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Proteogenomic characterization of pancreatic
neuroendocrine tumors uncovers hypoxia and immune
signatures in clinically aggressive subtypes

Atsushi Tanaka,1,2,3 Makiko Ogawa,1,2,3 Yihua Zhou,3,4 Yusuke Otani,1,2 Ronald C. Hendrickson,5,7

Matthew M. Miele,5,7 Zhuoning Li,5 David S. Klimstra,3,8 Julia Y. Wang,6 and Michael H. Roehrl1,2,3,9,*
SUMMARY

Pancreatic neuroendocrine tumors (PanNETs) represent well-differentiated endocrine neoplasms with
variable clinical outcomes. Predicting patient outcomes using the current tumor grading system is chal-
lenging. In addition, traditional systemic treatment options for PanNETs, such as somatostatin analogs
or cytotoxic chemotherapies, are very limited. To address these issues, we characterized PanNETs using
integrated proteogenomics and identified four subtypes. Two proteomic subtypes showed high recur-
rence rates, suggesting clinical aggressiveness that was missed by current classification. Hypoxia and in-
flammatory pathways were significantly enriched in the clinically aggressive subtypes. Detailed analyses
revealedmetabolic adaptation via glycolysis upregulation and oxidative phosphorylation downregulation
under hypoxic conditions. Inflammatory signature analysis revealed that immunosuppressive molecules
were enriched in immune hot tumors andmight be immunotherapy targets. In this study,we characterized
clinically aggressive proteomic subtypes of well-differentiated PanNETs and identified candidate
therapeutic targets.

INTRODUCTION

Well-differentiated pancreatic neuroendocrine tumors (PanNETs) are neoplasms originating from endocrine cells of the pancreas and are

characterized by variable metastatic propensity, clinical course, and survival. The annual incidence of these tumors in the United States

has increased from 1.09 to 6.98 per 100,000 individuals in recent years.1–3 The latest WHO histological classification of well-differentiated

PanNETs comprises three histologic grades (grades 1, 2, and 3) based on the tumor proliferation rate as assessed by Ki67 immunohistochem-

istry or mitotic count.4 As this classification scheme has proven prognostic utility,5 and clinical treatment decisions are currently based on this

classification and Tumor-Node-Metastasis (TNM) stage. However, providing appropriate clinical management remains challenging due to

disease heterogeneity, especially in low-grade PanNETs (grades 1/2), and a better patient risk stratification scheme is needed for precise clin-

ical management of patients.

In recent years, significant advances have been made in the genomic characterization of PanNETs. Genome sequencing studies have re-

vealed thatMEN1, DAXX, and ATRX are among the most frequently altered genes in PanNETs and found that poor outcomes correlate with

these alterations.6–8 The mutational landscape also showed that mTOR pathway genes are frequently altered in PanNETs.7,8 Previous tran-

scriptome analyses have identified several transcriptomic subtypes with clinical outcomedifferences.7,9–11 These reported subtypes harbored

characteristic features such as epithelial-mesenchymal transition (EMT) or proliferation. A very limited number of proteomic analyses of

PanNETs have been performed.10,12,13 One of these studies describes transcriptomic subtypes of 35 PanNETs and correlated transcriptomic

subtype features at proteome level.10 However, unsupervised clustering of PanNETs based on mass spectrometry-based proteome, not

transcriptome, and detailed systematic characterization of PanNETs have not been accomplished.

Considering that (i) proteins ultimately drive the biochemistry of disease and that (ii) mRNA abundance alone is a poor predictor of actual

protein amounts in general,14,15 a comprehensive proteomic analysis may be a better strategy to study biological processes of tumor
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Figure 1. Proteogenomic profiling with clinical attributes

(A) Summary plot of the 37 PanNETs with proteogenomic features and clinical attributes. The top 500 proteins with the highest variance are shown in a heatmap.

Gray columns indicate the missing data. Note: recurrence events are only observed in the P2/3 subtypes.

(B) Stage III/IV samples are significantly enriched in the P2/3 subtypes.

(C) Kaplan-Meier curve analyses of recurrence-free survival (RFS) time in present study. P2/3 subtypes show shorter RFS time than P1/4 subtypes, however, the

difference is not statistically significant. Survival analysis plot with all TNM stages and all tumor grades is shown in left-side. Survival analysis plot with all TNM

stages and tumor grades 1 or 2 is shown in right-side.

(D) Volcano plot of the differential expression analysis results between P2/3 and P1/4 subtypes. Gene names with statistical significance (q < 0.05) and two or

more-fold changes are shown. The horizontal dashed line corresponds to q = 0.05.

(E) Pathway enrichment analysis with Hallmark gene set signatures between the clinically aggressive and nonaggressive proteome-subtypes (P2/3 vs. P1/4). All the

significant results are shown.
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aggressiveness. Therefore, we performed integrated proteogenomic analyses of PanNETs to define new proteomic subtypes and features

that determine disease aggressiveness and clinical outcome.
RESULTS

Unsupervised clustering identifies 4 proteome-based PanNET subtypes with outcome differences

We performed liquid chromatography-tandem mass spectrometry (LC-MS) analyses of 37 primary PanNETs vs. (as control comparison

groups) 11 primary pancreatic ductal adenocarcinomas (PDACs) and 9 normal pancreatic tissues. The correlation coefficients between the

pooled samples in each LC-MS run were >0.97 (Figure S1A), showing high reproducibility and robustness of our proteomic analyses. We

quantified 7,447 proteins in the total cohort, with 4,249 proteins quantified in at least 50% of samples of each histologic group (i.e.,

PanNETs, PDACs, or normal pancreatic tissues). Unsupervised uniform manifold approximation and projection (UMAP) of the proteome

data showed a clear separation between PanNETs, PDACs, and normal pancreatic tissues (Figure S1B).

Among the PanNET samples, the well-differentiated PanNET G3 tumor samples formed a distinct proteomic cluster, whereas the

PanNET G1/G2 samples showed no distinct proteomic cluster separation (Figure S1B). To identify proteome-based subtypes of PanNETs,

we performed unsupervised clustering16 and identified four subtypes, P1-P4 (Figures 1A and S1C–S1E). Among these subtypes, PanNET G3

was only observed in P2. Advanced patient cases (TNM stages III or IV) were significantly enriched in P2/3 (11 out of 26) compared to P1/4 (0

out of 11) (Fisher’s exact test, p = 0.0153) (Figure 1B). While MEN1 and ATRXmutations did not show clear enrichment in proteomic subtypes,

