to 16 for DNT1 − 16, j

= 1 to 3 for nt1–3 in codon

DCR methods were designed to embed contextual
codon nucleotide-dependent DNTs into a compositional
space as three types of paired DNTs at the meta position,
with a starting site for the first DNT of 1, 2 or 3 in the
codon, and the other three types of paired DNTs at
the ortho position (one nucleotide apart). The former
DCR set represented the tetranucleotide with its first
nucleotide starting from codon site 1, 2 or 3. The last
DCR set represented two pairs of DNTs starting at site
1 or 2 in two neighbouring codons and the bridge DNT
of the two neighbouring codons. DCR was counted as a
frequency value as follows:

Freq (DCRn, m) =
∑

DCRn, m∑256
m=1 DCRn

, n = 1 to 6 for DCR set

1 − 6, m = 1 to 256 for DCR1 − 256

The composition of each AA, codon or codon pair
was counted as a frequency value for the 20 types
of AAs, 64 types of codons and 3721 types of codon
pairs (61 paired codons without the three stop codons).
Five compositional traits of each sequence were cal-
culated with the script under the environment vari-
able of DCR_scripts/DCR_counting_sampling, according
to the GitHub script document (https://github.com/
Jamalijama/Dinucleotide-Composition-Representation-

DCR-). Two hundred Gp and RdRp samples of compo-
sition data were randomly sampled with the sampling
script.

Unsupervised learning of DCR and other
compositional traits
PCA and t-SNE were performed to observe the distri-
bution of compositional traits. Two components (PCA1
and PCA2 or t-SNE1 and t-SNE2) were reduced from the
features of 48 DNTs, 1536 DCRs, 20 AA, 64 codons or
3971 codon pairs for Gp or RdRp for the six families of
ssRNA viruses. For correlations between the PCA values
of Gp and RdRp in each of the five traits or between the
PCA values of features between one and any of the other
traits, PCA was performed with one component. Reduced
PCA (PCA1 and PCA2) or t-SNE (t-SNE1 and t-SNE2) values
were visualized with the Python-Seaborn model. Affine
transformation was performed to project PCA1 and PAC2
values in space with a coordinate point of the minimum
PCA1 value of features for each trait and its PCA2.

Affine function : Aff(x) = x − xmin

The general adaptation of the compositional traits in
both CoV genes was evaluated to determine whether
there was a similar feature distribution of a trait between
the two genes. Thus, the reduced PCA1 values for both
S and RdRp were plotted in pairs, with host informa-
tion labelled for each data point. Spearman’s correlation
was used to quantify such adaptation, with five repeats
of randomly sampled data. The representativeness of
DCR for other traits was examined by linear regres-
sion for both RdRp and S genes based on the sampled
data, with the script under the environment variable
of Analysis/DCR_scripts. Analysis details are available

https://github.com/Jamalijama/Dinucleotide-Composition-Representation-DCR
https://github.com/Jamalijama/Dinucleotide-Composition-Representation-DCR
https://github.com/Jamalijama/Dinucleotide-Composition-Representation-DCR
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at GitHub (https://github.com/Jamalijama/Dinucleotide-
Composition-Representation-DCR-).

Model architecture of a 3D-CNN
To avoid the influence of number-imbalance among
sequence samples with different host labels, down- and
up-sampling were performed with the Python scripts
pandas. DataFrame.sample and python imblearn.over_
sampling.SMOTE, respectively. S samples of CoVs (exclud-
ing SARS-CoV-2) were randomly divided into a training-
set for supervised classifier training and a validation-
set for classification validation (test size = 0.3). SARS-
CoV-2 S was subjected to adaptation prediction with
the trained 3D CNN model. Both the training and
validation data were reshaped into a (6, 16, 16) array
with one channel. The 3D CNN was constructed with
three layers of convolution calculations with 8, 16 and
32 out channels, with a stride of one and a padding
of one. A 6 × 16 × 16 matrix was convoluted with a
ReLU function into a flattened vector of 768, which was
activated with a sigmoid function and reduced to a vector
of 192. Finally, the reduced vector was linearized into
three predicted values, and adaptation was predicted
with the function max (value 1, value 2, value 3) for the
adaptation label set of inadaptation, type I adaptation
and type II adaptation. For validation, the host with the
greatest probability was considered the adaptation host.
To validate the performance of the 3D-CNN, confusion
matrices and micro-average ROC curves with AUCs
were drawn [49, 50]. The detailed scripts are under the
variables of 3D_CNN_training and 3D_CNN_predicting of
DCR_scripts.

Sigmoid function : f (x) = 1/
(
1 + e−x)

ReLU function : f (x) = max
(
0, wTx + b

)

Temporal and spatial host adaptation prediction
To assess the temporal and spatial adaptation of SARS-
CoV-2 VOCs, VOIs and other variants, we extracted data
on the collection year and month and continent infor-
mation from the spatial labels of country and area. The
S sequence number of SARS-CoV-2 samples with their
predicted adaptation label (type I or II adaptation) was
temporally and spatially plotted. The ratios of SARS-CoV-
2 samples of VOCs/VOIs and total SARS-CoV-2 variants
were also temporally plotted. A confusion matrix calcu-
lation was performed to compare the adaptation predic-
tions (type I and II adaptation) to the WHO nomenclature
of VOCs, VOIs and other variants. Greek alphabet variants
with a predicted adaptation label were stack plotted with
the ratio of variants showing type II adaptation to the
total annotated variants. Statistics of probability were
calculated for the two types of variant adaptation; the
probability distribution was plotted for the two groups

of samples in the sampling months of February 2020,
August 2020 and April 2021.

Analysis of adaptation-related DNTs and amino
acids
To evaluate the specific DNT or amino acid differences
between the type I and II adaptation groups, all SARS-
CoV-2 S (Gp) cDNA sequences were transformed into
DNT sequences according to a defined transformation
table (Supplementary file ‘DNT_transforming_dict.txt’
available online at http://bib.oxfordjournals.org/) or were
translated to AA sequences. For DNT sequences with
3821 DNTs (the last nucleotide was not transformed for
a cDNA sequence with 3822 nts) or protein sequences
with 1273 amino acids, each DNT/AA was calculated for
each site for sequences with a label of type I or type II
adaptation. A vector with serial 17 (16 types of DNTs and
one deletion sign of ‘-’) or 21 (20 types of DNTs and one
deletion sign of ‘-’), count numbers were normalized with
a normalization function as follows:

f (x) =
(
x − xmin(axis=0)

)
/
(
xmax(axis=0) − xmin(axis=0)

)

To compare the DNT or AA distribution at each site
for the two groups of sequences, a dot product was
calculated for each pair of 3821 DNT counting vectors
or of 1273 amino acid counting vectors for the two
groups of S sequences, and the product value was used
as an index of vector similarity (DNT/AA distribution
similarity). A logo plot of the top 23 significantly different
DNTs was drawn using Logomaker [51] according to
the DNT frequency. Significantly different AAs at the
AA sites corresponding to the 23 DNT sites are also
listed. The scripts are under the environmental variable
DCR_scripts\Feature_importance.

Key Points

• Six families of ssRNA viruses show general separability
and linearity, and both the CoV spike and RdRp genes
show host specificity according to DCR.

• 3D CNNs based on DCR of the spike gene of other CoVs
predict two types of human adaptation of SARS-CoV-2
variants.

• Alpha SARS-CoV-2 VOCs present SARS-CoV-like human
adaptation, while Delta, Beta and Omicron VOCs present
‘common cold’ CoV-like human adaptation.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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