DAXXmutations were enriched in P2/P3 (6 out of 26, 23.1%) compared to P1/P4 (0 out of 11, 0.0%). As a marker of clinical aggressiveness, devel-

opment of subsequent tumor recurrence is an important factor for physicians to predict clinically aggressive behavior and to inform adjuvant,

recurrence-preventing treatment. Among 37 PanNETs, 34 PanNETs had both complete surgical resection status and subsequent clinical

follow-up data. Follow-up time ranged from 5.3 to 72.2months (median, 50.0months). Recurrence events were exclusively observed in P2/3 sub-

types (P2/3: 6 out of 24, 25.0%; P1/4: 0 out of 10, 0.0%). Kaplan-Meier analysis showed P2/3 subtypes of all stages had a trend for shorter recur-

rence-free survival (RFS) times than P1/4 subtypes (no recurrence observed in P1/4), regardless of G3 tumor inclusion status (Figure 1C), but this

difference did not reach to statistical significance in the small cohort. Similarly, early stage P2/3 PanNETs of G1/2 showed a trend for shorter RFS

time than P1/4 (Figure S1F). To validate clinical outcome difference and trend of our proteome subtypes by using independent cohort from our

cohort, we analyzed an independent external RNA-seq dataset of 78 well-differentiated PanNETs (EGAS00001005024) with overall survival (OS)

time annotation (RFS data not available for this dataset).10 TNM stage information was available for 69 PanNETs. Although not statistically sig-

nificant, the P2/3 subtypewas enriched in advancedTNMstages (Figure S1G). By Kaplan-Meier analysis, P2/3 cases had a significantly shorterOS

time. Early stage P2/3 PanNETs showed the same OS trend (Figure S1H). These independent results suggest that the P2/3 proteome subtypes

are associatedwith clinically unfavorable outcomes. Basedonour data, it is possible that P2/3may also bean indicator of advanced stagedisease

(TNM III/IV), but a repeated consistent trend for worse RFS andOSoutcomes (although individually not statistically significant) is observed inboth

our proteomic and the external transcriptomic validation cohorts for early stage P2/3 tumors (Figures S1F and S1H).

To better characterize these clinically aggressive proteomic subtypes (P2/3) relative to the less aggressive subtypes (P1/4), we performed

differential protein expression analyses. Comparison between the P2/3 and the P1/4 subtypes revealed 79 significant proteins, including 7 up-

regulated and 21 downregulated proteins with >2-fold change (Figure 1D; Table S1). Signal pathway enrichment analysis of Hallmark gene

sets revealed a hypoxia signature, EMT, and an inflammatory signature enriched in clinically aggressive subtypes (P2/3) (Figure 1E), which is

validated by the EGAS00001005024 dataset (Figure S1I).
Oncogenic somatic mutations and copy number alterations enriched in proteome-subtype P2/3 PanNETs

To elucidate genomic event differences between the P1/4 and P2/3 subtypes, we performed large gene panel sequencing (MSK-IMPACT) of 36

PanNETs and plotted an oncoprint with genes that were reported as recurrent genomic events in a whole genome sequencing cohort.7 Com-

bined genomic analysis of somaticmutations and copy number alterations revealed that the top fivemost frequently altered genes in our cohort

wereMEN1 (53%),DAXX (31%),BRCA1 (17%),ATRX (14%), andTERT (11%), which is concordant withprevious reports (Figure 2A).6–8 These genes

are mainly involved in four pathways: (i) DNA damage repair molecules,MUTYH,CHEK1/2, and BRCA1/2; (ii) chromatin remodeling,MEN1 (his-

tone modification, epigenetic gene regulation, and tumor suppressor), SETD2 (histone methyltransferase), and ARID1A (SW1/SNF complex

member); (iii) telomeremaintenance, TERT,MEN1,DAXX, andATRX; and (iv) regulators of PI3K/AKT/mTOR signaling, PTEN, and TSC1/2, which
iScience 27, 110544, August 16, 2024 3
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Figure 2. Somatic recurrent copy number alteration of PanNETs

(A) Integrated SNV and CNA oncoprint of PanNET based on MSK-IMPACT shows frequent alterations inMEN1 and DAXX. Altered genes are mainly involved in

DNA repair, chromatin remodeling, telomere maintenance, and PI3K/mTOR signaling.

(B) Frequency plot of chromosomal arm-level copy number alteration. * indicates statistical differences between the P1/4 and P2/3 subtypes. Only the 7p and 7q

events show significant differences in frequency between P1/4 and P2/3.

(C) The arm-level event count per patient shows a significant increase in amplification events in the P2/3 subtypes. Although the arm-level event count of deletion

does not show a significant difference, the arm-level event of amplification shows a significantly higher event rate in P2/3 than in P1/4.

(D) Recurrent somatic focal peak analysis result is shown. Chromosomal loci colored in red or blue are shared between the P1/4 and P2/3 subtypes.

(E) KEGGpathway enrichment analysis of cancer-related genes involved in focal peak events.Many oncogenic pathways such as HIF1 signaling are enriched in the

clinically aggressive subtypes (P2/3).
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are tumor suppressors. We also checked the VHL somatic alteration status, as it is a negative regulator of hypoxia signaling.17 In our cohort, one

VHL deletion was observed in the P2/3 subtypes, which is compatible with hypoxia pathway enrichment in the P2/3 subtypes. DAXXmutation,

which is a poor outcome predictor of PanNETs,6,7 showed a preference for P2/3 over P1/4 (although not statistically significant) (Figures 1B and

1C). In addition, even though the number of gene events was small, DNA damage repair molecules (BRCA1), chromatin remodeling (ARID1A),

telomere maintenance (TERT, DAXX), andmTOR pathway gene alterations mainly occurred in the P2/3 subtypes. As these pathways are known

to be related to malignant features in PanNETs,6–8 this is compatible with the poor outcome of the P2/3 subtypes.

To study recurrent somatic copy number alterations at the chromosomal arm level and focal peak levels, we performed a GISTIC2.0

analysis.18 Chromosome arm level amplifications in over 50% of samples affected 4p, 4q, 7p, 7q, 13q, 14q, 19p, 19q, 20p, and 20q in either

the P1/4 or P2/3 subtypes (Figure 2B). Only chromosome 7p and 7q amplifications showed a significantly higher frequency in the P2/3

subtypes than in the P1/4 subtypes. Chromosome 7 includes several oncogenes, such as CDK6 or EZH2, which have been reported as

predictors of poor outcome and potential treatment targets in neuroendocrine tumors.19,20 Thus, amplification of chromosome 7 supports

P2/3 poor outcomes in our cohort. In contrast, arm level deletions in over 50% of the samples affected 11p and 11q (including the tumor

suppressor MEN1). There was no significant difference in arm level deletion frequency between the P1/4 and P2/3 subtypes. Frequent

loss of chromosome 11 at the arm level among all samples, including MEN1, may be an important genomic event in tumorigenesis.

When we compared the arm level alteration count per sample between P1/4 and P2/3, arm level amplification was significantly higher in

P2/3 (Figure 2C). This suggests that P2/3 could be better characterized by arm level amplification events rather than by deletion events.

We then investigated recurrent focal copy number alterations. We found one shared recurrent focal amplification peak (12p13.2, colored

red in Figure 2D) and two shared recurrent focal deletion peaks (6p22.22 and 11q13.1, colored blue in Figure 2D) between P1/4 and P2/3.

To facilitate understanding of the pathway effect of focal copy number alterations, we performed a KEGG pathway enrichment analysis of

genes involved in recurrent focal peak alterations restricted to a cancer-related COSMIC gene list comprised of 723 known oncogenes

and tumor suppressors.21 The analysis found that P2/3-specific focal peaks were enriched in genes related to oncogenic (PI3K-Akt, etc.)
4 iScience 27, 110544, August 16, 2024
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Figure 3. Proteomic characterization of hypoxia signature in PanNETs

(A) Pathway enrichment analysis with Hallmark signatures between hypoxia-low and hypoxia-high groups based on ssGSEA Hallmark_Hypoxia score (divided by

median value). All statistically significant results are presented. As expected, pathways known to be closely related to hypoxia signature, such as EMT or

glycolysis, are enriched in the hypoxia-high group.

(B) Boxplot of hypoxia scores between proteome-based subtypes. The P2/3 subtypes have higher hypoxia scores than the P1/4 subtypes, as expected from

pathway enrichment analysis between the P2/3 and P1/4 subtypes. The dashed horizontal line represents the mean hypoxia score across this cohort.

(C) Heatmap of hypoxia-related pathway scores and protein abundances. The samples are ordered according to their hypoxia scores. Spearman coefficients with

hypoxia scores are shown on the right-hand side of the heatmap. Hypoxia-related molecules and pathways, such as HIF1a or angiogenesis score, are positively

correlated with hypoxia score. EMT-related signatures also show concordant correlations with hypoxia score. As representative EMTmarkers, E-cadherin (coded

by CDH1) decreases, and vimentin (coded by VIM) increases in EMT, resulting in negative and positive correlations with hypoxia score. Furthermore, glycolysis is

upregulated in hypoxia-high status, with high coefficients. * indicates statistical significance.

(D) Boxplots of E-cadherin and Vimentin protein expression in the hypoxia low and hypoxia high groups (quantified by mass spectrometry). Consistent with the

hypoxic group status, E-cadherin is significantly downregulated in hypoxia-high group. Vimentin is significantly upregulated in the hypoxia-high group.

(E) Boxplots of the protein expression of EMT-inducing transcription factors (quantified by IHC). SNAI and TWIST are significantly upregulated in the hypoxia-high

group.

(F) Boxplots of matrix metalloprotease protein expression in our proteome dataset (quantified by mass spectrometry). MMP11 expression is significantly

upregulated in the hypoxia high group.

(G) TGF-b signaling positively correlates with the EMT signature.

(H) Hypoxia signature is positively correlated with mTORC1 signaling.

(I) Phosphorylated Akt and mTOR expression levels (quantified by IHC) are significantly higher in the hypoxia high group than in the hypoxia low group.

(J) GSEA plot of KEGG glycolysis pathway and KEGG oxidative phosphorylation pathway. KEGG, which is a gene set different from the Hallmark gene set, shows

again metabolic adaptation.

(K) Fold changes of proteins in the glycolysis pathway, TCA cycle, and oxidative phosphorylation are shown (quantified by mass spectrometry).
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and immunosuppressive pathways (PD-L1, etc.) (Figure 2E). KEGGpathway enrichment analysis also revealedHIF1 signaling enrichment in the

P2/3 subtypes, concordant with the fact that the most highly enriched pathway of P2/3 is the hypoxia signaling pathway (Figure 1E).
Hypoxia signature associated with epithelial-mesenchymal transition and crosstalk with TGF-b signaling

In many solid cancers, a hypoxia signature correlates with clinically aggressive phenotypes, such as invasion and metastasis.22 To investigate

hypoxic features in detail at proteome level, we calculated the Hallmark ssGSEA hypoxia score for each sample and separated the cohort into

low and high hypoxia score groups, followed by signal pathway enrichment analyses (Figures 3A and 3B). This comparison revealed significant

differences in pathway enrichment between hypoxia high and hypoxia low groups. As shown in Figure 3A, themost enriched pathway was the

EMT signature, which is known to be related to invasion andmetastasis inmany solid cancers.23 Clinically aggressive subtypes P2/3 had higher

hypoxia scores than clinically less aggressive subtypes (P1/4). The hypoxia signature was significantly correlated with EMT and metabolic

adaptation pathways (i.e., glycolysis pathway) (Figure 3C). As expected, HIF1a IHC score, EMT, and metabolic pathways correlated well

with the Hallmark hypoxia score (Figure 3C). P4HA1 protein (a key enzyme involved in collagen synthesis and EMT) level, a stabilizer of

HIF1a,24 is also positively correlated with the hypoxia score. In colorectal cancer, high P4HA1 expression correlates with poor prognosis

and facilitates metastasis in a mouse PDX model,25,26 suggesting that P4HA1 may have a similar biological role in PanNET.

Immunohistochemical assessment confirmed that the EMTphenotypewas enriched in the hypoxia high group (Figure 3D). Next, we tested

whether EMT-inducing transcription factors (ZEB1, SNAI1/2, and TWIST) were upregulated in the hypoxia high group (Figure 3E). The external

well-differentiated PanNET transcriptome datasets (GSE118014 [n = 33], EGAS00001005024 [n = 78]) confirmed these results (Figure S2A). As

tumor cells need to break the basement membrane and intercellular matrix when they invade during EMT, we investigated the expression

levels of matrix proteases (MMPs) that were quantified in our proteome dataset. Consistent with a previous report on the correlation between

the EMT phenotype and MMP expression,22,27 MMP11 was expressed at significantly higher levels in the hypoxia high PanNET group

(Figure 3F). The external transcriptome datasets showed most MMPs were highly expressed in hypoxia-high group, however, mRNA

MMP11 did not reach statistical significance (Figure S2B).

Next, we investigated the crosstalk between EMT signature and TGF-b signaling.28 The EMT signature score showed a significant

positive correlation with TGF-b signaling (Figure 3G). However, SMAD2 and SMAD4 expression levels were negatively correlated with the

EMT signature score (Figure 3C). We then elucidated non-SMAD TGF-b signaling, that is, PI3K/AKT pathways.29 Signal pathway analysis

and immunohistochemical assessment of phosphorylated AKT and mTOR revealed that AKT-mTOR pathway activation was enriched in

the hypoxia high group (Figures 3H and 3I). To validate our findings, we analyzed the 2 transcriptome datasets (GSE118014,

EGAS00001005024) and found the same signatures (Figures S2C–S2E). These findings indicate that the hypoxia-induced EMT signature

exhibits crosstalk with TGF-b signaling via the non-SMAD axis. These findings suggest that inhibition of TGF-b signalingmay be a therapeutic

option for the hypoxia high group (i.e., the P2/3 subtypes).30
Metabolic reprogramming under hypoxia

Energy production in tumors is an important process, especially under hypoxic conditions, in which oxygen and nutrient supplies are very

limited. To understand how PanNETs adaptmetabolically to hypoxic conditions, we examinedATP-producing pathways, including glycolysis,
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Figure 4. Integrated immune signature analysis of PanNETs at proteome level

(A) Immune signature profiling of DNA, proteins, and pathway alterations. Gray columns indicate the missing data. Although genomic events do not have a clear

correlation with immune score, immune cell infiltration (CD3 count), INFg signaling, and antigen presenting system are significantly correlated with immune

score. * indicates statistical significance.

(B) PanNET P2/3 subtypes show significantly higher immune scores than P1/4 subtypes.

(C) GSEA between immune cold and hot groups shows significant enrichment of antigen processing-related pathways in immune hot tumors.

(D) AmongMHC class I molecules on the cell surface, B2M shows a significant positive correlation with the immune score. HLA-A and HLA-C have a weak positive

correlation with the immune score, but not significant. Proteins were quantified by mass spectrometry.

(E) Fold change bar chart of the proteasome components (quantified by mass spectrometry). Most components are upregulated in immune hot tumors

compared to immune cold tumors.

(F) IRF1 expression (quantified by IHC) is significantly higher in immune hot tumors than immune cold tumors.

(G) Correlation plot of IRF1, MHC class I, and proteasomecomponents. *, p < 0.05; **, p < 0.01; p < 0.001.
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Figure 4. Continued

(H) The PD-L1 positivity rate (quantified by IHC) is higher in immune hot tumors than in immune cold tumors, but the difference is not statistically significant.

(I) IDO1 expression (quantified by IHC) is higher in immune hot tumors than in immune cold tumors, but the difference is not statistically significant.

(J) The number of FOXP3 positive cells (quantified by IHC), which are immune suppressors, is significantly higher in immune hot tumors than in immune cold

tumors.

(K) CD68 positive cells (quantified by IHC) are enriched in immune hot tumors with close statistical significance.
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TCA cycle, and oxidative phosphorylation. Concordant with the signaling pathway analysis result (Figure 3A), KEGG gene set enrichment be-

tween hypoxia low and hypoxia high groups showed glycolysis upregulation in the hypoxia high group (Figure 3J). In addition, the oxidative

phosphorylation pathway, which is closely connected to the TCA cycle for effective ATP production, was downregulated in the hypoxia high

group (Figure 3J). To further elucidate these pathways in detail, we investigated the enzyme expression levels of glycolysis, TCA cycle, and

oxidative phosphorylation pathways based on our proteomedata. Clearly, glycolysis enzymeswere upregulated, and enzymes involved in the

oxidative phosphorylation process were downregulated (Figure 3K). Concordantly, some TCA cycle enzymes were downregulated in the

hypoxia high group (Figure 3K). The external transcriptome datasets (GSE118014, EGAS00001005024) confirmed glycolysis enrichment in

the hypoxia high group (Figure S2F). In general, cancer cells mainly use aerobic glycolysis and do not use the TCA cycle to produce ATP,

even though the TCA cycle generates ATP more efficiently (Warburg effect).31 Our findings suggest that PanNET dynamically shifts the

ATP-producing pathway to anaerobic glycolysis under hypoxic conditions, resulting in better adaptation to the tumor microenvironment.

Immune hot tumors express immune evasion molecules

Since the PanNET P2/3 subtypes showed enrichment of inflammatory pathways, we investigated the immune signature of PanNETs. Recent

advances in cancer therapy have demonstrated clear benefits of targeting the immune system. Immune checkpoint inhibition (ICI) and other

forms of immunotherapy have led to impressive survival gains inmany patients, including thosewithmetastatic disease.32,33 This critical step is

mediated byMHC-T cell receptor (TCR) interactions.Generally, good responders to immunotherapy show higher immune cell infiltration than

poor responders by cells such as CD8+ T cells (immune ‘‘hot’’ tumors), which directly attack tumor cells presenting non-self-antigen on MHC

class I molecules.34 To elucidate the tumor immune microenvironment, especially in immune hot tumors, we performed an integrated prote-

omic analysis with immunohistochemical assessment of immune cell infiltration in tumor tissue (Figure 4A). PanNETs showed a range of CD3+

and CD8+ T cell infiltrations. Concordant with inflammation signature enrichment in P2/3 subtypes (Figure 1E), the proteomic immune score35

was significantly higher in P2/3 than inP1/4 (Figure 4B) andwaspositively correlatedwithCD3+andCD8+ cell counts in tumor tissue (Figure 4A).

Immune hot tumors, defined as an immune score above the median value, showed enrichment of INFg and antigen processing/

presentation pathways. Gene set enrichment analysis (GSEA) between immune hot and cold tumors showed significant enrichment of the an-

tigen processing/presentation pathway (Figure 4C). Accordingly, the B2M protein expression level, one of the MHC class I molecules

quantified in our proteome dataset, showed a positive correlation with the immune score (Figure 4D). In addition, most proteins involved in

peptide processing and transfer to the MHC class I complex and antigen presenting machinery components (APM components) showed

higher expression in immune hot tumors than in immune cold tumors (Figure 4E), suggesting that immunehot tumors induce immune cell infil-

tration by presenting antigens to host immune cells. The external transcriptomedatasets (GSE118014, EGAS00001005024) confirmedour find-

ings (Figures S3A and S3B). We then examined IRF1 expression, because this transcription factor regulates the expression of MHCmolecules

and APM components. IRF1 was highly expressed in immune hot tumors (Figure 4F) and was positively correlated with MHC class I and APM

components (Figure 4G). PSMB5was significantly negatively correlatedwith IRF1, TAP1/2, and TAPBP levels. As PSMB5 is not amember of the

immunoproteasomecomponent, this negative correlation is concordant with a previous report.36 These correlationswere confirmedusing the

GSE118014 and EGAS00001005024 datasets (Figure S3C). To investigate how immune hot tumors survive under high of immune surveillance,

we assessed immune suppressor protein expression (i.e., PD-L1, IDO1, LAG3, and C10orf54 [VISTA]) in tumor cells by IHC. Although the tran-

scriptome datasets showed mRNA upregulation of LAG3 (in the both GSE118014 and EGAS00001005024 datasets) and C10orf54 (VISTA)

(quantified only in GSE118014 dataset) (Figure S3D), no tumors in our cohort showed LAG3 and C10orf54 (VISTA) protein expression by

IHC assessment (Figure S4). PD-L1 and IDO1 showed slightly higher protein expression in immune hot tumors (yet not statistically significant)

(Figures 4H and 4I). We also investigated whether suppressive immune cells were increased in immune hot tumor tissues. FOXP3 protein, a

marker of regulatory T cells, showed a significant increase in immune hot tumors by IHC (Figure 4J). CD68, a pan-macrophagemarker, showed

a slight increase in immune hot tumors (Figure 4K), suggesting possible involvement of macrophages in immune reaction regulation. These

results suggest that immune hot tumors may survive under high pressure of immune surveillance by utilizing immunosuppressive molecules

(PD-L1 or IDO1) and/or by modulating the suppressive immune microenvironment. As shown here, PD-L1 or IDO1 may be good candidates

as inhibitory targets in immune hot PanNETs to enhance host immune attack against these tumors. A treatment strategy that aims to activate

antigen processing pathway in immune cold tumorsmay be also effective, whichmakes immune cold PanNETs visible to host immune system.

Since IRF1 is regulated by the IFNg-JAK-STAT pathway,37 IFNg treatment may be useful especially for immune cold tumors.

Possible drug targets for PanNET treatment

Nonsurgical treatment of PanNETs is currently limited. Only very few drugs, such as somatostatin analogs or everolimus, are available for

patients with PanNET. To facilitate drug development and drug repositioning, we performed differential expression analyses between

PanNETs and normal pancreatic tissues to determine which proteins were highly and specifically overexpressed in PanNETs. We found
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Figure 5. Possible drug targets for PanNET treatment

(A) Volcano plot of differential expression between PanNETs and normal pancreatic tissue. Black dots are differentially expressed proteins with statistical

significance (FDR <0.05) and > 2-fold change. Red dots represent proteins with inhibitory drugs in the drug-gene interaction database. Labeled proteins (in

red) are shown in this plot, highlighting that this analysis detects known therapeutic candidates.

(B) Venn diagram of differentially expressed proteins (benign vs. P1/4 and benign vs. P2/3). Only proteins with FDR <0.05 and >2-fold change are counted.

(C) Possible therapeutic drug candidates targeting subtype-specific proteins with fold change increase >2.

ll
OPEN ACCESS

iScience
Article
that 1,226 proteins were significantly upregulated (FDR <0.05) with >2-fold change compared to normal pancreatic tissue (Figure 5A;

Table S2). We searched for currently available inhibitory drugs against these proteins and found 352 inhibitory drugs against 73 protein

targets, including 139 FDA-approved drugs against 38 protein targets (Table S3). For example, HDAC1/2, which has been shown to be a

therapeutic target for PanNETs,38–40 was re-identified as a druggable target in our analysis. ABCB1 is a well-known target which could reverse

cancer multidrug resistance, which suggest that ABCB1 inhibition of PanNET may sensitize this tumor to many different types of anticancer

drugs.41 PDGFRB and CDK5 have also been shown to be effective targets in several cancers.42,43 To identify overexpressed protein targets

specific for our proteomic subtypes of PanNET, we performed differential protein expression analyses between benign tissue vs. P1/4 and

benign tissue vs. P2/3. We found 207 and 167 specifically overexpressed proteins in P1/4 and P2/3, respectively (FDR <0.05, >2-fold change)

(Figure 5B).We then searched for small inhibitory compounds against these subtype-specific protein targets, resulting in 14 and 17 targetable

proteins in P1/4 and P2/3, respectively (Figure 5C). For example, two differentMAPK familymembersmay be targetable in P1/4 (MAPK14) and

P2/3 (MAP2K1, MEK1), respectively. EPCAM is a specific inhibitory target of P1/4, which is concordant with the finding that P1/4 showed rela-

tively higher epithelial phenotype than P2/3 (i.e., EMT low, see Figure 1E). In contrast, G6PD, which is a main enzyme of glycolysis, is a specific

inhibitory target of P2/3. This is concordant with a metabolic adaptation feature of P2/3 (Figures 1E and 3). This analysis provides a list of

possibly promising subtype-specific candidates for future targeted treatment of PanNETs.
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DISCUSSION

In this study, we describe unsupervised proteomic profiling of well-differentiated PanNETs to discover clinically relevant subtypes and char-

acterize these subtypes with a focus on hypoxia signatures and immune landscapes using integrated proteogenomic methods and IHC vali-

dation. Unsupervised proteomic classification identified four subtypes, which form two major groups (P2/3 and P1/4) with clinical outcome

differences. SNVs and CNAs related to DNA repair, chromatin remodeling, telomere maintenance, and the mTOR pathway were enriched

in the clinically aggressive subtypes (P2/3). A recurrent copy number alteration analysis showed that arm-level amplification of chromosome

7, which harbors several oncogenes, was significantly enriched in clinically aggressive subtypes (P2/3). Recurrent focal peak amplifications and

deletions were also observed at the P2/3 subtypes. In addition, KEGGpathway enrichment analysis of genes involved in recurrent focal peaks

revealed hypoxia signatures and immunosuppressive pathways enriched in P2/3 subtypes. Differential protein expression analysis between

the P1/4 and the P2/3 subtypes also revealed that hypoxia and immune-related signatures were enriched in the P2/3 subtypes. A more

detailed characterization of the hypoxia signature in PanNETs revealed association with EMT and metabolic adaptation to a hypoxic micro-

environment.While proteomic immune landscape characterization revealed high expression of antigen presentingmachinery includingMHC

class I in the P2/3 subtypes, it also highlighted high expression of immunosuppressive molecules in the tumor and an immunosuppressive

microenvironment (regulatory T cell and macrophage infiltration) in the P2/3 subtypes. We also used our proteomic characterization of

PanNETs to identify possible drug targets for future therapeutic development or repurposing of currently approved drugs.

Our proteomic subtypes form twomajor groups: the P1/4 (clinically less aggressive subtypes) and the P2/3 subtypes (clinically aggressive/

higher stage subtypes). While the proteomic subtyping was obtained via entirely unsupervised clustering, we found that all clinical recurrence

events occurred exclusively in the P2/3 subtypes. We found that hypoxia and immune signatures characterize the P2/3 subtypes and may

shape their aggressive clinical phenotypes. Based on the biological characteristics of P2/3 and comparison of inferred P2/3 subtypes in

the transcriptomic EGAS00001005024 dataset (Table S5), P2/3 proteome subtypes seem to be partially similar to the previously described

‘‘metastasis-like primary’’ PanNET subtype9,11 and the ‘‘stromal/mesenchymal’’ subtype.10 P1/4may partially overlapwith the ‘‘Alpha cell-like’’

subtype.10 However, the prior classifications were all based on transcriptome analyses only, limiting direct comparisons.

Compatible with a whole-genome sequencing study of 97 PanNETs,7 somatic mutations in DNAmismatch repair, chromatin remodeling,

telomeremaintenance, andmTOR pathway pathways showed a higher prevalence of the aggressive P2/3 subtypes relative to the more indo-

lent P1/4 subtypes. Most of the mutations were loss-of-function, suggesting that PanNET tumorigenesis is driven mainly by the loss of tumor

suppressor genes. In contrast, recurrent somatic copy number alteration analysis revealed that arm-level amplification of chromosome 7 was

significantly enriched in P2/3, suggesting that clinically aggressive phenotypes may be partially derived from genes in this chromosome.

Several genes on chromosome 7, such asCDK6 and EZH2,19,20 are annotated as oncogenic in the COSMIC census gene list.21 However, func-

tional studies of gene amplifications in PanNETs have not yet been conducted. Recurrent somatic focal copy number analysis revealed copy

number alterations in the P2/3 subtypes, which were enriched in HIF1a signaling, PI3K-mTOR pathway, and immune evasion pathway. These

signaling pathways were recurrently affected by different genomic alterations (SNVs and CNAs), suggesting their tumorigenic importance.

Previous studies have suggested hypoxia signature enrichment in a subset of PanNETs,7,10,11 but detailed pathway analyses focusing on

metabolic adaptation under hypoxic conditions have not been performed before, especially at the proteomic level. Our proteomic analyses

revealed that the hypoxic tumormicroenvironment is associatedwith EMT via TWIST and SNAI upregulation and accompanied by non-SMAD

TGF-b signaling. In addition, tumor cells dynamically shift their energy-producing pathways to anaerobic glycolysis in order to adapt to

hypoxic conditions. These findings suggest that targeting the EMT signature (EMT transcription factors, MMPs, etc.) and/or key molecules

of cancer metabolic reprogramming may be effective, especially for PanNET subtypes P2/3 (hypoxia high tumors). Such therapeutic strategy

may be also effective for metastatic lesions since these lesions are generally under limited oxygen and nutrient resources.44

As shown in our proteomic study and in a previous transcriptomic study,11 immune signatures were enriched in the poor survival group.

Our study showed upregulation of antigen presentation machinery in immune hot tumors with an increase in inflammatory cell invasion in

tumor tissue. IHC-based immune cell profiling revealed an increase of immunosuppressive regulatory T cells in immune hot tumors, which

may partially explain clinical tumor aggressiveness even under high immune surveillance pressure. In addition, macrophages, whose role

in cancer immunity and outcome correlation are context dependent,45,46 were increased in immune hot tumors (poor outcome group),

perhaps suggesting an immunosuppressive role of macrophages in the PanNETs. Concordantly, a previous transcriptomic study of

PanNETs showed macrophage infiltration of immune hot tumors.11 In addition, we found that immune hot tumors showed higher PD-L1

(CD274) and IDO1 expression, both of which are immunosuppressive molecules. This indicates that immune hot PanNETs (hypoxia high,

poor outcome subtypes)may respond to immune checkpoint targeting therapy. Further studies on patient stratification biomarkers for immu-

notherapy are required.

Finally, we investigated the possibility of drug repositioning by comparing protein expression differences with normal adjacent pancreatic

tissues.Weweremotivated by the facts that currently virtually all drugs target proteins directly and that targeting highly expressed proteins in

tumor tissues compared with normal tissue may reduce the possibility of side effects. Our analysis identified 352 putatively inhibitory drugs

against 73 PanNET proteins, including 139 FDA-approved drugs against 38 possible target proteins. Our analysis identified HDAC1/2 as a

possible drug target that has already been shown to be targetable in PanNETs.38–40 In addition, we describe possible subtype-specific

protein targets, which could be beneficial for developing future proteome subtype-based treatments. Further functional studies will have

to interrogate these putative targets.

In summary, we demonstrated that proteogenomic profiling identified clinically relevant subtypes of PanNETs and characterized

molecular pathways enriched in poor outcome subtypes. We then characterized a hypoxia signature that features metabolic adaptation
10 iScience 27, 110544, August 16, 2024
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and immune evasion and that is enriched in poor outcome subtypes. Based on our results, targeting metabolic adaptation pathways and

immune evasion mechanisms may be beneficial. In addition, our proteogenomic dataset of well-differentiated PanNETs provides a unique

resource to the scientific community for studying these tumors.
Limitations of the study

One limitation is the number of patients in the cohort and the focus on formalin-fixed paraffin-embedded (FFPE) tissue. Both of thesewill need

to be addressed in prospective cohorts of fresh or fresh frozen tissues. Another limitation is the absence ofmechanistic studies of our findings.

However, functional studies are currently challenging due to the shortage of robust cell culture or organoid models of PanNETs. In addition,

FFPE tissue limited our ability to interrogate post-translation modifications such as phosphorylation events that are preferably measured in

fresh or fresh frozen samples. The relatively small size of the proteomic cohort makes statistically meaningful association studies

between proteomic subtypes and genomic alterations difficult. Nevertheless, our study represents the largest proteomic investigation of

well-differentiated PanNETs to date and creates a uniquely valuable dataset for this intriguing disease.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-HIF1a (dilution 1:100) Sigma-Aldrich Cat. # HPA001275; RRID: AB_1079057

Rabbit monoclonal anti-ZEB1 (dilution 1:300) Sigma-Aldrich Cat. # HPA027524; RRID: AB_1844977

Rabbit monoclonal anti-SNAI (dilution 1:10,000) Abcam Cat. # ab85936; RRID: AB_1925448

Mouse monoclonal anti-Twist (dilution 1:4000) Abcam Cat. # ab175430; RRID: AB_2928035

Rabbit monoclonal anti-pAKT (dilution 1:50) Abcam Cat. # ab81283; RRID: AB_2224551

Rabbit monoclonal anti-p-mTOR (dilution 1:200) Cell Signaling Cat. # 2976; RRID: AB_490932

Rabbit monoclonal anti-IRF1 (dilution 1:100) Abcam Cat. # ab243895; RRID: AB_2832955

Rabbit polyclonal anti-IDO1 (dilution 1:50) Sigma-Aldrich HPA023072; RRID: AB_1846220

Mouse monoclonal anti-FOXP3 (dilution 1:500) Abcam Cat. # ab20034; RRID: AB_445284

Mouse monoclonal anti-CD3 (dilution 1:200) Leica Biosystems Cat. # NCL-L-CD3-565; RRID: AB_563541

Mouse monoclonal anti-CD8 (dilution 1:1500) Dako Cat. # M7103; RRID: N/A

Mouse monoclonal anti-CD68 (dilution 1:200) Dako Cat. # M0876; RRID: N/A

Recombinant Anti-PD-L1 antibody (dilution 50) Abcam Cat. #ab282458

VISTA (D1L2G�) XP Rabbit mAb (dilution 1:50) Cell Signaling Cat. # 64953; RRID: AB_2799671

Mouse monoclonal anti-LAG3 (dilution 1:500) Novus Biologicals Cat. # NBP1-97657; RRID: AB_11162489

Chemicals, peptides, and recombinant proteins

DL-Dithiothreitol Sigma-Aldrich Cat. # 43815

Trypsin/Lys-C Promega Cat. # V5073

Acetonitrile Fisher chemical Cat. # A955

Empore SPE Disks Sigma-Aldrich Cat. # 66883-U

Formic acid Fisher chemical Cat. # A117-10X1AMP

S-Trap ProtiFi Cat. # C02-mini

Iodoacetamide Sigma-Aldrich Cat. # I1149

Sodium dodecyl sulfate Sigma-Aldrich Cat. # L3771

Deposited data

Proteome data This paper PXD034571

Transcriptome data of PanNETs (Chan et al.)6 GSE118014

Transcriptome data of PanNETs (Yang et al.) EGAS00001005024

Software and algorithms

MaxQuant (v1.6.4) (Cox et al.) https://maxquant.org/maxquant/

Perseus (v1.6.15) (Tyanova et al.)47 https://maxquant.org/perseus/

clusterProfiler (version 3.16.1) (Yu et al.)48 https://github.com/YuLab-SMU/clusterProfiler

single sample GSEA Broad Institute https://github.com/broadinstitute/ssGSEA2.0

ConsensusClusterPlus (v1.52.0) (Wilkerson et al.)16 https://git.bioconductor.org/packages/

ConsensusClusterPlus

ESTIMATE (v1.0.13) (Yoshihara et al.)35 https://sourceforge.net/projects/estimateproject/
RESOURCE AVAILABILITY

Lead contact

Further information requests should be directed to and will be fulfilled by the lead contact, Michael H. Roehrl (michael_roehrl@bidmc.

harvard.edu).
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Materials availability

This study did not generate new reagents.

Data and code availability

� The mass spectrometry proteomics raw data and processed protein expression data have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository with the dataset identifier PXD034571. The data are publicly available. In the present

study, we used 2 external datasets for validation. One contains transcriptome data from 33 PanNETs (GSE118014).6 The mRNA

log2TPM expression data was downloaded from supplementary files of the published paper. The other contains transcriptome

data from 84 pancreatic neuroendocrine neoplasms (EGAS00001005024).10 Bam files were downloaded and processed to calculate

gene expression levels as described below.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this study is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The Institutional Review Board granted approval for the study. Formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained from

the institutional biobank. The clinical data of these samples, such as age and gender, were collected from medical records anonymously

and are summarized in Table S4. Ancestry/race/ethnicity information was not available from the medical record.

METHOD DETAILS

Clinical specimens and pathological data

We selected 37 well-differentiated pancreatic neuroendocrine tumors, 11 pancreatic ductal adenocarcinomas, and 9 normal pancreatic

tissues (surgically resected due to non-PanNET conditions and histologically unremarkable) with sufficient tissue for protein extraction.

Formalin-fixed paraffin-embedded (FFPE) blocks were obtained and selected from the clinical sample repository after pathological review.

All data were retrospectively acquired and anonymized. Clinical data, including patient demographics, treatment history, recurrence status,

and clinical MSK-IMPACT targeted sequencing results (10 PanNET and 11 PDAC cases available) were retrieved from the medical

records. Histological type and other pathological parameters including Ki67 immunohistochemical assessment were extracted from

diagnostic pathology reports, and tumor content ratios for all samples were assessed by gastrointestinal subspecialty pathologists. Detailed

clinicopathological features and prognostic information are summarized in Table S4, including gender, age, and TNM stage.

MSK-IMPACT sequencing

MSK-IMPACT sequencing was performed as previously described.49 Among 37 PanNETs, 10 PanNETs already had available clinical

MSK-IMPACT sequencing data. We checked formalin-fixed paraffin-embedded (FFPE) tissue availability of the remaining 27 PanNETs,

and found that 26 PanNETs had sufficient FFPE tissue available for sequencing. We used FFPE tumor blocks that included the tumor center.

Briefly, ten unstained 10-mm sections each were prepared from tumor and normal FFPE blocks. Wemacroscopically dissected tumor areas to

enrich for tumor content and extracted genomic DNA using the DNeasy Tissue kit and the EZ1 Advanced XL system (Qiagen, Valencia, CA).

Extracted DNA was sheared using a Covaris E200 instrument (Covaris, Woburn, MA, USA). Custom DNA probes were designed for targeted

sequencing of all exons and selected introns of 505 genes. Probes were synthesized using the NimbleGen SeqCap EZ library custom oligo

system and biotinylated to allow sequence enrichment by capture using streptavidin-conjugated beads. Sequencing libraries were prepared

using the KAPAHTP protocol (Kapa Biosystems,Wilmington, MA, USA) and the Biomek FX system (BeckmanCoulter, Brea, CA, USA). Pooled

libraries containing the capturedDNA fragments were sequenced using Illumina HiSeq 2500 to obtain high, uniform coverage (>500xmedian

coverage). All classes of genomic alterations, including substitutions, indels, copy number alterations, and rearrangements, were determined

and called against the patient’s matched normal sample. The testing was performed in a CLIA-certified laboratory.

Recurrent somatic copy number alteration detection

Gene-level SCNAs and significant SCNAs in the discovery cohort were identified using Genomic Identification of Significant Targets in

Cancer (GISTIC, version 2.0.23) to determine which SCNA regions were significantly amplified or deleted than expected by chance with q

value at 0.2.18 Segmented copy number outputs of MSK-IMPACT were used as input for GISTIC2.0. The following parameters were used:

Amplification Threshold = 0.1, Deletion Threshold = 0.1, Confidence Level = 0.90, Arm Level Peel = ON. The default values for other factors

were used.

Tissue proteome extraction and MS sample preparation from FFPE tissue

Sample preparation of FFPE tissues (37 PanNETs, 11 PDACs, 9 normal pancreatic tissues) for mass spectrometric analysis was performed

according to a previous protocol for FFPE tissue with modifications.50 In brief, ten unstained 10-mm sections each were made from the

formalin-fixed paraffin-embedded (FFPE) tissues. Adjacent 4-mm sections were subjected to H&E staining to confirm tumor content, after

which the tumor areas were macrodissected from the corresponding 10 sections. After dewaxing, lysis buffer containing 100 mM Tris and
iScience 27, 110544, August 16, 2024 15
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5% SDS was added to the samples. Then tissue mixture was sonicated and incubated at 98�C for 20 min at 1000 rpm, and subsequently

incubated at 80�C for 2 h at 1000 rpm. After centrifugation at 14,000 g for 30 min at 4�C, the supernatant containing all soluble proteins

was collected. Protein concentration was determined using a BCA assay (Pierce). Proteomes (100 mg from each sample) from FFPE tissue

were reduced (dithiothreitol), alkylated (iodoacetamide), and double-digested (Trypsin/Lys-C mix, mass spec grade, Promega) and

processed using the S-Trap system (ProtiFi) according to the manufacturer’s instructions. The samples were desalted using a laboratory-

made C18 StageTip. Desalted peptides were dried in a SpeedVac vacuum concentrator, re-dissolved in 3% acetonitrile/0.1% formic acid,

and stored at -80�C until mass spectrometry analysis.
Quality control sample preparation for mass spectrometry analysis

As a quality control measure, we pooled all protein samples into one reference sample. All individual patient samples were processed

side-by-side with pooled quality control samples in batches. In each mass spectrometry run, we ran one pooled quality control sample

per sample batch and calculated the pairwise correlation coefficients between each batch to ensure instrument inter-run stability (Figure S1A).
Proteome sequencing by mass spectrometry

Desalted peptides were dissolved in 3% acetonitrile/0.1% formic acid and injected into a C18 capillary column (Peptide BEH 1.7mm x 75mm x

250 mm) on a nano ACQUITY UPLC system (Water), which was coupled to a Q Exactive Plus mass spectrometer (Thermo Scientific) via a

Proxeon 2 nano electrospray source. Peptides were eluted with a non-linear 200 min gradient of 2-35% buffer B (0.1% (v/v) formic acid,

100% acetonitrile) at a flow rate of 300nl/min. After each gradient, the column was washed with 90% buffer B for 5 min and re-equilibrated

with 98% buffer A (0.1% formic acid and 100% HPLC-grade water). MS data were acquired with an automatic switch between a full scan

and 10 data-dependent MS/MS scans (TopN method). Target value for the full scan MS spectra was 1 x 106 ions in the 380-1600 m/z range

with amaximum injection time of 50ms and resolution of 70,000 at 200m/z with data collected in profilemode. Precursors were selected using

a 1.5m/z isolation width. Precursors were fragmented by higher-energy C-trap dissociation (HCD) with a normalized collision energy of 27 eV.

MS/MS scans were acquired at a resolution of 17,500 at 200 m/z with an ion target value of 53104, maximum injection time of 50 ms, dynamic

exclusion for 15 s, and data collected in centroid mode.
Immune cell profiling

To assess immune cell profile of each sample, we performed IHC using immune cell markers (CD3, CD8, FOXP3, and CD68), and counted the

number of positive cells in each TMA core (each sample had two cores).We used the total number (i.e., cell number per two TMA cores) for the

downstream analysis.
Tissue microarray (TMA) construction

To facilitate IHC assessment, we constructed TMA of PanNETs. Among the samples in the cohort, FFPE blocks from 35 PanNETs were

available for TMA construction. Three separate 2-mm tissue cores from each tumor sample were drilled out from each donor paraffin block

and transferred to tissue array blocks using a robotic TMA arrayer (TMA Grand Master, 3DHistech). Tumor areas were selected based on

rigorous review of individual histologic slides for each donor block and electronic image-based coring target area selection using the

TMA Grand Master software.
QUANTIFICATION AND STATISTICAL ANALYSIS

Protein identification, quantification, and differential expression analysis

Label-free protein quantification was carried out with MaxQuant51,52 with human UniProt FASTA (downloaded 09/2018). ‘‘Match between

runs’’ option ofMaxQuant was used. Aminimumof 1 peptidewas required for protein identification, but 2 peptideswere required to calculate

a protein level ratio. Protein quantification values were normalized using the MaxLFQ algorithm53 as implemented in MaxQuant. After quan-

tification and data normalization in MaxQuant, protein expression data were processed using Perseus software. In this step, only proteins

whose expression values were valid in over 50% of samples from at least one group (i.e., pancreatic neuroendocrine tumors, pancreatic ductal

adenocarcinomas, and normal pancreatic tissues) were kept and missing values were imputed with shifted Gaussian distribution, followed by

differential expression analyses using Perseus software.47,54
Transcriptome data processing and differential expression analyses

We downloaded 84 RNA-seq bam files which were outputs generated by STAR55 from EGAS00001005024.10 Among 84 samples, 78 samples

were well-differentiated PanNETs and used for further analyses. Gene counts were obtained using featureCounts56 with Ensembl (v87) tran-

script annotations. Transcripts per million (TPM) values were calculated from the gene counts using the formula:

ðCount=Gene lengthÞ31;000;000

Sum ðCount=Gene lengthÞ
16 iScience 27, 110544, August 16, 2024
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To perform differential expression analyses between specified groups, we input the gene counts data into edgeR57 and obtained signif-

icantly expressed genes after filtration of low count data (minimum gene count >10).
Gene set enrichment analysis

To identify enriched pathways/biological processes, we used clusterProfiler (version 3.16.1) with a ranked gene list ordered by fold-change

values.48 Fold-change values of gene expression between specified groups were calculated using edgeR and Perseus. We conducted

enrichment tests of Hallmark andKEGGgene sets obtained from theMolecular SignaturesDatabase (MSigDBversion 7.4). For functional char-

acterization of each sample by single sample Gene Set Enrichment Analysis (ssGSEA), we calculated normalized enrichment scores (NES) of

cancer-relevant gene sets by projecting thematrix of normalized RNAexpression (TPM value) and protein expression ontoHallmark gene sets

using ssGSEA implementation available on https://github.com/broadinstitute/ssGSEA2.0 with following parameters: sample.norm.type =

‘‘log’’, weight = 0.75, statistic = ‘‘area.under.RES’’, output.score.type= ‘‘NES’’, nperm=1000,min.overlap= 3, correl.type= ‘‘z.score’’. To eluci-

date gene set enrichment in each sample, we applied single sample Gene Set Enrichment Analysis (ssGSEA) to normalized RNA expression

data and proteome data.58 Using ssGSEA, we calculated the normalized enrichment score (NES) for MSigDB terms.
Unsupervised consensus clustering for proteomic data

To infer proteome-based subtype, we applied consensus clustering on normalized protein expression matrix of 37 PanNETs using

ConseususClusterPlus R package with the following parameters: maxK = 10, reps = 1,000 bootstraps, pItem = 0.8, pFeature = 1, clusterAlg =

"hc", distance = "peason".16 The number of clusters was mainly determined by four factors: the average pairwise consensus matrix within

consensus clusters, delta plot of the relative change in the area under the cumulative distribution function (CDF) curve, and tracking plot.

We selected a consensus matrix with k = 4, which seemed to be the cleanest separation (Figure S1).
Proteome subtype inference of external dataset

To validate biological differences between our proteome subtypes (P1/4 vs P2/3), we constructed a classifier of our proteome subtypes for

transcriptome data (78 PanNETs) from EGAS00001005024. To minimize expression profile difference between transcriptome and proteome,

we calculatedmRNA-protein correlation coefficients of 79 differentially expressed genes between P1/4 and P2/3 and selected 27 genes which

showed significant positive correlation between mRNA and protein abundance for classifier construction. We used the tidymodel R package

for this modeling.59 To construct a classifier for our proteome subtypes, we split our cohort (37 PanNETs) into a training dataset (8 P1/4, 19 P2/

3 samples) and a test dataset (3 P1/4, 7 P2/3 samples) while retaining the subtype ratio after scaling.We then trained a random forest classifier

with the training dataset accompanied by 10-fold cross validation. We applied the trained classifier to the test dataset and got a 1.0 F-means

value (which means all sample subtypes were correctly predicted). We then applied the classifier to the EGAS00001005024 dataset after data

preprocessing and inferred proteomic subtypes in the dataset (Table S5). We checked for overlap between inferred proteome subtype and

reported transcriptome subtype.10 P1/4 samples (n=15) were comprised of 3 PDX1-high, 11 Alpha cell-like, and 1 Stromal/Mesenchymal sub-

type(s). P2/3 samples (n=63) were comprised of 17 PDX1-high, 17 Alpha cell-like, 23 Stromal/Mesenchymal, and 6 Proliferative subtypes.
Immunohistochemistry (IHC) validation

Formalin-fixed paraffin-embedded tissues were cut into 4-mm sections. Paraffin was removed with xylene, and antigens were retrieved by

heat-mediated epitope retrieval (pH 6.0). IHC staining was performed using a Leica BOND-MAX automated system (Wetzlar, Germany)

with appropriate positive and negative controls of IHC target molecules. Used antibodies with their product IDs and staining dilutions are

listed in the key resources table. IHC results (except CD3, CD8, FOXP3, CD68) were scored using a semiquantitative approach. Staining in-

tensity of individual tumor cells was determined and assigned intensities of 0, 1+, 2+, or 3+ (averaged across 3 independent tissue cores per

case). The total weighted IHC score (IHC H-score) of a sample was calculated bymultiplying the expression intensity of individual tumor areas

(score, 0-3+) by their relative contribution (0-100%) to total tumor area and adding these to yield a total weighted sum. Thus, IHC H-scores

have a theoretical range of 0–300. Scoring of all tissue samples was performed independently by two pathologists. In cases of discrepancies in

immunohistochemical assessment between the two pathologists, the cases were reviewed together, and a consensus score was determined.

Representative IHC images were shown in Figure S4.
Immune score calculation

Using theESTIMATE35 package in R, we calculated immune scores fromnormalizedprotein expressionmatrix of the 37PanNET samples. Simi-

larly, the immunescoresof theGSE118014 cohort andEGAS00001005024 cohortwere calculatedbasedonnormalizedmRNAexpressiondata.

We then divided our cohort and the external dataset cohorts (GSE118014, EGAS00001005024) into two groups based on themedian immune

score in each cohort. We named these groups ‘‘immune cold’’ (low immune score group) and ‘‘immune hot’’ (high immune score group).
General statistical analysis

The Wilcoxon signed-rank test was used for continuous variables unless otherwise specified. Fisher’s exact test was used for categorical vari-

ables. Kaplan-Meier survival analysis was used for survival analyses. All statistical analyses were performed using R (v4.3.2).60
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